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Abstract

The inhibitory receptor programmed death-1 (PD-1) has the capacity to maintain peripheral tolerance and limit
immunopathological damage; however, its precise role in fulminant viral hepatitis (FH) has yet to be described. Here, we
investigated the functional mechanisms of PD-1 as related to FH pathogenesis induced by the murine hepatitis virus strain-3
(MHV-3). High levels of PD-1-positive CD4+, CD8+ T cells, NK cells and macrophages were observed in liver, spleen, lymph
node and thymus tissues following MHV-3 infection. PD-1-deficient mice exhibited significantly higher expression of the
effector molecule which initiates fibrinogen deposition, fibrinogen-like protein 2 (FGL2), than did their wild-type (WT)
littermates. As a result, more severe tissue damage was produced and mortality rates were higher. Fluorescence double-
staining revealed that FGL2 and PD-1 were not co-expressed on the same cells, while quantitative RT-PCR demonstrated
that higher levels of IFN-c and TNF-a mRNA transcription occurred in PD-1-deficient mice in response to MHV-3 infection.
Conversely, in vivo blockade of IFN-c and TNF-a led to efficient inhibition of FGL2 expression, greatly attenuated the
development of tissue lesions, and ultimately reduced mortality. Thus, the up-regulation of FGL2 in PD-1-deficient mice was
determined to be mediated by IFN-c and TNF-a. Taken together, our results suggest that PD-1 signaling plays an essential
role in decreasing the immunopathological damage induced by MHV-3 and that manipulation of this signal might be a
useful strategy for FH immunotherapy.

Citation: Chen Y, Wu S, Guo G, Fei L, Guo S, et al. (2011) Programmed Death (PD)-1-Deficient Mice Are Extremely Sensitive to Murine Hepatitis Virus Strain-3
(MHV-3) Infection. PLoS Pathog 7(7): e1001347. doi:10.1371/journal.ppat.1001347

Editor: Michael S. Diamond, Washington University School of Medicine, United States of America

Received March 23, 2010; Accepted June 3, 2011; Published July 7, 2011

Copyright: � 2011 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from The National Key Basic Research Program of China (2007CB512401), the Major Program of National Natural
Science Foundation of China (30930086) and the General Program of National Natural Science Foundation of China (NSFC No. 30600546, 30971099 and
30700855). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yongwench@163.com (YC); wuyuzhang@yahoo.com (YW)

. These authors contributed equally to this work.

Introduction

Although liver transplantation has emerged as an effective

therapeutic approach for treating fulminant virus hepatitis (FH),

mortality rates associated with FH remain very high worldwide

[1]. The recent development of a mouse FH model, based upon

infection with the murine hepatitis virus strain-3 (MHV-3), has

provided insights into mechanisms underlying the disease

pathogenesis and resulted in some novel treatment strategies [2].

MHV-3 is a single-stranded, positive-sense RNA virus that

belongs to the Coronaviridae family. In inbred laboratory mice, the

virus produces strain-dependent disease profiles that depend on the

infection route, age, genetic background, and immune status of the

host. For example, Balb/c, C57BL/6 and DBA/2 mice develop

acute fulminant hepatitis, while C3H mice develop a mild chronic

disease and mice of the A strain exhibit no evidence of hepatitis

[3,4]. In contrast to the resistant A strain mice, FH induced by

MHV-3 in susceptible mice is characterized by the presence of

sinusoidal thrombosis and hepatocellular necrosis [2,3]. These

pathological findings occur concomitantly with expression of

fibrinogen-like protein 2 (FGL2), a virus-induced procoagulant

molecule in the sinusoidal lining cells in the liver. FGL2 has the

capacity to promote fibrinogen deposition and subsequently directly

induce the coagulation cascades by the expression of procoagulant

activity (PCA) [5]. Thus, up-regulation of FGL2 is an essential

component of the lethal effects of MHV-3-induced FH.

Programmed death (PD)-1 is an inhibitory receptor expressed

on activated T cells, B cells and myeloid cells. PD-1-deficient mice

(Pdcd12/2) develop various spontaneous autoimmune diseases,

including glomerulonephritis and dilated cardiomyopathy, indi-

cating that this receptor plays a critical role in maintenance of

peripheral tolerance [6]. PD-L1 (B7-H1) and PD-L2 (B7-DC), two

immunoregulatory molecules belonging to the B7 superfamily,

were identified as ligands for PD-1, engagement of PD-1 with its

ligands mediates negative signaling events via recruitment of

phosphatases, such as SHP-2, and dephosphorylation of some

effector molecules involved in downstream T cell receptor (TCR)

signaling [7,8].

PD-1 signaling has also been shown to modulate the balance

between antimicrobial immune defense and immune-mediated
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tissue damage. For example, PD-1-deficient mice develop more

severe hepatocellular injury than their wild-type (WT) littermates

in response to adenovirus infection [9]. In a herpes simplex virus

(HSV) stromal keratitis mouse model, blockade of PD-1 signaling

led to increased HSV-1-specific effector CD4+ T cell expansion,

IFN-c production, and exacerbated keratitis [10]. A functionally-

significant high level of PD-1 expression has been found to be

maintained by exhausted CD8+ T cells in mice chronically

infected with lymphocytic choriomeningitis virus (LCMV), in

primates exposed to simian immunodeficiency virus (SIV), and in

humans suffering from infection with human immunodeficiency

virus (HIV), hepatitis B or C virus (HBV or HCV), or human T-

lymphotropic virus (HTLV). However, blockade of the PD-1/PD-

Ls pathway efficiently restored the virus-specific effector functions

of the exhausted T cells, and lead to substantially reduced in viral

load [11,12,13,14,15]. The PD-1 signal is also known to play a key

role in the chronicity of infections with bacteria (Helicobacter pylori

and Schistosoma mansoni) [16,17], pathogenic fungus (Histoplasma

capsulatum) [18], and parasitic worms (Taenia crassiceps) [19]. It

appears that a number of pathogenic microorganisms exploit the

PD-1 signal in order to evade host immune responses and to

establish persistent infection.

Although the influence of PD-1 signal activity has been studied

in several infection models, there are no data available concerning

the role of this pathway in FH. To this end, we used the MHV-3-

induced mouse FH model to demonstrate that PD-1 signaling acts

to limit the immunopathological damage during disease progres-

sion. Furthermore, our findings suggested that enhanced PD-1

signaling might represent a useful immunotherapeutic strategy for

treating FH.

Results

PD-1 expression on immune cells increased in response
to MHV-3 infection

PD-1 expression has been previously described as being induced

on specific cell subsets in response to viral or bacterial infection

[20]. Thus, we first determined the status of PD-1 expression at

72 h after MHV-3 infection (10 PFU) by immunohistochemical

techniques. PD-1-positive cells were observed in tissues from the

thymus, spleen, lymph nodes and liver. Cellular expression was

localized to the cell membrane and in the cytoplasma while was

completely absent from the nuclear compartment. PD-1-positive

cells were distributed throughout the medulla and cortex of the

thymus and lymph nodes. In the spleen, PD-1-positive cells were

restricted to the germinal center under normal conditions, but

extended to the red pulp after infection. In infected liver, more

PD-1-positive cells were present in the portal and parenchymal

areas, as opposed to the relatively low presence of PD-1-positive

cells in only the portal area in phosphate-buffered saline (PBS)

treated-mice (Fig. 1A). The amount of PD-1-positive cells in the

different organs of infected and control mice were counted and

compared, results showed that the number of positive cells was

significantly higher in infected mice (Fig. 1B). Furthermore, FACS

analysis revealed that PD-1 expression was enhanced on multiple

subsets of immune cells, including the CD4+ and CD8+ T cells,

NK1.1+ NK cells and CD68+ macrophages (Fig. 1C). PD-1-

positive cells were also observed in the lung, heart and kidney,

however, the numbers of PD-1 positive cells in these tissues did not

significantly increase in response to MHV-3 infection (Fig. S1).

PD-1-deficient mice experienced multiple organ damage
following MHV-3 infection

To investigate the potential role of PD-1 signaling in regulating

FH tissue pathology, organs from MHV-3 infected PD-1-deficient

(PD-1 KO) and WT mice were assessed for morphological

differences. Small and discrete foci of necrosis with sparse

polymorphonuclear leukocyte infiltration were observed in liver

tissues from PD-1-deficient mice after 24 h of infection. In

contrast, WT mice exhibited normal liver architecture at this

time point. Slight liver damage became apparent in WT mice after

48 h of infection, meanwhile, the damaged areas of PD-1-deficient

mice had enlarged and confluent necrosis had become evident. By

72 h of infection, the damaged region in PD-1-deficient mice had

extended throughout the entire liver, while WT mice suffered

much less damage and up to 60% of their liver tissue remained

normal at this time point (Fig. 2A). Likewise, higher levels of

alanine aminotransferase (ALT) and aspartate aminotransferase

(AST) were observed in serum from PD-1-deficient mice after 72 h

of infection (Fig. 2B). More interestingly, PD-1-deficient thymus,

spleen and lymph node tissues infected with MHV-3 for 72 h

exhibited severely disrupted architecture, loss of cellularity, and

the presence of substantial amounts of karyorrhectic/apoptotic cell

bodies. The histology of these organs from infected WT mice at

72 h was relatively normal (Fig. 2C). In conjunction with the

apparent tissue necrosis, higher levels of cell apoptosis were also

evidenced in the organs from PD-1-deficient mice by TUNEL

staining (Fig. 2D). The architecture of other organs, including the

heart, kidney and lung was relatively normal and only rare

apoptosis events were observed in these tissues after infection (Fig.

S2). In all, these results demonstrated that PD-1 deficiency led to

enhanced pathological damage by MHV-3 in the liver, spleen,

lymph node and thymus, where higher levels of PD-1-positive cells

were found after infection.

PD-1-deficient mice displayed higher mortality rates
associated with MHV-3 infection

The earlier and increased organ damage suffered by PD-1-

deficient mice infected with MHV-3 instigated our monitoring of

the mortality rates of PD-1-deficient mice and their similarly-

infected (10 PFU) WT littermates. As shown in Fig. 3, all of the

PD-1-deficient mice died within four days after infection, while

Author Summary

The principal characteristic of fulminant viral hepatitis (FH)
induced by the murine hepatitis virus strain-3 (MHV-3) is
severe hepatocellular necrosis, which is mediated by the
fibrinogen-like protein 2 (FGL2), a molecule that has the
capacity to promote fibrinogen deposition and activate
the coagulation cascades. Here, we report that MHV-3
infection of program death-1 (PD-1)-deficient mice results
in tissue damage throughout multiple organs, including
the liver, spleen, thymus and lymph nodes. The liver
damage, in particular, occurred earlier and was more
severe in PD-1-deficient mice than in their wild type (WT)
littermates. Further investigation determined that MHV-3
infection was associated with high levels of IFN-c and
TNF-a in the damaged organs of PD-1-deficient mice.
Conversely, intraperitoneal injection of a combination of
anti-IFN-c and anti-TNF-a blocking mAbs led to inhibition
of FGL2 expression, greatly attenuated tissue lesions and
reduced mortality. Our results demonstrate that PD-1
signaling controls immunopathological damage following
MHV-3 infection, indicating that manipulation of the PD-1
signal might represent a useful strategy for FH immuno-
therapy.

PD-1 Limits Immunopathological Damage
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38% of the WT mice survived up to the end of the 15-day survey

period (p = 0.007). These data indicated that PD-1 is likely a

critical factor that controls MHV-3-mediated tissue damage and

mortality.

Elevated FGL2 expression was induced in PD-1-deficient
mice following MHV-3 infection

To understand the mechanisms of PD-1 deficiency-mediated

tissue damage and mortality, we performed a comparative

genome-wide microarray analysis (NimbleGen) of genes expressed

in liver tissues of PD-1-deficient and WT mice after 72 h of MHV-

3 infection. The most notable finding was pronounced up-

regulation (3.75-fold) in the liver of PD-1-deficient mice of the

fgl2 transcripts (Fig. 4A), the protein product of which has been

demonstrated to induce lethality of MHV-3-induced FH [5]. In

addition, the enhanced fgl2 expression was confirmed by

quantitative (q)PCR, results revealed a 2.84-fold and 5.72-fold

higher level was present in liver from WT and PD-1-deficient

mice, respectively, after 72 h of MHV-3 infection, as compared to

their uninfected controls. Moreover, its level in PD-1-deficient

liver was 2.01-fold higher than that in the WT group at this time

point (Fig. 4B). Immunohistochemistry was used to show that

FGL2-positive cells were present in necrotic liver tissues in PD-1-

deficient mice at 24 h after MHV-3 injection. The protein

expression was found to be enhanced rapidly upon infection, and

the highest level occurred at 72 h post-infection. However,

occasional FGL2-positive cells were detected in the livers of WT

mice at 24 h post-MHV-3 infection and these cells were also

present, and slightly enhanced in number, at both the 48 h and

72 h time point (Fig. 4C). Western-blot was used to verify the

higher FGL2 protein level in the livers of PD-1-deficient mice, as

compared to WT littermates after 72 h of infection (Fig. 4D).

FGL2 has the capacity to induce fibrinogen deposition, which

then activates the coagulation cascades and finally induces

procoagulant activity. Therefore, the expression of FGL2 and

fibrinogen deposition in damaged liver tissues was measured. Dual

fluorescent staining evidenced that substantial fibrinogen deposi-

tion occurred in the FGL2-positive damaged liver tissue (Fig. 4E).

Figure 1. Enhanced expression of PD-1 on immune cells after 72 h of MHV-3 infection. (A) Immunohistochemical detection of PD-1
expression in mouse thymus, spleen, lymph nodes and liver. (B) Statistical analysis of the number of PD-1-positive ells in the indicated organs from
MHV-3 infected mice or PBS-treated controls. (C) The expression of PD-1 on immune cells, including CD4+, CD8+ T cells, CD68+ macrophages and
NK1.1+ NK cells in the indicated organs after 72 h of MHV-3 infection was measured by FACS. The number indicates the percentage of the positive
cells in the indicated gate. One representative of three experiments which yielded similar results is shown. Magnification 6200. *p,0.05, **p,0.01.
n = 8/group.
doi:10.1371/journal.ppat.1001347.g001
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Likewise, the level of fibrinogen deposition was more robust in

livers from PD-1-deficient mice that in livers from WT littermates,

at both the 48 h and 72 h time points (Fig. 4F).

To determine whether FGL2-mediated PCA activity was also

involved in inducing damage in the other organs of PD-1-deficient

mice, the expression of FGL2 was analyzed in the thymus, spleen

and lymph nodes. Immunohistochemistry evidenced that FGL2-

positive cells were also present in these organs. In thymus and

lymph nodes, FGL2-positive cells were detected in both the

medulla and cortex. In spleen, however, the positive cells were

only found in the red pulp. Again, the expression of FGL2

appeared to be restricted to the cell membrane and cytoplasma.

The distribution of FGL2-positive cells in PD-1-deficient mice had

not changed after 72 h of MHV-3 infection, but the number of

positive cells in the examined organs was enhanced significantly

and the levels of expression were much stronger (Fig. 5A). In

addition, the transcription of fgl2 in the spleen of PD-1-deficient

mice was also significantly increased in response to infection

(Fig. 5B). Meanwhile, higher levels of fibrinogen deposition were

found in the spleen and lymph node tissues of PD-1-deficient mice

(Fig. 5C). Moreover, the level of FGL2 present in serum, as

measured by ELISA, was found to increase rapidly after infection,

and the level in PD-1-deficient mice was significantly higher than

that in WT littermates (Fig. 5D). To clarify the source of FGL2,

fluorescent dual staining was performed on spleen tissues and

results demonstrated that FGL2 was principally associated with

CD11c-positive dendritic cells (DCs), CD68-positive macrophages

and CD31-positive endothelial cells (Fig. 5E). All of these results

indicated that the absence of PD-1 signaling can result in

enhanced FGL2 expression, consequently inducing stronger

fibrinogen deposition and more severe tissue necrosis in PD-1-

deficient mice following MHV-3 infection.

FGL2 expression is regulated by IFN-c and TNF-a
We further examined whether FGL2 secretion was regulated by

PD-1 directly or indirectly. FGL2/PD-1 dual fluorescent staining

was performed and results indicated that FGL2 and PD-1 were

not co-expressed on the same cells in the liver, thymus, spleen or

lymph nodes (Fig. 6A).

Previous studies have shown that the secretion of FGL2 can be

triggered by the pro-inflammatory factors IFN-c and TNF-a
[21,22]. On the other hand, the production of IFN-c and TNF-a
by activated T cells, NK cells and macrophages can be inhibited

by the PD-1 signal [6]. Therefore, we compared the status of IFN-

c and TNF-a in PD-1-deficient and WT mice in response to

MHV-3 infection. qPCR revealed that the transcription of the

IFN-c gene in liver was significantly higher in PD-1-deficient mice

than in WT mice at 72 h post-MHV-3 infection (Fig. 6B). In PD-

1-deficient spleen, the transcription of both IFN-c and TNF-a was

found to be rapidly enhanced upon MHV-3 exposure (Fig. 6C).

FACs analysis indicated that IFN-c secretion from NK cells, but

not from CD3+T cells, in the liver was much higher in PD-1-

deficient mice at 72 h after MHV-3 infection (Fig. 6D). The fact

that IFN-c and TNF-a both have the capacity to initiate FGL2

expression may explain why higher FGL2 expression was observed

in the PD-1-deficient mice.

To further demonstrate that IFN-c and TNF-a were responsible

for the observed FGL2 up-regulation in MHV-3 infected PD-1-

deficient mice, PD-1-deficient mice were infected with MHV-3

and simultaneously treated with a combination injection of anti-

IFN-c and anti-TNF-a blocking mAbs. The expression of fgl2 was

measured by qPCR and protein detected by immunohistochem-

istry. The transcription of fgl2 mRNA (Fig. 7A) and its protein

levels (Fig. 7B) were completely inhibited by 48 h after injection of

anti-IFN-c and anti-TNF-a mAbs, as compared to the control rat

IgG1 isotype antibodies-treated group. Moreover, the tissue

necrosis (Fig. 7C) and liver damage (as indicated by ALT and

AST levels) (Fig. 7D) in PD-1-deficient mice were also significantly

reduced, thus the MHV-3-mediated mortality rates were de-

creased as well (Fig. 7E).

Discussion

The PD-1 signaling is best known for its ability to inhibit or

dampen the immune response. Most of the evidence for this

function, however, comes from models of tolerance or chronic

infections [11, 12, 13, 14 15]. Although some studies have

indicated that this signal might also participate in regulating acute

infections [23,24,25,26], its functions in this disease condition are

much less clear. Here, we used a mouse FH model mediated by

MHV-3 infection to describe the effects of PD-1 in this disease

process. Firstly, PD-1 was found to be significantly up-regulated on

T cells, macrophages and NK cells within the thymus, spleen,

lymph nodes and liver in response to MHV-3 infection. To

determine the exact role of PD-1 in the pathogenesis of FH, PD-1-

deficient mice were used to establish an infection model.

Interestingly, MHV-3-induced liver damage in PD-1-deficient

mice occurred rapidly and the lesion area was much larger than in

their WT littermates. We then extended our investigation to the

thymus, spleen and lymph nodes, where increased PD-1-positive

Figure 3. PD-1-deficiency resulted in higher mortality after
MHV-3 infection. PD-1-deficient mice (n = 11) and WT littermates
(n = 13) were infected with MHV-3 (10 PFU) and the survival rate was
monitored for a total of 15 days. p = 0.007,0.05 was considered
significantly different. One representative of four experiments that
yielded similar results is shown.
doi:10.1371/journal.ppat.1001347.g003

Figure 2. Multiple organ damage in PD-1-deficient mice after MHV-3 infection. (A) The architecture of liver from PD-1-deficient mice and
WT littermates at different time points after MHV-3 infection was compared by H&E staining. (B) The ALT and AST levels between PD-1-deficient and
WT mice were compared after MHV-3 infection. (C) The architecture of the thymus, spleen and lymph node from PD-1-deficient mice and WT
littermates after 72 h of MHV-3 infection was compared by H&E staining. (D) Cellular apoptosis in the liver (0 h, 24 h and 72 h), thymus (72 h), spleen
(72 h), and lymph nodes (72 h) from WT and PD-1-deficient mice after MHV-3 infection was analyzed by TUNEL staining. Blue color indicates nuclear
DAPI staining. Scale bar = 20 mm. Magnification 6200. NS: not significantly different. *p,0.05 and **p,0.01. n = 4/group.
doi:10.1371/journal.ppat.1001347.g002
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Figure 4. Higher FGL2 expression and stronger fibrinogen deposition in the liver of PD-1-deficient mice after MHV-3 infection. (A)
The transcription levels of fgl2 in livers from PD-1-deficient and WT mice after 72 h of MHV-3 infection was detected by microarray analysis. (B) The
transcription levels of fgl2 in livers from PD-1-deficient and WT mice after MHV-3 infection was detected by qPCR. (C) The expression of FGL2 in the
livers of PD-1-deficient mice and WT littermates after MHV-3 infection was analyzed by immunohistochemistry. (D) The FGL2 protein level in liver
tissues was detected by Western-blot (72 h of infection). (E) The expression of FGL2 and fibrinogen deposition in the liver was detected by
fluorescent dual staining. (F) The deposition of fibrinogen in the liver of PD-1-deficient mice and WT controls at 0 h, 48 h and 72 h post MHV-3

PD-1 Limits Immunopathological Damage
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cells were observed post-infection. Surprisingly, severe tissue

necrosis and substantial apoptosis was observed in these organs

of PD-1-deficient mice at 72 h after MHV-3 infection. In contrast,

these organs from WT mice exhibited relatively normal histology,

a finding in agreement with previously reported results [27].

Taken together, these results suggested that PD-1 deficiency

promoted expansion of the pathological damage from the liver to

the lymph organs, including the spleen, lymph node and thymus in

this FH model, thereafter, the absence of PD-1 was associated with

higher mortality rates in response to MHV-3 infection.

Murine FH induced by MHV-3 is a recognized and validated

model for studying host resistance/susceptibility to human

hepatitis virus, and several studies have shown that BALB/c or

C57BL/6 mice have an innate susceptibility to the infection [3,4].

FGL2 has been proposed as a critical mediating factor of lethality

in the MHV-3-induced FH mice due to the fact that it has the

capacity to induce fibrinogen deposition, which in turn activates

the coagulation cascades and induces procoagulant activity [5]. To

clarify whether the tissue necrosis we observed in PD-1-deficient

mice following infection was also mediated by FGL2, the

expression of FGL2 was analyzed. Results showed that the

expression of FGL2 was principally associated with CD31-positive

endothelial cells, CD68-positive macrophages and CD11c-positive

DCs. Surprisingly, significantly higher levels of FGL2 were

observed after infection in all of PD-1-deficient organs, including

the liver, thymus, spleen, lymph nodes, and serum than that in

those from WT littermates. In addition, increased fibrinogen

deposition was observed in the organs of PD-1-deficient mice.

Although we currently have no direct data to evidence that FGL2

directly mediates the mortality of our PD-1-deficient mice, data

from other researchers have clearly shown that FGL2 promoted

mouse mortality in response to MHV-3 infection [5,28,29,30].

Considering this, our results strongly indicate that the mortality of

PD-1-deficient mice post-MHV-3 infection is due to the higher

level of FGL2 secretion and increased fibrinogen deposition.

Indeed, it has been reported that both FGL2 and PD-1 are

expressed on T cells, macrophages, and DCs, and that targeted

deletion of fgl2 or PD-1 leads to impaired T cell activity, and these

events are related to the development of autoimmune diseases

[6,31,32]. We here also observed PD-1 expression as being

enhanced on T cells (both CD4+ and CD8+ T cells). It was

reasonable to propose that the expression of FGL2 may have been

directly regulated by PD-1 signals. Unexpectedly, our FGL2/PD-1

dual staining showed that PD-1-positive cells in the liver, thymus,

spleen and lymph nodes did not co-express FGL2, indicating that

the expression of FGL2 was not directly regulated by PD-1. On

the other hand, the expression of FGL2 is believed to be induced

by IFN-c and TNF-a [21,22], while PD-1 signaling has the

capacity to inhibit IFN-c and TNF-a secretion from PD-1-positive

immune cells [6]. Therefore, we evaluated and compared the

status of IFN-c and TNF-a in both PD-1-deficient and WT mice.

Definitively, the transcription of IFN-c and TNF-a genes was

rapidly enhanced post-MHV-3 infection in PD-1-deficient mice,

as compared to WT controls. In particular, a higher level of IFN-c
was observed in NK cells but not in CD3+ T cells of PD-1-

deficient liver post-MHV-3 infection, indicating that the PD-1

signal can inhibit IFN-c secretion from NK cells under such

condition. Conversely, injection of a the combination of anti-IFN-

c and anti-TNF-a blocking mAbs was able to successfully inhibit

fgl2 mRNA transcription and protein expression, resulting in

reduced tissue damage and significantly protecting against MHV-

3-mediated mortality in these mice. These results demonstrated

that up-regulation of FGL2 in PD-1-deficient mice after MHV-3

infection was controlled, at least partially, by IFN-c and TNF-a.

Recently, the secretion of FGL2 from naturally occurring

CD4+Foxp3+ regulatory T cells (Tregs) was demonstrated and it

was reported that deficiency of Treg-produced FGL2 resulted in

increased effector T cell proliferation [32]. More interestingly,

Levy and colleagues showed that the frequency of FGL2+ Tregs

was higher in lymphoid tissues of MHV-3 infected mice, and

treatment with FGL2-specific antibodies reversed MHV-3-

induced liver injury and mortality in vivo. These findings

demonstrated that FGL2 is an important effector cytokine of

Tregs that contributes to MHV-3-induced FH [30]. PD-1

signaling has also been described as participating in regulation

of Treg differentiation and function [33,34]. In our study, we also

analyzed the status of Foxp3+ cells in both PD-1-deficient and WT

controls. However, the number of Foxp3-positive cells in the liver,

spleen, lymph node or thymus was not significantly different

between PD-1-deficient mice and their WT littermates after 72 h

of MHV-3 infection (Fig. S3). Therefore, Foxp3+ cells are unlikely

to be involved in the mortality of PD-1-deficient mice. However,

the functional status of these Tregs (for example, the level of FGL2

secretion) in PD-1-deficienct mice requires further investigation,

and such studies are in progress in our lab.

In conclusion, we have determined that PD-1 signaling can limit

the immunopathological damage induced by MHV-3 infection in

a mouse FH model. Our results suggest that enhancing the PD-1

signal by an immunotherapeutic approach might be a useful

treatment for FH.

Materials and Methods

Ethics statement
All experiments were approved by and conducted in accordance

with the guidelines of the Animal Care and Use Committee of the

Third Military Medical University. All efforts were made to

minimize animals’ suffering.

Mice
PD-1-KO-N10 (strain: BALB/cJ) mice were kindly provided by

Prof. T. Honjo (Department of Immunology and Genomic

Medicine, Kyoto University, Japan). The WT control mice were

purchased from the Animal Center of Beijing University School of

Medicine. All mice were maintained in micro-isolator cages and

housed in the animal colony at the Animal Center, Third Military

Medical University, standard laboratory chow diet and water was

supplied ad libitum. Mice were used in experimental analysis at age

of six weeks and at an average weight of 17 g (range: 16,18 g).

Virus and infection
MHV-3 was kindly provided by Prof. Q. Ning (Institute of

Infectious Disease, Tongji Hospital of Tongji Medical College,

Wuhan, China). The virus was plaque-purified and then

expanded in murine L2 cells. Virus-containing supernatants were

collected and stored at -80uC until use. Mice were intraperito-

neally (i.p.) injected with 10 PFU/mouse in a total volume of

200 ml. In some experiments, PD-1-deficient mice were infected

with MHV-3 (10 PFU) and simultaneously treated with a

infection was analyzed by immunohistochemistry. Blue color indicates nuclear DAPI staining. Scale bar = 20 mm. Magnification 6200. NS: not
significant different. *p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1001347.g004
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combination injection of anti-IFN-c (200 mg/mouse per day,

clone: R4-6A2, eBioscience, San Diego, CA, USA) and anti-

TNF-a (200 mg/mouse per day, clone: MP6-XT22, eBioscience)

mAbs, tissues were isolated for hematoxylin and eosin (H&E)

staining to detect damage, and for fgl2 mRNA transcription

measured by qPCR (see below). Serum ALT and AST levels were

measured by an AU5400 automatic biochemistryanalyzer

(OLYMPUS, Japan). In order to monitor the mortality, anti-

IFN-c and anti-TNF-a blocking mAbs or rat IgG1 control mAbs

were injected everyday for a total of 6 days.

Immunohistochemical and immunofluorescence staining
Paraffin-embedded tissue blocks were cut into 5 mm slices which

were mounted on polylysine-charged glass slides. Endogenous

peroxidase activity was blocked by exposure to 3.0% H2O2 for

15 min. Antigen retrieval was performed in a citrate buffer

(pH 6.0) at 120uC for 10 min. Sections were then incubated at

4uC overnight with anti-mouse FGL2 (1:100, mouse IgG, Santa

Cruz, CA, USA), PD-1 (5 mg/ml, goat IgG, R&D Systems,

Minneapolis, MN, USA), CD11c (1:50, rabbit IgG, Santa Cruz),

CD68 (1:50, rat IgG, eBioscience), CD31 (1:100, rabbit IgG,

Santa Cruz) or fibrinogen (1:100, mouse IgG1, Dako, Capenteria,

CA, USA). Immunoreactivity was detected by using a fluorescein

isothiocyanate (FITC)-conjugated (1:100, Zymed, San Francisco,

CA, USA) or Cy3-conjugated secondary antibodies (1:200;

Jackson ImmunoResearch, West Grove, PA, USA). Results were

analyzed by fluorescence microscopy (Axioplan 2, Zeiss, Ger-

many). For immunohistochemical staining, HRP-conjugated anti-

mouse, anti-goat or anti-rabbit IgG (1:200, Zymed) was used, and

the results were visualized with diaminobenzidine (DAB, Dako).

Sections incubated with secondary antibodies only were used as

isotype controls.

Figure 5. Enhanced FGL2 expression in the thymus, spleen, lymph nodes and serum of PD-1-deficient mice after MHV-3 infection.
(A) The expression of FGL2 in the thymus, spleen and lymph nodes of PD-1-deficient mice and their WT littermates was detected by
immunohistochemistry (left) and the amounts of FGL2-positive cells in these organs were counted and compared (right). (B) The fgl2 mRNA
transcription in the spleens of PD-1-deficient mice and their WT littermates after MHV-3 infection was measured by qPCR. (C) The fibrinogen
deposition in the spleen and lymph nodes was detected by immunohistochemistry. (D) The differential serum FGL2 level between PD-1 deficient and
WT mice infected with MHV-3 was measured by ELISA. (E) The source of FGL2 was analyzed by fluorescent dual staining. Blue color indicates nuclear
DAPI staining. Scale bar = 20 mm. Magnification 6200. NS: not significantly different. *p,0.05, **p,0.01 and ***p,0.001. n = 5/group.
doi:10.1371/journal.ppat.1001347.g005

Figure 6. MHV-3 infection induced high levels of IFN-c and TNF-a in PD-1-deficient mice. (A) The expression of FGL2 and PD-1 in liver,
thymus, spleen and lymph nodes was detected by fluorescent dual staining. (B) Levels of IFN-c and TNF-a mRNA in the liver and (C) in the spleen
from PD-1-deficient mice and their WT littermates after MHV-3 infection was detected by qPCR. (D) The secretion of IFN-c from NK cells and CD3+T
cells in the liver from PD-1-deficient mice and their WT littermates after 72 h of MHV-3 infection was measured by FACs. The number indicates the
percentage of the positive cells in the indicated gate. One representative of three experiments that yielded similar results is shown. Blue color
indicates nuclear DAPI staining. Scale bar = 20 mm. NS: not significantly different. *p,0.05.
doi:10.1371/journal.ppat.1001347.g006
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PD-1-, FGL2- or Foxp3-positive cells were determined by image

analysis of histological sections. Photomicrographs were obtained

in high-power fields (hpf, 0.625 mm2) and captured for analysis

using Image Pro-Plus 5.0 software (Media Cybernetics, Silver

Spring, MD, USA). The distribution of FGL2 and Foxp3 in

thymus and lymph node is restricted in medulla and only the

positive cells in this area were calculated. The number of PD-1-,

FGL2- or Foxp3-positive cells per hpf were counted and expressed

as the mean 6 standard error of the mean (SEM). Moreover,

analysis of tissue damage was based on H&E staining.

Flow cytometry
The expression of PD-1 on immune cells (CD4, CD8, NK and

macrophages) from different organs was assessed by flow

cytometry (FACsAria Cytometer; Becton Dickinson, Germany).

Briefly, cell suspensions of liver, spleen, blood and thymus tissues

were washed and resuspended in PBS. Cells were then incubated

for 30 min at room-temperature in the dark using primary

antibodies (PE-PD-1, FITC-CD4, FITC-CD8, FITC-NK1.1 and

FITC-CD68. eBioscience). To analyze the source of IFN-c in the

liver, PD-1-deficient and WT mice were treated with MHV-3 (10

PFU). After 72 h, liver tissues were isolated and mechanically

homogenized, lymphocytes were collected thereafter. Cells were

then treated with Brefeldin A solution (BFA) for 4 h, and FITC-

NK1.1, FITC-CD3 or PE-IFN-c mAbs (eBioscience) were added

and the solution incubated for an additional 1 h. For each analysis,

10000 cells were evaluated. Flow cytometric data were analyzed

with CellQuest Pro Software.

Microarray analysis
The microarray experiment was performed under contact by

Kangcheng Co. Ltd. (Shanghai, China). Briefly, total RNA was

isolated by Trizol from liver tissue of PD-1-deficient and WT mice

treated with 10 PFU MHV-3 for 72 h. RNA concentration was

measured on the ND-1000 spectrophotometer (Nanodrop,

Wilmington, DE, USA) and quality evaluated by denaturing gel

electrophoresis. Samples were then amplified and labeled using a

NimbleGen One-Color DNA Labeling Kit and hybridized using

the NimbleGen Hybridization System (Roche Applied Science,

Shanghai, China). After hybridization and washing, the processed

slides were scanned by the Axon GenePix 4000B microarray

scanner. Three independent experiments were performed, and for

each test and control sample, two hybridizations were carried out

by a reverse fluorescent strategy. Only genes whose alteration

tendency was concordant between both microarray assays were

selected as differentially expressed genes.

Quantitative RT-PCR
Total RNA from the liver and spleen of WT and PD-1-deficient

mice was isolated by Trizol (Invitrogen, Carlsbad, CA, USA),

according to the manufacturer’s instructions. RNA samples were

quantitated by measurement of optical density at 260 nm. Total

mRNA (2 mg) was reverse-transcribed to cDNA using the

RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas

China, Shenzhen City, China), in accordance with the manufac-

turer’s instructions. qPCR was performed to quantitatively analyze

the gene transcription levels of fgl2, IFN-c and TNF-a genes. The

primers for fgl2 were: sense 59-TGGACAACAAAGTGG-

CAAATCT-39 and anti-sense 59-TGGAACACTTGCCATC-

CAAA-39. The primers for IFN-c were: sense 59-TCAAGTGG-

CATAGATGTGGAAG-39, and anti-sense 59-CGCTTATG-

TTGTTGCTGATGG-39. The primers for TNF-a were: sense

59-CACGCTCTTCTGTCTACTGAAC-39 and anti-sense 59-

ATCTGAGTGTGAGGGTCTGG-39. The primers for b-actin

(internal control) were: sense 59-CACTATCGGCAATGAG-

CGGTTCC-39 and anti-sense 59-CAGCACTGTGTTGGCA

TAGAGGTC-39. The qPCR was performed at 95uC for 10 s

followed by 40 cycles of 95uC for 5 s, 60uC for 15 s, and 72uC for

15 s. The specificity of PCR product was examined by a

dissociation curve, and results were analyzed by the 22DDCT

method [35].

Western-blot
The expression of FGL2 in liver from MHV-3 infected (72 h)

PD-1-deficient mice or their WT littermates was determined by

Western-blot; the protocol has been described previously [36].

Enzyme-linked immunosorbent assay (ELISA)
The serum FGL2 level from mice infected with or without

MHV-3 was detected by using the mouse FGL2 ELISA Kit (Cat:

E90512Mu; Uscn Life Science Inc., Wuhan, China) and following

the manufacturer’s instructions.

Statistical analysis
All results shown are representative of at least three separate

experiments. Unpaired student’s t-test (two-tailed) or the Mann-

Whitney test was used for comparison of two groups where

appropriate. Kaplan Meier curve with log-rank test (GraphPad

Prism 4.03 software) was used to analyze the mortality rate. p-

value ,0.05 was considered as statistically significant.

Supporting Information

Figure S1 The location of PD-1-positive cells in the lung, kidney

and heart from MHV-3 infected or PBS-treated mice was detected

by immunohistochemistry (left). Statistical analysis of the number

of PD-1-positive cells in the lung, kidney and heart tissue of MHV-

3 infected or PBS-treated mice (right). The arrow indicates the

PD-1-positive cells. Magnification 6600. NS: not significantly

different.

Found at: doi:10.1371/journal.ppat.1001347.s001 (2.05 MB TIF)

Figure S2 (A) The architecture of the lung, kidney and heart of

WT vs. PD-1-deficient mice after 72 h of MHV-3 infection was

measured by H&E staining. (B) Cell apoptosis in these organs was

detected by TUNEL staining. The arrow indicates the TUNEL-

positive cells. Blue color indicates nuclear DAPI staining. Scale

bar = 20 mm. Magnification 6200.

Found at: doi:10.1371/journal.ppat.1001347.s002 (1.86 MB TIF)

Figure 7. Up-regulation of FGL2 in PD-1-deficient mice after MHV-3 infection is regulated by IFN-c and TNF-a. (A) Fgl2 mRNA and (B)
its protein expression in the liver, spleen and lymph node from PD-1-deficient mice after 72 h of MHV-3 infection in the presence of IFN-c and TNF-a
mAbs or rat IgG1 isotype control antibodies was detected by qPCR and immunohistochemistry, respectively. (C) The IFN-c and TNF-a mAbs treatment
resulted in decreased damage to the liver, spleen, lymph node and thymus after 72 h of MHV-3 infection. (D) Reduced FGL2 level by IFN-c and TNF-a
mAbs treatment resulted in reduced liver damage (indicated by AST and ALT levels). (E) PD-1-deficient mice were infected with MHV-3 (10 PFU) and
simultaneously treated with IFN-c and TNF-a blocking mAbs (n = 4) or rat IgG1 control (n = 6), the survival rate was monitored for a total of 15 days.
p = 0.025,0.05 was considered significantly different. One representative of three experiments that yielded similar results is shown. Magnification 6
400. NS: not significantly different. *p,0.05 and **p,0.01. n = 5/group.
doi:10.1371/journal.ppat.1001347.g007
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Figure S3 The number of Foxp3-positive cells was not changed

significantly in PD-1-deficient mice after MHV-3 infection.

Foxp3-positive cells in the liver, thymus, spleen, and lymph nodes

between PD-1-deficient and WT mice at 72 h after MHV-3

infection were detected by immunofluorescence staining (left).

Statistical analysis of the number of Foxp3-positive cells in the

indicated organs (right). Blue color indicates nuclear DAPI

staining. Scale bar = 20mm. NS: not significantly different.

Found at: doi:10.1371/journal.ppat.1001347.s003 (1.44 MB TIF)
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