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Abstract: Walnut (Juglans regia) is known as a promising woody oil crop with abundant
polyunsaturated fatty acids in its kernel. However, the regulation mechanism of walnut oil
accumulation and fatty acid metabolism is still poorly understood, which restricted the breeding
and genetic improvement of high-quality oil-bearing walnuts. To reveal the molecular mechanism
of walnut oil accumulation, considering the potential regulation of microRNA (miRNA) in seed
development, in this study, the oil content of walnut kernel on the 80th, 100th and 120th day after
flowering (DAF) was tested and the corresponding proportions are 11.51%, 40.40% and 53.20%.
Between DAF of 80th~120th, the content of stearic acid and oleic acid tended to increase, but the
proportion of other fatty acids tended to decrease. Meanwhile, comparative transcriptome and
sRNA-seq analysis on three stages (80th, 100th and 120th DAF), found 204 conserved miRNAs
and 554 novel miRNAs in walnut kernels, among which 104 key genes related to walnut oil
accumulation were screened. The phospholipid:diacylglycerol acyltransferase metabolic pathway
may contribute more to oil accumulation in walnut. 16 miRNA-mRNA regulatory modules related to
walnut oil accumulation and fatty acid synthesis were constructed. 8 known miRNAs and 9 novel
miRNAs regulate 28 genes involved in fatty acid (FA) metabolism and lipid synthesis. Among them,
jre-miRn105, jre-miRn434, jre-miR477d and jre-miR156a.2 are key miRNAs that regulate walnut
FA synthesis. Jre-miRn411 and jre-miR399a.1 are closely related to oil accumulation. These data
provide new insights and lay the foundation for subsequent studies on walnut FA synthesis and
oil accumulation.
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1. Introduction

Juglans regia, a kind of woody oil plant, is commonly known as Persian walnut or English
walnut. Walnut oil is rich in tocopherol, squalene, oleic acid, linoleic acid, linolenic acid and sterols [1].
As a kind of functional oil, walnut oil has a good health care effect on human body and multiple
economic values, leading to a growing demand for walnut oil [2,3]. Therefore, it is of great value and
significance to clarify the mechanism of walnut seed oil anabolic process, which lays a foundation
for the breeding of high-yield oil-type walnuts and genetic improvement of walnut, and provides an
important theoretical basis.
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Oils mainly exist in the form of fatty acid glycerides, generally triacylglycerols (TAG) in plants
seeds, which are stored in oil bodies as energy and biosynthetic precursors [4]. Existing studies
have fully confirmed that the process of lipid accumulation has a complex regulatory relationship
at the transcriptional level. LEAFY COTYLEDON1 (LEC1) can induce the expression of fusca3
(FUS3), abscisic acid insenseitive3 (ABI3) and leafy cotyledon2 (LEC2) [5]. Overexpression of
LEC1 up-regulated more than half of the known enzyme-encoding genes in plastid FA synthesis
pathway [6]. LEC2 can affect the synthesis of FA and TAG by regulating fatty acid desaturase (FAD) 8,
FAD7, FAD3, diacylglycerol O-acyltransferase (DGAT), glycerol-3-phosphate acyltransferases (GPAT),
lysophosphatidyl acyltransferase (LPAT) and phosphatidic acid phosphatase (PAP) [7]. Moreover,
LEC2 is considered to be a key upstream transcription factor (TF) directly controlled wrinkled1
(WRI1) expression [8]. WRI1 is an important TF in plant oil synthesis pathway, overexpression
of WRI1 can increase plant oil content [9]. ABI4 and ABI5 play an important role in regulating
diacylglycerol O-acyltransferase 1 (DGAT1) expression, which is an important rate-limiting enzyme
in TAG biosynthesis [10–12]. Although these genes have been studied in soybeans, rapeseed and
Arabidopsis, they have not been involved in woody oil crops, especially walnuts.

MicroRNAs (miRNAs) are endogenous, single stranded small non-coding RNAs. Previous studies
have shown that miRNAs play an important role in a series of biochemical reactions, such as plant
growth, development and stress resistance [13–15]. The process of oil accumulation in plants relies on the
expression of a variety of lipid biosynthesis genes, which mainly occur at the transcriptional level, as well
as complex transcriptional and post-transcriptional control mechanisms [16]. Cao et al. [17] identified
13 differentially expressed miRNAs between ordinary and high-oleic acid mutant safflower seeds.
Li et al. [18] has described the miRNA-transcription factor regulatory network in seed development of
sea buckthorn and hypothesized that 12 possible regulatory modules play a combinatorial regulatory
role in seed development and oil accumulation. The artificial miRNA amiR159b constructed based on
the miR159b gene of Arabidopsis thaliana successfully changed the fatty acid composition of Arabidopsis
seed oil [19].

Previous study has found that “Xiangling” (a cultivar of J. regia) oil accumulation increased
most rapidly 70th~100th day after flowering (DAF), and then slowed down. The oil conversion rate
was highest on the 80th DAF [20]. Oil bodies began to appear in the cotyledons of walnut on 80th
DAF, and oil bodies and protein bodies filled cotyledons on 120th DAF [21]. Recently, it has been
reported that some miRNAs have been found in walnut female flower buds and leaf buds using
high-throughput sequencing technology, which may be related to the regulation of walnut flower bud
formation and female flower differentiation [22]. However, until now, little is known about miRNAs
in the lipid biosynthesis process of walnut. To systematically understand the regulatory network
between miRNAs and mRNAs related to walnut oil biosynthesis, miRNAs and mRNA sequences
during the accumulation period of walnut oil were analyzed. The high-throughput sequencing and
bioinformatics tools were used in our research to identify conserved and novel miRNAs as well as
their potential targets. In the current study, we found some miRNA-mRNA regulatory modules which
are potentially related to walnut seed kernel oil accumulation. Our results may provide new insights
into the regulatory mechanisms of miRNAs during walnut seed kernel oil accumulation.

2. Results

2.1. Dynamic Analysis of Oil Content and Fatty Acid

The moisture content and oil content of the samples in each period was calculated (Table S1).
Moisture content of walnut kernels decreased continuously during the three sampled stages as 74.10%,
39.80% and 25.97%, respectively. Meanwhile, the oil content shows an upward trend rising rapidly
from 11.51% to 40.40% and then to 53.20%. The FAs composition of kernels in three stages of walnut
fruit development were measured (Table 1). A total of 16 FAs was detected in these three periods,
including 7 kinds of saturated FAs and 9 kinds of unsaturated FAs. The top five maximum FAs
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components in kernels were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid
(C18:2, n-6), and linolenic acid (C18:3, n-3). The total relative contents of these five FAs were all above
97% in G1 (80th DAF), G2 (100th DAF), and G3 (120th DAF). It was worth noting that C18:0 and
C18:1 generally showed an increasing trend during the three sampled stages, while the rest FAs showed
a dynamic equilibrium or decreasing trend. Principal component analysis more intuitively shows the
difference is in FAs composition of oils in the three periods. G1, G2 and G3 are clearly separated in the
PC1 × PC2 score plot (Figure S1).

Table 1. Changes of FA composition in walnut kernel oil of 80th, 100th, 120th DAF (%).

Types of Fatty Acids Days after Flowering/Day (MEAN ± SD)

80 100 120

Saturated FA

Caprylic acid (C8:0) 0.0077 ± 0.0013 a 0.0071 ± 0.0041 a 0.0065 ± 0.0007 a

Capric acid (C10:0) 0.0764 ± 0.0140 a 0.0511 ± 0.0079 b 0.0503 ± 0.0090 b

Myristic acid (C14:0) 0.0400 ± 0.0016 a 0.0264 ± 0.0005 b 0.0224 ± 0.0019 c

Pentadecanoic acid (C15:0) 0.0455 ± 0.0004 a 0.0221 ± 0.0003 b 0.0172 ± 0.0005 c

Palmitic acid (C16:0) 7.2106 ± 0.0019 a 5.8410 ± 0.0033 c 5.8890 ± 0.0060 b

Stearic acid (C18:0) 1.4669 ± 0.0277 c 2.3622 ± 0.0134 b 2.4869 ± 0.0047 a

Arachidic acid (C20:0) 0.0613 ± 0.0005 a 0.0579 ± 0.0006 b 0.0608 ± 0.0003 a

Unsaturated FA

MUFA

Pentadecenoic acid (C15:1) 0.0078 ± 0.0045 a 0.0053 ± 0.0084 a 0.0083 ± 0.0109 a

Palmitoleic acid (C16:1) 0.0879 ± 0.0292 a 0.0514 ± 0.0446 c 0.0597 ± 0.0518 b

Oleic acid (C18:1) 9.7378 ± 0.0306 c 15.3163 ± 0.0435 b 15.7390 ± 0.0526 a

11-Eicosenoic acid (C20:1) 0.2201 ± 0.0015 a 0.2140 ± 0.0007 b 0.1963 ± 0.0011 c

PUFA

Linoleic acid (C18:2, n-6) 70.4437 ± 0.0368 a 67.1098 ± 0.0303 b 66.5504 ± 0.0290 c

γ-Linolenic acid (C18:3, n-6) 0.0363 ± 0.0007 a 0.0350 ± 0.005 a 0.0307 ± 0.0005 b

α-Linolenic acid (C18:3, n-3) 10.4429 ± 0.0010 a 8.8526 ± 0.0019 b 8.8583 ± 0.0008 b

11, 14-Eicosadienoic acid (C20:2) 0.0781 ± 0.0123 a 0.0215 ± 0.0021 b 0
Docosadienoic acid (C22:2) 0.0371 ± 0.0015 a 0.0304 ± 0.0021 b 0.0269 ± 0.0004 c

NOTE: Lowercase (a, b, c) in a row indicates significant difference (p < 0.05) according to ANOVA with Duncan’s
multiple range test.

2.2. Key Genes in Accumulate Period of Walnut Oil

To study the important genes in the accumulation stage of walnut oil, and nine cDNA libraries that
included three stages were constructed. A total of 60.36 Gb of raw data were obtained from Illumina
sequencing, and 37,154,970, 43,644,082, 40,643,444, 48,26,5040, 44,838,030, 37,342,352, 43,313,330,
41,040,198, and 40,294,380 clean reads were obtained after removing the low-quality reads and adapter
sequences. The proportion of clean reads mapped to the walnut genome in each library was above
96%, and the proportion of uniquely mapped reads ranged from 82.24% to 88.46% (Table S2). Principal
component analysis was performed to compare the transcriptome characteristics of nine samples
intuitively (Figure S2). The samples at different stages were significantly separated, while the replicates
were closely spaced, indicating that a large number of genes were altered in expression levels at these
three stages.

Furthermore, the gene expression profiles of different samples at three stages were compared.
The changes of RNA-seq at different stages were detected by clustering analysis of differentially
expressed genes (DEGs) expression pattern (Figure 1A). DEGs showed a significant time-specific
expression pattern. Besides, we found 1890 DEGs between G1 and G2 (731 genes were up-regulated
and 1159 genes were down-regulated), 3253 DEGs between G2 and G3 (1537 were up-regulated and
1716 were down-regulated), 4020 DEGs between G3 and G1 (2258 were up-regulated and 1762 were
down-regulated) (Figure 1B).
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“Glycolysis/gluconeogenesis” (ko00010), followed by “Plant hormone signal transduction” 
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up-regulated genes. Finally, 8 major pathways related to walnut oil synthesis were selected from 13 
“Lipid metabolism pathways”, including “Linoleic acid metabolism” (ko00591), “Fatty acid 
biosynthesis” (ko00061), “Fatty acid degradation” (ko00071), “Biosynthesis of unsaturated fatty 
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Figure 1. Analysis of differential gene expression in walnut seed kernel at different developmental
stages. (A) Heatmap and clustering analysis of expression levels of DEGs. (B) Up-regulated and
down-regulated the amount of DEGs. (C) The Venn diagram of DEGs.

To better understand the function of these DEGs in walnut oil synthesis, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses were performed 18 GO
terms related to the metabolism and synthesis of walnut oil were selected from the Biological process
(Figure 2A). There are 104, 116 and 118 pathways were categorized from a pairwise comparison in the
enrichment analysis of KEGG pathway between G2 vs. G1, G3 vs. G2, and G3 vs. G1, respectively
(Table S3). The top 20 enriched KEGG pathways of each comparison are shown in Figure 2B–D.
Among the DEGs of G2 vs. G1 and G3 vs. G2, the most significantly enriched KEGG pathway
was “Plant hormone signal transduction” (ko04075), followed by “Protein processing in endoplasmic
reticulum” (ko04141) and “Phenylalanine metabolism” (ko00360). “Starch and sucrose metabolism”
(ko00500) and “Glycolysis/gluconeogenesis” (ko00010) were also significantly enriched in G3 vs.
G2 DEGs. Among the DEGs of G3 vs. G1, the most significantly enriched KEGG pathway was
“Glycolysis/gluconeogenesis” (ko00010), followed by “Plant hormone signal transduction” (ko04075),
“Galactose metabolism” (ko00052), “Cysteine and methionine metabolism” (ko00270) and “Tryptophan
metabolism” (ko00380). There are more down-regulated genes in these pathways than up-regulated
genes. Finally, 8 major pathways related to walnut oil synthesis were selected from 13 “Lipid metabolism
pathways”, including “Linoleic acid metabolism” (ko00591), “Fatty acid biosynthesis” (ko00061), “Fatty
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acid degradation” (ko00071), “Biosynthesis of unsaturated fatty acids” (ko01040), “Arachidonic acid
metabolism” (ko00590), “α-Linolenic acid metabolism” (ko00592), “Fatty acid elongation” (ko00062),
“Glycerolipid metabolism” (ko00561). After KEGG and GO enrichment analysis, it was identified that
104 DEGs may be importantly related to the limiting rate of oil synthesis in the late stage of walnut
seed maturity (Table S4).
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20 KEGG pathways with the most significant enrichment of G1 vs. G2, G2 vs. G3, G3 vs. G1, accordingly.

To verify the accuracy of sequencing results, 15 genes were selected to verify if their trends were
consistent with the sequencing results. The qRT-PCR results showed that the relative expression levels
of selected genes were consistent with the transcriptome sequencing results (Figure 3), and the Pearson
correlation coefficients was 0.8659, confirming that the transcriptome sequencing results were highly
reliable (Figure S3A).
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Figure 3. QRT-PCR verifies the quality of transcriptome sequencing. The blue bar graph represents the
relative expression level of the sample (left y-axis), and the yellow line graph represents the normalized
result (FPKM) of the sample in the transcriptome (right y-axis).

2.3. Sequence Characteristics of Small RNA in J. regia

In nine small RNA libraries, high-throughput sequencing produced clean reads (≥18nt) ranging
from 15.95 to 30.19 million. The length of 24 nt is the most abundant class among clean and unique
reads (Figure 4A,B). Ribosomal RNA (rRNA) accounts for the majority of non-coding RNA in total and
unique reads. The detailed information about these 9 libraries was listed in Table S5 provides. A large
number of unique reads nonmatched to the Rfam database will be used for subsequent analysis.
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2.4. Known miRNA and Novel Candidate miRNAs in J. regia Kernels

A total of 204 known miRNAs were identified in nine libraries. These conserved miRNAs were
grouped into 25 families, of which MIR166 was the largest family with 24 members, followed by
MIR159 family with 20 members, the MIR156 and MIR167_1 with 16 members each. Among the
remaining 21 families, 6 families contained only one member, and 15 families contained 2~14 members
(Figure 5A, Table S6).
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The sequences nonmatched to Rfam and miRBase database were compared with the genome
to predict the novel miRNAs by Mireap. 554 novel candidate miRNAs were predicted. Some novel
miRNAs with the same mature sequence but different precursors were considered to belong to a novel
miRNA family. These novel miRNA candidates were named in the form of “jre-miRn plus number”,
using letters to distinguish members from the same novel miRNA family, and “-3p” and “-5p” to
distinguish mature sequences produced on different arms of the same precursor (e.g., jre-miRn88-3p,
jre-miRn88-5p). The length of the new miRNA precursors ranged from 64 to 103 nt; the minimum free
energy (MFE) ranged from 18 to 80.8 kcal/mol; and the minimum free energy index (MFEI) ranged
from 0.85 to 2.1 (Table S7). Most of the novel miRNAs expression levels were quite low in consistent
with the results obtained from many experiments [23,24].

The length distribution of the miRNAs ranged from 18 to 25 nt (Figure 5B). Most of the mature
sequences in conservative miRNAs were concentrated in 21 nt, while most of the novel candidate
miRNAs were concentrated in 24 nt. This miRNA distribution was very similar to that reported in
camphor trees [25].
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2.5. Differential Expression of miRNAs and Functional Analysis

Most miRNAs showed significant differential expression (Figure 6A) and 232 DEMs were defined at
three stages (Figure 6B). Sixty DEMs were identified in G1 vs. G2 (24 down-regulated, 36 up-regulated),
one hundred and forty-six DEMs (104 down-regulated, 42 up-regulated) were identified in G2 vs.
G3, and one hundred and twenty-two DEMs (23 down-regulated, 99 up-regulated) were identified in
G1 vs. G3.
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To better understand the function of these miRNAs, psRobot_tar was used to predict the target
genes of DEMs. A total of 1784 target genes were predicted. These genes were targeted by 174 miRNAs
with an average of 10.25 target genes regulated by each miRNA (Table S8). Interestingly, out of 102 novel
miRNA, 44 contained only one target gene, while jre-miRn105, jre-miRn213, and jre-miRn434 contained
more than 100 target genes. Furthermore, three members of the miR156 family: jre-miR156a, jre-miR156c,
and jre-miR156e, most of their target genes, belonged to the SBP (SQUAMOSA promoter-binding
protein) TF family members.

The GO enrichment analysis summarizes the functions of target genes into three major categories,
namely biological process (BP), molecular function (MF) and cell composition (CC), which are
subdivided into 1565 terms in these three categories (Table S9). In the BP category, the most significantly
enriched terms were “Phenylpropanoid metabolic process” (GO: 0009698), “Lignin metabolic process”
(GO: 0009808), and “Phenylpropanoid catabolic process” (GO: 0046271). In the category of MF, the most
significantly enriched terms were mainly related to “Hydroquinone: oxygen oxidoreductase activity”
(GO:0052716), “DNA binding” (GO:0003677), and “Oxidoreductase activity, acting on diphenols
and related substances as donors, oxygen as acceptor” (GO:0016682). In the CC category, the most
significantly enriched terms were grouped into “Nucleus” (GO:00056340), “Membrane-bounded
organelle” (GO:0043227), and “Intracellular membrane-bounded organelle” (GO:0043231). These target
genes were separated into 5 categories, 18 subcategories, and 88 pathways totally in KEGG pathway
annotation. The number of pathways related to “Metabolism” is the highest among the 5 categories
(Table S10), of which the most is “Carbohydrate metabolism” (ko00640, ko00030, ko00620, ko00052,
ko00630, ko00562, ko00650, ko00053, ko00010, ko00051, ko00520, ko00020, ko00500, ko00040), followed
by “lipid metabolism” (ko00561, ko00061, ko00062, ko00100, ko01040, ko00072, ko00565, ko00590,
ko00564, ko00071, ko00600, ko00073, ko00592).

Twelve miRNAs were randomly selected for qRT-PCR verification to verify the consistency of the
miRNA and sRNA sequencing results. The relative expression levels of 12 miRNAs were consistent
with the results of small RNA sequencing (Figure 7). The significant Pearson correlation coefficient
r = 0.8077 indicates that the data obtained by sRNA-Seq were reliable (Figure S3B).
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2.6. Involvement of miRNAs in Walnut Oil Synthesis Pathways

Among 1784 target genes, 28 related to walnut oil biosynthesis were screened out, corresponding
to 17 DEMs. A miRNA-target gene regulatory network was constructed to explore the relationship
between miRNA and its targets (Figure 8). Sixteen independent regulatory modules were related to
walnut oil accumulation. Thirteen miRNAs target a single gene, and four miRNAs target multiple
genes that were related to walnut oil biosynthesis.

Some of the target genes encode the same enzymes and are genes with the same functions.
Among them, palmitoyl-acyl carrier protein thioesterase (FATB, gene7571 and gene36442) was targeted
by jre-miR156a.2, jre-miRn105, and jre-miRn418. Phospholipase D delta (PLDδ, gene25677 and gene25894)
was targeted by jre-miR399a.1. Delta 8-fatty-acid desaturase 2 (SLD2, gene12136 and gene6282), targeted
by jre-miR156d.2 and jre-miRn434, play a major role in the process of ceramide biosynthesis [26].
Four miRNAs correspondingly regulate multiple target genes related to lipid synthesis. 3-ketoacyl-CoA
synthase 11 (KCS11, gene5481), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase PASTICCINO 2A
(PAS2A, gene25278), beta-carotene hydroxylase 2 (CA2, gene27399), putative 3,4-dihydroxy-2-butanone
kinase (DHBK, gene36790), and UTP–glucose-1-phosphate uridylyltransferase 3 (UGP2, gene29231)
were targeted by jre-miRn105. Protein ABHD17C (gene12577), protein ABHD17B (gene16757),
aldehyde dehydrogenase family 7 member A1 (gene12017), diphosphomevalonate decarboxylase
MVD2 (gene29939), monogalactosyldiacylglycerol synthase (gene4759), and beta-galactosidase
(gene14990) were targeted by jre-miRn213. Moreover, 3-oxoacyl-[acyl-carrier-protein] reductase
4 (FabG, gene30916) was targeted by jre-miRn434. Acetyl-CoA carboxylase 1 (ACC1, gene15121)
was targeted by jre-miR477d. Other genes, including acyl-CoA thioesterase 2 (ACOT2, gene7079),
acetyl-CoA acetyltransferase 1 (AAT1, gene14565), type IV inositol polyphosphate 5-phosphatase
9 (IP5P9, gene4078), phospholipase A I (PLA1, gene27735), putative quinone-oxidoreductase
homolog (gene15259), stearoyl-[acyl-carrier-protein] 9-desaturase (SAD, gene2017), 3-ketoacyl-CoA
synthase 6 (KCS6, gene32966), 4-coumarate–CoA ligase-like 5 (4CLL5, gene6465), and probable
1-acyl-sn-glycerol-3-phosphate acyltransferase 4 (LPAT4, gene622), were targeted by jre-miR167a.1,
jre-miR408c, jre-miR482a.2, jre-miR5059, jre-miRn199a, jre-miRn212, and jre-miRn441, respectively.
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3. Discussion

J. regia is an important woody oil plant with high economic value. In recent years, high-throughput
sequencing and bioinformatics tools were used to confirmed that some miRNAs were related to lipid
metabolism in some oilseed crops, such as Glycine max [27], Brassica napus [28], Carya cathayensis [29]
and Elaeis guineensis [30]. However, miRNA-mRNA regulatory mechanism shows species specificity.
Clarifying the biological mechanism of fatty acid synthesis and oil accumulation is one of the effective
ways to increase walnut oil production.

According to the previous studies on the dynamic accumulation of walnut oil [20],
three developmental stages of walnut oil accumulation from fast to slow (80th, 100th and 120th
DAF) were selected. The proportion of PUFAs in walnut oil significantly decreased from 80th
DAF to 120th DAF. Instead, monounsaturated fatty acids (MUFA) significantly increased (Table 1).
This phenomenon of fatty acid changes is similar to that observed in safflower [31].

In order to explore the molecular mechanism of walnut oil accumulation rate-limiting and FAs
composition change. In current study, nine cDNA libraries for transcriptome sequencing at three
stages were constructed, and over than 96% of clean reads in each library were mapped to the
walnut reference genome, 5859 genes were significantly differentially expressed (Figure 1C). What is
more, the changes of γ-linolenic acid (C18:3, n-6) and α-linolenic acid (C18:3, n-3) are positively
correlated with the expression changes of FAD7 and FAD8. Considering that fatty acid desaturases
and acyl-carrier-protein desaturases are key enzymes for unsaturated FAs synthesis, for instance,
FAD3, FAD7 and FAD8 catalyze the desaturation reaction of linoleic acid to make it become linolenic
acid [32,33]. It is easy to think that FAD7 and FAD8 may contribute to walnut linolenic acid biosynthesis,
which was consistent with previous study that FAD7 is a key gene for the accumulation of linolenic
acid in walnut kernels [34].

In addition, we found that gene29135 and gene3132 encode the SAD, but both genes show opposite
trends between G1 and G2. However, oleic acid content in walnut oil was significantly increased
between G1 and G2. Since SAD can convert stearoyl-ACP to oleoyl-ACP by introducing a cis double
bond on the acyl chain of stearoyl-ACP [35], thereby promoting the accumulation of oleic acid.
The current results suggested that gene29135 and gene3132 may be key genes in walnut oleic acid
synthesis. Furthermore, there were significant differences in the expression of 3-ketoacyl-CoA synthase
(KCS), very long-chain 3-oxoacyl-CoA reductase (KAR), long chain acyl-CoA synthetase (LACS) and
very long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 (PAS2) (Table S4, Figure 9), indicating the
synthesis and dynamic changes of very long-chain FAs during the maturation of walnut seeds are
closely related to these genes [36].

At present, there are two main pathways for TAG synthesis have been reported in higher
plants. One is from diacylglycerols (DAG) and acyl-CoA under the catalysis of DGAT [37,38],
and the other is by transferring the fatty acyl group of phosphatidylcholine (PC) to DAG through
phospholipid:diacylglycerol acyltransferase (PDAT) [39]. DGAT and PDAT are important rate-limiting
enzymes in TAG synthesis and necessary for fruit development [40,41]. DGAT3 is highly expressed in all
three stages (FPKM > 100). While, in this study, only PDAT1-1, PDAT1-2 and PDAT2 showed significant
differential expression, suggesting that PDAT metabolic pathway may have more influence on the
accumulation of walnut oil. The significant differential expression of LEC2, ABI4 and ABI5 indicates
that these three TFs may have important contributions in the process of walnut oil accumulation.
Interestingly, LEC1 was not detected in walnut transcripts, so TF regulation of walnut lipid accumulation
may be different from Arabidopsis [26].

Plant unique SPL TFs were regulated by miR156 [42,43], which was similar as the results we
obtained. MiR156 family member jre-miR156a.2 and jre-miR156d.2 also regulate FATB and SLD2.
FATB is closely related to the accumulation of palmitic acid in seeds [44], and SLD2 is related to
the biosynthesis of ceramide [45]. In this study, we identified that jre-miR477d targets to ACC1.
As a multifunctional enzyme that catalyzes the carboxylation of acetyl-CoA, ACC1 is used in the
synthesis of FAs in plastids and in various biosynthetic pathways including FAs extension in the
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cytoplasm [46,47]. These results imply that jre-miR477d may relate to the synthesis of long-chain FAs and
the improvement of the efficiency of oil biosynthesis in walnut (Figure 9). Similarly, miR477 in Camellia
oleifera was considered to be a key miRNA regulating oil accumulation because it regulates the target
ACC carboxytransferase subunit alpha (CAC3) [48]. Besides, the jre-miR5139b targets two squalene
epoxidase 3 (SQE3, gene32107 and gene24076) to regulate the synthesis of squalene in walnut seeds.
Some novel miRNAs, such as jre-miRn105 targeting KCS11, FATB and PAS2A, jre-miRn212 targeting
SAD, jre-miRn282 targeting KCS6, jre-miRn418 targeting FATB, jre-miRn434 targeting FabG and
jre-miRn441 targeting LPAT4, almost all of those target genes are rate-limiting genes in unsaturated
FAs and TAG synthesis (Figure 9). Above results and reports suggested that these novel miRNAs may
also play an important role in oil accumulate or FAs biosynthesis.
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In conclusion, as an important factor in post-transcriptional regulation, miRNAs in walnut are
rarely reported at present, and the role of miRNA in walnut oil biosynthesis has not been reported yet.
This research shows for the first time the miRNA regulatory network that may exist in the biosynthesis
of walnut oil. Our work also screened out some key genes during the accumulation period of walnut
oil and analyzed their expression patterns. We hope that the walnut oil biosynthesis mechanism can
be further improved on this basis. The results of this study provide valuable information for the
biosynthesis and improvement of walnut oil, also provide a new idea for molecular breeding of walnut
for oilseeds.

4. Materials and Methods

4.1. Plant Materials

“Xiangling” walnut (a cultivar of J. regia) was used. All the samples were collected from Weihe
River Experimental Station of Northwest A&F University (34.20◦ N, 108.40◦ E). The total annual
average solar radiation of the station is 109.68 kcal/cm2, the annual average temperature is 13.3 ◦C,
and the annual average precipitation is 715 mm. We randomly selected nine eight-year-old healthy
and disease-free “Xiangling” walnut trees with the same growth level. Forty-five mixed fruit obtained
from three trees were regarded as a treatment (total three independent biological replicates). The fruit
was sampled every 20 days from the 80th DAF and marked as G1 (80th DAF), G2 (100th DAF), G3
(120th DAF). The fruit was removed the green husks quickly. Then walnut kernels were fetched out,
packed into the self-sealing bags, and transported to the laboratory. All samples were flash-frozen in
liquid nitrogen and stored in the refrigerator at −80 ◦C until use.
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4.2. Analysis of Oil Content and Fatty Acid Composition

The walnut kernels (50.00 g, each) were dried to constant weight at 105 ◦C and grounded to a
homogenized powder. 2.00 g of powder in a water-free and oil-free filter paper bag was used to extract
crude fat in a Soxhlet apparatus at 60 ◦C for 12 h using petroleum ether (boiling range 30~60 ◦C) as
the extractant. The methylated crude fat was analyzed by gas chromatography-mass spectrometry
(GC-MS) equipped with hydrogen flame ionization detector and HP-FFAP chromatographic column
(Agilent Technologies, Santa Clara, CA, USA). Heptadecanoic acid methyl ester (C17:0) was used as
an internal standard. Working conditions of GC: inlet temperature was 260 ◦C, split ratio was 10:1,
detector temperature was 280 ◦C. Initial column temperature was 210 ◦C, hold 8 min, then temperature
was increased by 20 ◦C/min to 230 ◦C and maintained at this temperature for 6 min.

4.3. Total RNA Isolation, cDNA Library Construction and Transcriptome Sequencing

The total RNA was extracted by HiPure HP Plant RNA Mini Kit (Magen, Guangzhou, China)
according to the manufacturer’s instructions. The purity and concentrations of RNAs were determined
by 1% agar-gel electrophoresis and NanoDrop NC 2000 (Thermo Scientific, Wilmington, DE, USA).
RNA integrity was assessed using RNA Nano 6000 Kit of Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA), mRNA was purified by the interaction of the poly (A) tails
and magnetic oligo (dT) beads. The first strand of cDNA was synthesized by 6 bp random primers
and reverse transcriptase with RNA as template. Then, the second strand of cDNA was synthesized
with the first strand of cDNA as template. Finally, nine RNA-seq libraries (three stages with three
independent biological replicates) were double-ended sequenced using next-generation sequencing
based on Illumina platform at Shanghai Personal Biotechnology Cp., Ltd. (Shanghai, China).

4.4. Small RNA Library Construction and Small RNA Sequencing

NEBNext Multiplex Small RNA library Prep Kit (New England Biolabs, Inc., Hitchin, UK) was
used for small RNA libraries construction according to the manufacturer’s instructions. 10 µg of
total RNA from 9 independent samples was ligated with 3′ adapter and 5′ adapter with the T4 RNA
ligase. RNA was reverse-transcribed to synthesize double-stranded cDNA using SuperscriptII reverse
transcriptase. DNA fragments were enriched by PCR. Then, products were separated using PAGE
gel by fragment size. Fragment size and distribution of DNA library were verified for quality control
of PCR enriched fragments using Agilent 2100. The total library concentration was detected using
Picogreen. These libraries were single-end sequenced on the HiSeq 2500 platform at Shanghai Personal
Biotechnology Cp., Ltd. (Shanghai, China).

4.5. Processing and Analysis of Transcriptome

The raw data were obtained by sequencing the cDNA library. Subsequently, the adaptor sequences,
reads with a quality score < Q20, reads with a final length < 25 bp, and reads with uncertain bases,
were removed from raw data. The clean reads were mapped to the J. regia reference genome [49] using
the HISAT2 [50] software.

DEGs analysis was performed using DESeq v.1.18.0. [51]. The selection of DEGs was based
on |log2 fold change| > 1 with p-value < 0.05. The GO enrichment analysis was performed using
topGO: annotated DEGs were used to calculate the gene list and number for each term. The p-value
was calculated to find out the GO term by hypergeometric distribution method (the criterion for
significant enrichment was p-value < 0.05). Compared with the whole genome background, significant
enrichment of differential genes was used to determine the main biological functions of differential
gene exercise. Furthermore, pathway annotation of DEGs was performed using KEGG database
(http://www.genome.jp/kegg/).

http://www.genome.jp/kegg/
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4.6. Bioinformatics Analysis of Small RNA Sequences

The clean reads were applied for small RNA analysis. The number of clean reads was counted
whose sequence length is more than 18 nt and less than 36 nt. The identical sequence in a single
sample was deduplicated and the sequence abundance was counted to obtain unique reads for
subsequent analysis. The unique reads were compared with the Rfam (13.0) database using BLAST.
Four types of known non-coding RNAs (rRNA, tRNA, snRNA, and snoRNA) were screened whose
screening criterion is no more than two mismatches. Unique reads, not annotated to the above four
types of non-coding RNAs, were compared with mature miRNA sequences of the known miRNA in
miRBase22 whose screening criteria is no more than two mismatches using BLAST.

Unique reads that were not aligned with the Rfam and miBase databases were compared with
the genome using the Mireap online program (http://sourceforge.net/projects/mireap/) to predict the
novel miRNAs. The secondary structure maps were drawn using RNAfold. The standardization of
expression amount requires inter-sample correction of total Reads, without rather than length correction
due to relatively short miRNA length. The gene expression pattern of the sample was comprehensively
investigated using count per million (CPM). Differentially expressed miRNAs (DEMs) were analyzed
based on the fold difference in expression level (|log2 fold change| > 1) and the significance of the
expression difference (p-value < 0.05) using DESeq. Finally, target genes for DEMs sequences were
predicted using psRobot_tar [52]. The KEGG and GO analysis were performed on all targets to analyze
DEMs and target genes function.

4.7. Quantitative Real-Time PCR Validation

500 ng of total RNA from each sample was used to synthesize cDNA by PrimerScript RT Mix
(Takara, Beijing, China) to validate the mRNA expression level and 1 µg of total RNA from each sample
was reverse-transcribed into cDNA using miR-X miRNA First-Strand Synthesis Kit (Takara, Beijing,
China) to validate the miRNA expression level. Quantitative real-time PCR (qRT-PCR) analysis was
performed using the TB Green Premix Ex TaqII (Takara, Beijing, China) on the CFX Connect Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). Relative expression levels of each mRNA and
miRNA were determined using 2−∆∆CT method [53]. EF1 [54] and U6 genes were used as the internal
reference gene. Three technical replicates were performed for each sample. All primers used in this
test were listed in Table S11.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/23/
9093/s1. Raw data of sRNA-seq are available at NCBI, accession number: PRJNA665937.
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Abbreviations

ACC1 acetyl-CoA carboxylase 1
ACOT acyl-CoA thioesterase
CPM count per million
DAF day after flowering
DAG diacylglycerols
DEG differentially expressed gene
DEM differentially expressed miRNA
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DGAT diacylglycerol O-acyltransferase
FA fatty acid
FabG 3-oxoacyl-[acyl-carrier-protein] reductase 4
FAD fatty acid desaturase
FATB palmitoyl-acyl carrier protein thioesterase
GO Gene Ontology
GPAT glycerol-3-phosphate acyltransferases
KAR very long-chain 3-oxoacyl-CoA reductase
KCS 3-ketoacyl-CoA synthase
KEGG Kyoto Encyclopedia of Genes and Genomes
LACS long chain acyl-CoA synthetase
LEC1 LEAFY COTYLEDON1
LEC2 LEAFY COTYLEDON2
LPAT lysophosphatidyl acyltransferase
MUFA monounsaturated fatty acid
miRNA microRNA
PAS2 very long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2
PAS2A very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase PASTICCINO 2A
PAP phosphatidic acid phosphatase
PC phosphatidylcholine
PDAT phospholipid:diacylglycerol acyltransferase
PLA1 phospholipase A I
PLDδ phospholipase D delta
PUFA polyunsaturated fatty acid
qRT-PCR quantitative real-time PCR
rRNA ribosomal RNA
SAD stearoyl-[acyl-carrier-protein] 9-desaturase
SLD2 delta 8-fatty-acid desaturase 2
TF transcription factor
TAG triacylglycerols
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