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ABSTRACT Recent advances in variant calling made available in the Genome Analysis Toolkit (GATK)
enable the use of validated single-nucleotide polymorphisms and indels to improve variant calling.
However, large collections of variants for this purpose often are unavailable to research communities. We
introduce a workflow to generate reliable collections of single-nucleotide polymorphisms and indels by
leveraging available genomic resources to inform variant calling using the GATK. The workflow is
demonstrated for the crop plant Sorghum bicolor by (i) generating an initial set of variants using reduced
representation sequence data from an experimental cross and association panels, (ii) using the initial
variants to inform variant calling from whole-genome sequence data of resequenced individuals, and (iii)
using variants identified from whole-genome sequence data for recalibration of the reduced representation
sequence data. The reliability of variants called with the workflow is verified by comparison with genetically
mappable variants from an independent sorghum experimental cross. Comparison with a recent sorghum
resequencing study shows that the workflow identifies an additional 1.62 million high-confidence variants
from the same sequence data. Finally, the workflow’s performance is validated using Arabidopsis sequence
data, yielding variant call sets with 95% sensitivity and 99% positive predictive value. The Recalibration and
Interrelation of genomic sequence data with the GATK (RIG) workflow enables the GATK to accurately
identify genetic variation in organisms lacking validated variant resources.
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The decreasing cost of high-throughput sequencing has led to a pro-
liferation of template preparation methods and sequence data (Sims
et al. 2014). The abundance of sequence data has motivated an interest
in leveraging available data to identify genetic variation, and software
development has kept pace with this demand as exemplified by the
Broad Institute’s open-source Genome Analysis Toolkit (GATK). The
GATK can integrate evidence for variants from multiple samples with
joint genotyping, and it enables the use of validated single-nucleotide
polymorphisms (SNPs) and indels to improve the accuracy of variant
calling. Additionally, the GATK’s methods are implemented in a manner
amenable to reads originating from a variety of template preparation

methods and sequencing platforms (Depristo et al. 2011). However,
many research communities lack the large, validated collections of
SNPs and indels necessary for the GATK’s Best Practices procedures
because of the investment necessary to produce and curate such
collections (Van Der Auwera et al. 2013). As an alternative to
large-scale variant validation studies, we developed the Recalibration
and Interrelation of genomic sequence data with the GATK (RIG)
workflow to integrate information from multiple genomic sources
and identify reliable sets of variants.

The GATK has gained extensive adoption in the human genomics
research community due in part to the methods it uses to account for
known error sources during variant calling; accounting for these error
sources enables the GATK to consistently outperform other modern
variant callers in benchmarking studies (Depristo et al. 2011; Nekrutenko
and Taylor 2012; Liu et al. 2013; Pirooznia et al. 2014). Multiple sources
of error exist, including incomplete or incorrect reference assem-
blies, erroneous realignment of reads to the reference genome (par-
ticularly in low complexity regions and around indels), inaccurate
base quality scores, and suboptimal variant filtration parameters
(Depristo et al. 2011; Li 2014). Features of the GATK address a num-
ber of these error sources, and we briefly describe three of the features
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most relevant to the design of the RIG workflow. The first feature is
Base Quality Score Recalibration (BQSR), where the base quality
scores assigned by the sequencer are corrected with scores empirically
determined from the read group data using validated variants; these
recalibrated scores more accurately reflect the true reliability of the
base calls, thus correcting biases introduced by sequencing platforms
(Li et al. 2004). The second feature is the GATK’s joint genotyping
methodology that can integrate the evidence for a variant from many
samples on reasonable time scales; this allows data from thousands of
samples to be considered when evaluating the existence of a variant.
The third feature is Variant Quality Score Recalibration (VQSR),
where raw variant calls are assigned probabilities of being true variants
based on the behavior of training variants in the raw variant calls
using machine learning techniques (McKenna et al. 2010; Depristo
et al. 2011; Van Der Auwera et al. 2013). These probabilities allow
users to decide which variants to use in downstream analyses based on
desired levels of specificity and sensitivity, where high specificity indi-
cates a low false-positive rate, and high sensitivity indicates a low false-
negative rate. Two of these three features, BQSR and VQSR, require
a collection of reliable variants to function effectively, and their bene-
fits are inaccessible without such a resource.

Although many research communities lack large, validated
resources of known SNPs and indels, some communities, namely
agricultural research communities, often have access to a variety of
genomic data sources that can be used to identify reliable genetic
variants for use with the RIG workflow. Two characteristics influence
the optimal use of these data sources with the RIG workflow: (i) the
method used to produce the source’s raw data from which variants are
called, and (ii) the experimental design behind the source. First, many
methods are available to produce the raw data from which variants are
called, including reduced representation sequencing, whole-genome
sequencing (WGS), SNP chips, Sanger sequencing, and RNA sequenc-
ing. Variants identified from two different methods can be considered
more reliable than those identified in only one, as they are less likely to
be artifacts introduced by a specific method. The RIG workflow can
take advantage of multiple data sources by using variants found from
one data source to inform the analysis of a second, read-based data
source; by providing variants obtained from orthogonal methods, the
reliability of variant resources used in BQSR and VQSR can be im-
proved. Second, the experimental design behind the source also influ-
ences the reliability of the variants obtained from the source. Two
experimental design elements influencing the reliability of a genomic
variant are (i) if the variant segregates according to Mendelian expect-
ations, and (ii) how often the variant is observed in independent
samples. Genotyping large experimental crosses provides variants
where Mendelian violations can be identified and the variants are
observed at high frequencies in independent samples; as such, exper-
imental crosses represent one of the most reliable sources of genetic
variants. Association panels or population samples can also provide
a reliable source of variants given a sufficiently large sample size
and minor allele frequency. When Mendelian violations cannot be
identified or when sample sizes are small (as is common with rese-
quencing designs), variants are considered less reliable. For our use
case with sorghum, we (i) generated an initial set of variants using
reduced representation sequence data from an experimental cross and
association panels, (ii) used the initial variants to inform variant call-
ing from WGS data of resequenced individuals, and (iii) used variants
identified from WGS data for recalibration of the reduced rep-
resentation sequence data. By considering the method used to
produce the raw data from which variants are called and the
experimental design behind the data source, available genomic

sequence data can be optimally leveraged to improve variant
calling and subsequent analyses.

Here we present the RIG workflow to formalize the process of
incorporating available genomic sequence resources when calling
SNPs and indels with the GATK. The RIG workflow is designed to
leverage available genomic data in a manner that maximizes the
information available to joint genotyping and to produce collections
of reliable variants sufficiently large to perform BQSR and VQSR; this
provides the benefits of the GATK’s methods even in the absence of
a large collection of validated variants, and it is readily applicable to
organisms with a reference genome sequence and moderate sequence
data resources. As an example, we describe the RIG workflow using
Sorghum bicolor sequence data and show that it readily interrelates
reduced representation and WGS data to generate variant calls. We
evaluate the performance of the RIG workflow for sorghum sequence
data using a collection of genetically validated variants, and we com-
pare the output of the RIG workflow with variant calls from a recent
sorghum study. Finally, we validate the workflow with Arabidopsis
sequence data and show that high sensitivity and specificity is readily
achieved.

MATERIALS AND METHODS

Sorghum analyses
The RIG workflow described in the Results section was designed as
a generalization of our use cases in leveraging existing Sorghum bicolor
genomic resources to take advantage of the GATK’s strengths. Here
we describe the process of transitioning from exclusive use of the
naive pipeline to use of the initial informed and informed pipelines
as an example of executing the RIG workflow and constructing variant
resources (Figure 1, Figure 2, Figure 3, and Figure 4).

At the time of transitioning from the naive pipeline to the initial
informed and informed pipelines with Sorghum bicolor sequence data,
we had access to reduced representation sequence data generated in-
ternally by Digital Genotyping using the restriction enzyme NgoMIV
and a collection of WGS data generated from multiple groups (Zheng
et al. 2011; Evans et al. 2013; Mace et al. 2013; Morishige et al. 2013).
Using reduced representation sequence data for a 423 member
recombinant inbred line population, we used the naive pipeline to
produce variant calls (Burow et al. 2011; Truong et al. 2014). Prepro-
cessing of the reads prior to variant calling, including read-mapping to
version 1 of the Sorghum bicolor reference assembly, was performed
using BWA and Picard (Paterson et al. 2009; Li and Durbin 2010;
Picard Team 2014). Variants were genetically mapped with R/qtl, and
variants segregating as expected in these calls were used to create
a Family Reference Variant Resource that contained 6849 SNPs and
2164 indels (Broman et al. 2003). The Family Reference Variant Re-
source was considered a highly specific variant resource. Of note, the
genetic positions of markers found in this manner are also being used
to anchor unplaced super contigs in the Sorghum bicolor reference
genome assembly (J. Schmutz, personal communication). Similarly,
reduced representation sequence data for 733 sorghum germplasm
samples processed with the naive pipeline were used to produce a Pop-
ulation Reference Variant Resource containing 62,022 SNPs and
20,801 indels. This variant resource was considered specific because
we enforced a genotyping rate of 60% and a minor allele frequency of
0.05. The hard filtering parameters that we use in the naive pipeline
for reduced representation sequence data can be found within the
implementation on GitHub at https://github.com/MulletLab/RIG.

We sought to use these variants found in reduced representation
sequence data to improve the analysis of WGS data of the 49 publicly
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available WGS data sources (Zheng et al. 2011; Evans et al. 2013;
Mace et al. 2013). To do this, we chose 10 individuals from the 49
that represented diverse sorghum germplasm accessions. We attempted
to maximize diversity so that the sensitive variant resource constructed
after the initial informed and informed pipelines had been executed
would include many of the variants present in the next group of indi-
viduals for BQSR; this enabled use of the informed pipeline in the
following iterations as the remaining 39 samples were processed (indi-
viduals were processed 10 at a time due to hard disk space limitations).

With the Family and Population Reference Variant Resources and
the 10 WGS samples as analysis targets, we met the requirements for
VQSR but not BQSR (Figure 1, Figure 2, and Figure 3). As such, we
followed the initial informed pipeline. For VQSR, the Family and
Population Reference Variant Resources were both designated as
truth, training, and known variants, and priors set to 15.0 and 7.0,
respectively. Although these settings worked for our use case, they
may not always be applicable; however, we typically follow these
general rules: only highly specific variant resources should be desig-
nated as truth; variant resources designated as training do not need to
be highly specific, but their priors should be set accordingly; all resour-
ces designated as truth should also be designated as training; and
resources designated as truth and training can also be designated as
known. Other details along with the annotations used for training the
SNP and indel Gaussian mixture models can be found with the imple-
mentation on GitHub at https://github.com/MulletLab/RIG.

Generating variant resources following VQSR is a highly user-
driven process that depends largely on the user’s confidence in the
variant resources designated as truth for VQSR, and it requires exam-
ining multiple tranches resulting from VQSR (Figure 4). Tranches

represent cutoffs based on variant resources designated as truth during
VQSR, and they are generated by considering the VQSLOD scores
(logarithm of odds ratio that a variant is real vs. not under the trained
Gaussian mixture model) of truth variants that are present in the
recalibrated raw variants. For example, if 90% of the truth variants
found in the raw variants had a VQSLOD score over 1.5, then the 90%
tranche would contain all variants in the raw variants that had
a VQSLOD score over 1.5. We typically pick two tranches after VQSR,
a specific tranche and a sensitive tranche, by examining the behavior
of VQSLOD scores of multiple tranches (Figure 4). Specific tranches
typically come from tranches where the VQSLOD score changes by
small amounts even as the tranche percentage is decreased, and sen-
sitive tranches are typically a non-negative VQSLOD score tranche
that is more inclusive than the specific tranche.

Having generated a temporary sensitive variant resource from the
initial 10 WGS samples using the initial informed pipeline, we
proceeded down the informed pipeline with those 10 samples to
generate a sensitive Whole-Genome Sequence Variant Resource.
We then iteratively processed the remaining 39 samples in groups of 10
(9 on the final iteration) using the informed pipeline and updating
the Whole-Genome Sequence Variant Resource each iteration; we
continued to use only the Family and Population Reference Variant
Resources for VQSR (to enforce that variants designated as truth for
VQSR had been identified using a different sequencing template
preparation method), and we used the newest sensitive Whole-
Genome Sequence Variant Resource for BQSR. Upon completion of
all 49 genomes, we used the newest Whole-Genome Sequence Variant
Resources for BQSR and VQSR of the association panel data (sensitive
for BQSR and specific for VQSR) to generate the Sensitive Population

Figure 1 Phase I of the RIG workflow. Phase I of the RIG workflow defines the five entities necessary for the execution of Phase II. Once the first
three entities, the analysis target, database of likelihoods, and variant resource(s) are defined, the user considers a hypothetical case based on
those first three entities to estimate the contents of the remaining two: the hypothetical database of likelihoods and the shared variants. If a user is
unable to make a prediction regarding the latter two entities, the entities can either be treated as empty sets, or the user can use the GATK to
carry out the necessary procedures to generate an estimate. Once all five entities are defined, the user can proceed to Phase II. RIG, Recalibration
and Interrelation of genomic sequence data with the GATK; GATK, Genome Analysis Toolkit.
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Reference Variant Resource (97.5% tranche) that was used for the
genome-wide association study.

The IF set used to examine the recalibration of WGS variants was
constructed from a second biparental recombinant inbred line
population (Xu et al. 2000). Variants from this population were gen-
erated in the same fashion as the Family Reference Variant Resource
(i.e., using NgoMIV Digital Genotyping, the naive pipeline, and
checking for Mendelian segregation in R/qtl). The Raw, Sensitive,
and Specific sets used in the comparison with the IF set were derived
from the 100% tranche, the 95% tranche, and 75% tranche of the
recalibrated WGS variants (Supporting Information, Table S1 and
Table S2, and Figure S1). The Raw, Sensitive, and Specific sets used
for comparison with the Gramene42-Mace2013 set originate in the
same manner, but excluded indels, SNPs on super contigs, and
variants not found in 1 of the 47 samples to be comparable with the
Gramene42-Mace2013 set. Variants and genotypes for 171 individuals
from the Sensitive Population Reference Variant Resource were used
with downstream analysis tools to perform the association mapping
described and depicted in Figure S2 and Table S3.

Arabidopsis analyses
Publicly available WGS for five accessions (ICE50 ICE134, ICE150,
ICE213, and Leo-1) from Cao et al. (2011) were processed using the
naive pipeline and stringently hard filtered (parameters available on
GitHub). Publicly available Sanger sequence for 20 accessions (Ag-0,
Bor-1, Br-0, Ei-2, Got-7, Gu-0, Hr-5, Kin-0, Kondara, Ms-0, Mz-0,
NFA-8, Nok-3, PNA-17, Rmx-A02, Sorbo, Sq-8, Uod-1, Wa-1, Yo-0)
were obtained from the Supporting Information of Nordborg et al.
(2005). Publicly available WGS for the same 20 accessions from
Schmitz et al. (2013) were processed through the initial informed pipe-
line, and VQSR was performed using the stringently filtered variants

from Cao et al. (2011) as a training set (prior of 7.0) and as a truth set.
The resulting 95% tranche was used for BQSR as the WGS data for the
20 accessions were then processed through the informed pipeline. The
Cao et al. (2011) variants were again used for VQSR. All alignments and
variant calling were done against the version 10 Arabidopsis reference
genome (Arabidopsis Genome Initiative et al. 2000).

To estimate error rates of the RIG workflow for WGS data, the
resulting variant calls for the 20 accessions were compared to Sanger
data from Nordborg et al. (2005) and variants from the Gramene
database build 43, accessed January 2015 (Monaco et al. 2014). This
requires the assumption that the Sanger data were 100% specific (i.e.,
no false positives), and that the combination of the Sanger data and
the Gramene build 43 variants were 100% sensitive (i.e., no false
negatives). Although the WGS data strongly suggest that these
assumptions are false, this still provides a useful baseline for compar-
ison; however, we expect that the true sensitivity and specificity
achieved in this comparison are greater than the values obtained since
false positives in the Sanger data translate to decreased sensitivity and
false negatives in the Sanger data and Gramene build 43 translate to
decreased positive predictive value. Genomic intervals used to evaluate
performance were defined as a subset of the 861 intervals from Nordborg
et al. (2005). Because many of the Sanger reads had an abundance of
Ns at the beginning and end of the read, 50 bp from the ends of each
interval were removed. Excluding intervals that did not have .90%
of the bases covered at greater than 15 depth in all 20 WGS samples
and.90% coverage in all 20 Sanger samples yielded 419 intervals that
covered 200,887 bp of the genome.

Two of the accessions (Got-0 and Ms-0) were dropped from the
comparison due to extensive disagreement between the Sanger
variants and the WGS variants, potentially due to not truly being
the same accession. We also found a number of sites that were

Figure 2 Phase II of the RIG workflow. Phase II of the RIG workflow determines whether VQSR, BQSR, or both are appropriate, given the entities
defined in Phase I. The workflow always proceeds through an analysis pipeline, characterized as the naive, the initial informed, and the informed
pipelines shown in Figure 3. The end result of the workflow is the production of a variant resource that can be used in future analyses. RIG,
Recalibration and Interrelation of genomic sequence data with the GATK; VQSR, Variant Quality Score Recalibration; BQSR, Base Quality Score
Recalibration.
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heterozygous in the WGS accessions that that had been manually
curated by Nordborg et al. (2005) to Ns in the Sanger data. Because
this generates what appears to be a false positive in the WGS data, we
used the Sanger data to identify false negatives, and variants from both
the Sanger data and Arabidopsis variants contained in Gramene build
43 to identify false positives. Variants from the Nordborg et al. (2005)
Sanger data contained in the designated genomic intervals but not
contained in a tranche of the WGS data were considered false neg-
atives for the purpose of calculating sensitivity. Variants contained in
the WGS data but not in either the Nordborg et al. (2005) or the
variants present in Gramene build 43 were considered false positives
for the purpose of calculating positive predictive value. Variant site
counts used for calculating sensitivity and positive predictive value are
available in Table S4.

For the comparison, we report positive predictive value instead of
specificity as a metric for false positives since the number of true
negatives is far larger than the number of false positives, always
leading to specificity values greater than 99.9%. As such, the
performance of a tranche with a sensitivity of 95% and a positive
predictive value of 99% is interpreted as a tranche where 95% of the
true variants that existed were called and that 99% of the variants
called are true variants.

Code and hardware
Our implementation of the workflow and pipelines are available on
GitHub at https://github.com/MulletLab/RIG as a series of Bash
scripts to serve as an example, to provide the annotations we used
for hard filtering and VQSR, and to list all of the additional software
version numbers used. GATK’s Scala-based job submission controller,
Queue, is suggested for implementing pipelines for the GATK for
distributed computing resources; our implementation is in Bash be-
cause we experienced slowdowns in job submissions over time when
using Queue (v3.1-1) on the Whole System Genomics Initiative clus-
ter present at Texas A&M University.

RESULTS

RIG: Recalibration and Interrelation of genomic
sequence data with the GATK
The RIG workflow is a generalization of procedures to leverage
existing genomic data when using the GATK v3.0+. Specifically, the
workflow determines whether VQSR and/or BQSR are appropriate to
perform, and the workflow iteratively constructs reliable variant
resources for future use with the GATK. The procedures of the RIG
workflow are divided into two phases: Phase I, where the entities

Figure 3 RIG pipelines. These are analysis pipelines that are traversed as part of Phase II of the RIG workflow. They correspond to cases where
neither BQSR nor VQSR are appropriate (naive pipeline), where only VQSR is appropriate (initial informed pipeline), or where both BQSR and
VQSR are appropriate (informed pipeline). When traversed, the informed pipeline emulates the GATK’s Best Practices (Van Der Auwera et al.
2013). RIG, Recalibration and Interrelation of genomic sequence data with the GATK; BQSR, Base Quality Score Recalibration; VQSR, Variant
Quality Score Recalibration; GATK, Genome Analysis Toolkit.
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necessary for workflow execution are defined (Figure 1), and Phase II,
where those entities are used to execute the workflow (Figure 2).

RIG Phase I: define RIG entities: Phase I of the RIG workflow
defines the five entities necessary for execution of Phase II (Figure 1).
The first entity is an analysis target. The analysis target contains the
sequence reads from which the user intends to call variants. Reads of
the analysis target should be preprocessed by read-mapping, duplicate
marking (if applicable), and indel realignment; this entity is depicted
as a stack of BAM-format files in Figure 1. The second entity is
a database of likelihoods. The database of likelihoods contains the
likelihood that a variant exists at a genomic position for all evaluated
positions; this database consists of one or more gVCF-format flat files
obtained from past GATK analyses of analysis targets produced by
similar template preparation methods (i.e., a database of likelihoods
for WGS samples should not be used with an analysis target of re-
duced representation samples). This entity is depicted as a stack of
circles in Figure 1, and it can be defined as empty. The third entity is
a set of variant resources. These are one or more files of VCF-format
variant calls, and these calls should be conceptually (and physically, if
necessary) partitioned into one or both of two categories: specific
variant resources with low false positive rates, and sensitive variant
resources with low false negative rates; a specific resource is necessary
for VQSR and a sensitive resource is necessary for BQSR. As with the
database of likelihoods, the variant resources can be empty and likely
will be when first executing the workflow. The fourth and fifth entities
can either be (i) constructed hypothetically based on a user’s expect-
ations of the first three entities, or (ii) they can be empirically de-
termined by performing the necessary analyses with the first three
entities using the GATK. The fourth entity is a hypothetical database
of likelihoods that is generated after adding the genotype likelihoods
called from the analysis target to the existing database of likelihoods.
The fifth entity is a set of shared variants. Shared variants are variants

contained in both the hypothetical database of likelihoods and in the
chosen variant resources; shared variants can be specific, sensitive, or both
(or empty) depending on the classification of the variant resource they
were found in. Once all five entities are defined, the analysis target, the
database of likelihoods, the variant resources, the hypothetical database of
likelihoods, and the shared variants, a user can proceed to Phase II.

RIG Phase II: execute analysis: The initial question of Phase II of
the RIG workflow determines whether VQSR is appropriate based on
the number of variants contained within the specific shared variants
(RIG recommends at least 10,000 SNPs and 10,000 indels; Figure 2).
A specific variant resource is required since false positives negatively
impact the training of the Gaussian mixture models during VQSR,
whereas false negatives have lesser effect. If the specific shared variants
do not satisfy these criteria, then the RIG workflow enters the naive
pipeline in which called variants are hard filtered using user-designated
filtration criteria such as depth (Figure 3). Variants passing user-
designated filtration criteria can then be added to the collection of variant
resources. Once the naive pipeline has been used to analyze enough
analysis targets, the collection of variant resources may be sufficiently
large to answer yes to the initial question.

If the specific shared variants contain at least 10,000 SNPs and
10,000 indels, the next question addresses if the samples and variants
in the database of likelihoods (if it is not empty) had previously
undergone BQSR. If not, and if the reads corresponding to the
samples used to generate the database of likelihoods are available, then
the analysis target is updated with those reads, the database of
likelihoods is set to empty, and the user returns to RIG Phase I (Figure
1) with the new analysis target and the empty database of likelihoods.

If the reads used in the construction of the database of likelihoods
had previously undergone BQSR, or if the database of likelihoods is
empty, then the final assessment determines whether the analysis
target and the sensitive shared variants are appropriate for BQSR.

Figure 4 Construction of vari-
ant resources. After VQSR, mul-
tiple tranches are evaluated to
choose specific and sensitive
sets of variants for use in down-
stream analyses and to desig-
nate as variant resources.
Tranches correspond to VQSLOD
cutoffs above which a specified
percentage of the variants desig-
nated as truth during VQSR are
retained in the tranche. For ex-
ample, a 95% tranche indicates
the VQSLOD cutoff at which 95%
of the variants designated as truth
during VQSR would be retained.
Accordingly, lower tranche per-
centages have greater specificity,
lesser sensitivity, and contain
fewer variants, and lower per-
centage tranches are subsets of
greater percentage tranches.
Here we show a 90% tranche
being chosen as the specific
variant resource and the 95%
tranche being chose as the sen-

sitive variant resource; both are subsequently added to the collection of variant resources. Note that the specific variant resource generated here
is a subset of the sensitive variant resource. VQSR, Variant Quality Score Recalibration; VQSLOD, logarithm of odds ratio that a variant is real vs.
not under the trained Gaussian mixture model;
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A sensitive variant resource is necessary since false negatives cause
BQSR to treat true variants in the analysis target as errors and will
skew quality scores down, whereas false positives have a lesser chance
to skew quality scores up. If BQSR is appropriate, the user follows the
informed pipeline which emulates the GATK’s Best Practices (Van
Der Auwera et al. 2013). If BQSR is not appropriate, the user first uses
the initial informed pipeline in which VQSR is performed on the raw
variants to generate a temporary sensitive variant resource which is
used during the execution of the informed pipeline that immediately
follows the initial informed pipeline (Figure 3).

Construction of variant resources and adding them to the
collection of variant resources is the end step of any path through
the RIG workflow (Figure 4). Deciding the criteria for generating the
variant resources at the end is a highly user-driven process that should
consider the specific properties of the analysis target. For example, we
generate highly specific variant resources from experimental crosses
based on markers that segregate as expected (see the section Materials
and Methods). Additionally, the variant annotations used for hard
filtering and VQSR should differ based on how reads should behave
in the analysis target; that is, reduced representation data should not
use the same annotations as WGS data for hard filtering and VQSR
because reads are not distributed around variants in a similar manner.
To provide an example, we discuss the methods we use to select VQSR
tranches and construct variant resources in Figure 4 and in the section
Materials and Methods. We also have made our code available on
GitHub at https://github.com/MulletLab/RIG as an example and to
provide the parameters and variant annotations we use.

Interrelation of genomic data enables a specificity and
sensitivity framework for variant calls
In accordance with the RIG workflow, we used reduced representation
data of an experimental cross and association panels to enable both
BQSR and VQSR of WGS data of 49 resequenced individuals for the
crop plant Sorghum bicolor. By interrelating data sources produced by
different template generation methods with the RIG workflow, we
enforced that the variants used to train the VQSR Gaussian mixture
models that determine a variant’s VQSLOD score (logarithm of odds
ratio that a variant is real vs. not real under the trained Gaussian
mixture model) were found orthogonally, providing additional confi-
dence that the variants used for training were real variants. Addition-
ally, the differences in reliability of the training variants due to the
different experimental designs were also considered for training of the
VQSR models; variants from the experimental cross were assigned
a higher prior likelihood of being correct than those from the associ-
ation panels. By following the RIG workflow, each SNP and indel in
the raw WGS variants was assigned a VQSLOD score that reflects its
reliability. Figure 5 depicts the process of interrelating data for VQSR
and the resulting VQSLOD scores of variant calls. While interrelating
data from different template generation methods may be optimal, we
also obtained good performance by following similar processing logic
using only Arabidopsis WGS data. In this way, the RIG workflow
enables one of the greatest strengths of the GATK: the ability to put
variant calls in a probabilistic framework that allows users to define
where on the sensitivity and specificity spectrum the variants should
sit for their target downstream application.

Evaluation of recalibrated variants from the
RIG workflow
Although a formal evaluation of the accuracy of variant calling
pipelines remains unfeasible for nonsimulated sequence data (Li
2014), we estimated the performance of the workflow using both

sorghum and Arabidopsis sequence data. For the sorghum data, we
compared the variants called from sorghum WGS data via the RIG
workflow to (i) a collection of reliable variants that were not used to
train the VQSR models and (ii) a previously published sorghum var-
iant calling analysis. We then used the sorghum WGS variants to
recalibrate reduced representation data, and used the recalibrated var-
iants for a genome-wide association study. Lastly, we further validated
the performance of the RIG workflow using publicly available Sanger
sequence and WGS data from Arabidopsis.

Evaluation of recalibrated sorghum variants: First, we examined the
overlap between the recalibrated sorghum WGS variants and
a collection of reliable variants that were not used to train the VQSR
models. This collection of reliable variants, hereafter referred to as the
Independent-Family (IF) set, originated from a biparental cross
genotyped using a reduced representation method; the IF set was
obtained in a similar manner to the Family Reference Variant
Resource that was used for training during VQSR, and the IF set
represented a set of highly specific, genetically mappable variants (see
the section Materials and Methods). Of the 10,737 SNPs and 3740
indels in the IF set, 10,557 SNPs and 3632 indels had also been called
from the 49 WGS samples (of which 2 samples represented the
parents of the biparental cross). The IF variants present in the recali-
brated WGS variants had median VQSLOD scores of 8.22 and 5.29
for SNPs and indels, respectively, suggesting that the trained Gaussian
mixture models correctly assigned true variants with highly positive
VQSLOD scores (Figure S1, Table S1, and Table S2). Furthermore, the
proportion of IF set variants that were also contained in the 95% and
75% tranches correspond to their respective tranche cutoffs, indicating
that the tranche cutoffs were functioning as expected. Since tranche
cutoffs represent the VQSLOD score over which a certain proportion
of variants from the designated VQSR truth set will be retained, we
expected the proportion of IF variants present in each tranche to
approximate the tranche cutoff. As expected, proportions of the IF
set retained in each tranche were similar to the tranche cutoff. For
example, the 95% SNP tranche retained 97% of the SNPs in the IF set,
and the 95% indel tranche retained 94% of the indels in the IF set
(Table S2). These results indicate that the Gaussian mixture models
for the WGS data were adequately trained and that the tranche cutoffs
were functioning as expected.

Second, we compared the recalibrated sorghum WGS variants to
a previously published sorghum variant calling analysis. The previous
study from Mace et al. (2013) called SNPs and indels from 47 sor-
ghum WGS samples; the SNP calls were recently made available as
part of Gramene build 42 (accessed September 2014), hereafter re-
ferred to as the Gramene42-Mace2013 set (Monaco et al. 2014). After
excluding noncomparable variants from the calls produced by the RIG
workflow (i.e., indels, SNPs on super contigs, and variants not found
in the 47 samples), we obtained a Raw set comprised of 18,160,612
SNPs. We constructed an additional two sets from this Raw set for
comparison: the Sensitive set, derived from the 95% tranche and
comprised of 8,071,250 SNPs, and the Specific set, derived from the
75% tranche and comprised of 3,353,064 SNPs. Of the 6,450,628 SNPs
in Gramene42-Mace2013 set, 5,002,099 were present in the Raw set. It
is difficult to conclusively attribute the 1,448,529 SNP difference to
any specific factors, and high discordance between different variant
callers is not uncommon (O’Rawe et al. 2013); we note that Mace et al.
(2013) did not perform BQSR nor realignment around indels prior to
calling SNPs, and they also used a different SNP calling algorithm.
The overlapping 5,002,099 SNPs were used to compare the distribu-
tion of VQSLOD scores between the four sets (Figure 6). Because the
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VQSLOD score of all of the SNPs in the comparison were assigned
under the same Gaussian mixture model and because the model was
adequately trained as shown by the IF validation, comparisons of the
relative sensitivity and specificity between the sets can be made. Given
two sets of variants with similar VQSLOD distributions, the larger of
the two sets contains more variants that are as likely to be true
positives than the smaller set and is thus more sensitive. Furthermore,
given two sets of variants where the VQSLOD distribution of one set
contains a greater proportion of high VQSLOD score variants, the set
with the greater proportion of high VQSLOD score variants contains
variants that are more likely to be true positives and is thus more
specific. As such, we find that the Raw set is the most sensitive but
least specific; correspondingly, the Specific set is the most specific but
least sensitive (Figure 6). The Sensitive set produced by the RIG work-
flow shows a dramatic improvement over the Gramene42-Mace2013 set
in that it contains 1,620,622 more SNPs than the Gramene42-Mace2013
set while the median VQSLOD score remains similar with fewer neg-
ative VQSLOD scores, suggesting that the RIG workflow enabled greatly
increased sensitivity without a corresponding loss in specificity.

As a final validation of the workflow with sorghum variants, we
used a set of variants from reduced representation sequence data that
had been recalibrated with WGS data to reproduce genome wide
association results from the sorghum literature. There were 171

individuals contained within our reduced representation samples that
had also previously been phenotyped as part of a sorghum association
panel (Brown et al. 2008). After recalibrating the reduced representa-
tion data with the WGS data, we used the genotypes for these 171
individuals and phenotypes from Brown et al. (2008) to calculate
genome wide associations (Figure S2 and Table S3) and reproduced
known sorghum height QTL (Morris et al. 2013; Higgins et al. 2014).
As such, the recalibrated reduced representation variants produced by
the RIG workflow are useful for common downstream analyses, and
these analyses are readily executable due to the GATK’s use of stan-
dard file formats.

Evaluation of recalibrated Arabidopsis variants: Some organisms
may not have sufficient data available from different template
preparation methods to execute the RIG workflow as we did for
sorghum. As such, we validated the performance of the RIG workflow
using only WGS data as both the source of reliable variants and the
analysis target. Efficacy of RIG was determined by comparing the
variant calls produced by RIG from publicly available Arabidopsis
WGS data against a collection of known variants from Sanger se-
quence data and variants present in the Gramene database (build
43; accessed January 2015) (Nordborg et al. 2005; Cao et al. 2011;
Schmitz et al. 2013; Monaco et al. 2014).

Figure 5 Interrelation of different genomic sequence data sources using the RIG workflow. (A) Schematic of how variants from reduced
representation sequence (RR) data present in whole-genome sequence (WGS) data can be used to VQSR the WGS raw variants and assign
VQSLOD scores to those variants. (B2D) Visualization of the genomic region of Sb07g003860, a gene involved in sorghum midrib coloration
(Bout and Vermerris 2003). (B) the Sbi1.4 gene annotation; (C) shows the assigned VQSLOD scores for variants called in the region from WGS
data; (D) shows the depth of coverage and mapped sequence reads for reduced representation and WGS data, respectively, for one sorghum line
(BTx642). The RIG workflow enables variants called in the reduced representation sequence data to be used to inform and recalibrate the WGS
analyses, and vice versa. This puts all of the variant calls into the GATK’s probabilistic framework whereby variants can be filtered based on their
reliability. Users interested in more sensitive or specific call sets can choose more inclusive or exclusive tranches, respectively, by changing the
cutoff indicated by the blue dotted line in Panel C. The common and standardized file formats emitted by the GATK enable downstream
interoperability between analysis and visualization tools, such as the Integrative Genomics Viewer that produced (B) and (D) (Thorvaldsdóttir
et al. 2012). RIG, Recalibration and Interrelation of genomic sequence data with the GATK; VQSR, Variant Quality Score Recalibration; VQSLOD,
logarithm of odds ratio that a variant is real vs. not under the trained Gaussian mixture model; GATK, Genome Analysis Toolkit.
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The comparison used variant calls from 419 genomic intervals
spanning 200,887 bp (containing at least 2,850 SNP and 375 indels)
for 18 Arabidopsis accessions. Variants from the Sanger sequence data
not present in the RIG variants were considered false negatives, and
RIG variants not present in either the Sanger data or the Gramene
build 43 set were considered false positives; these values were used to
estimate sensitivity and positive predictive value of multiple tranches
produced with RIG from Arabidopsis WGS data (Table 1 and Table
S4). This yielded a conservative estimate of RIG variant calls whereby
95% sensitivity and 99% positive predictive value are achieved in one
tranche with the RIG workflow (the 99.0% tranche in this case). As
shown in the sorghum data, larger percentage tranches are more
sensitive but less specific; smaller percentage tranches are less sensitive
but more specific. The optimal choice of tranche will, again, depend
on the downstream application for which the variant set will be used.
We note that the sensitivity does not correspond with the tranche
cutoffs as well as they did in the sorghum validation; this may be
a result of the low sensitivity of the Sanger variants due to manual
removal of variant calls by Nordborg et al. (2005) during data cura-
tion. Ultimately, this Arabidopsis validation in combination with the
sorghum validation demonstrates that the RIG workflow can produce
accurate call sets from a variety of genomic data sources.

DISCUSSION
The GATK has been shown to outperform other variant calling
methods in benchmarking studies, and the RIG workflow enables the
analysis benefits afforded by the GATK to research communities
lacking validated variant resources (Liu et al. 2013; Pirooznia et al.
2014). RIG also provides access to features absent in current reduced
representation sequence data analysis platforms. Two popular reduced
representation sequence data analysis solutions, TASSEL and Stacks,
are highly specialized for their respective data sources (GBS and RAD-
seq, respectively), and they perform well in their target domains;

however, they lack features that readily allow the interrelation of
WGS with reduced representation sequence data, as well as the ability
to accurately call indels (Catchen et al. 2011; Glaubitz et al. 2014). RIG
provides a means to access both of these features, as well as benefit
from accuracy gains from BQSR, joint genotyping, and VQSR. For
organisms with a reference genome, the RIG workflow stands as a use-
ful analysis alternative applicable to both reduced representation and
WGS data, and RIG is also readily applicable to exome and RNA-seq
data due to the GATK’s flexibility. However, because the GATK,
and by extension, RIG, cannot operate without a reference genome,

Figure 6 Comparison of VQSLOD
score distributions for RIG-produced
variant sets and a variant set from
a previous study. VQSLOD (log of
odds that a variant is real vs. not
under the trained Gaussian mixture
model) scores were calculated dur-
ing VQSR of SNPs found in whole-
genome sequence data using a
Gaussian mixture model trained
using SNPs originally found in re-
duced representation sequence
data. For the 5,002,099 SNPs
from Gramene42-Mace2013 that
had been assigned VQSLOD
scores in the Raw set produced
by the RIG workflow, the me-
dian VQSLOD score is similar
to the median of the 8,071,250
SNPs in the Sensitive set. The
Sensitive set contains 1,620,622
more SNPs than the 6,450,628
SNPs in Gramene42-Mace2013,
suggesting that the RIG-enabled
VQSR allowed for a considerably
more sensitive call set without

a corresponding loss in specificity. VQSLOD, logarithm of odds ratio that a variant is real vs. not under the trained Gaussian mixture model; RIG,
Recalibration and Interrelation of genomic sequence data with the GATK; VQSR, Variant Quality Score Recalibration; SNP, single-nucleotide
polymorphism.

n Table 1 Performance of tranches from Arabidopsis WGS
sequence data

Tranche, % Sensitivity, % Positive Predictive Value, %

100.0 99.9 93.7
99.9 99.3 95.4
99.0 94.9 99.2
97.5 92.0 99.3
95.0 89.3 99.4
75.0 54.3 99.6

Sensitivity and positive predictive value of multiple tranches of recalibrated
variants from Arabidopsis WGS data were calculated using variants found in
Sanger sequence data from Nordborg et al. (2005) for sensitivity; variants found
in both the Sanger sequence data and in Gramene (build 43) were used to
estimate positive predictive value (Table S4). For simplicity, the tranche percent-
age corresponds to both the SNP and the indel tranche. We note that these
values are not generally applicable to other RIG analyses and these should not
be taken as representative of how tranches in other analyses will behave;
tranches should be chosen based on the reliability of the variants designated
as truth for VQSR. WGS, whole-genome sequencing; SNP, single-nucleotide
polymorphism; RIG, Recalibration and Interrelation of genomic sequence
data with the GATK; VQSLOD, logarithm of odds ratio that a variant is real
vs. not under the trained Gaussian mixture model; VQSR, Variant Quality
Score Recalibration.
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software like TASSEL and Stacks will continue to fill important anal-
ysis roles, although this may change if software like dDocent, which
allows users to take advantage of some of the GATK’s benefits even in
the absence of a complete reference genome, gain adoption (Puritz
et al. 2014). Ultimately, RIG was developed in the context of a genetics
lab seeking accurate variant calls from multiple sequence data sources
for agriculturally important organisms with a reference genome, and
we expect it will be beneficial to those with similar use cases.

The RIG workflow requires that the shared variants are comprised
of 10,000 SNPs and 10,000 indels for VQSR; however, the GATK
developers have successfully used considerably fewer to good effect
(Depristo et al. 2011). We chose 10,000 for both SNPs and indels as
the requirement because we have obtained useful results using these
values; the values are not a hard rule. As such, the user can construct
their own values by evaluating the VQSR and BQSR reports produced
by the GATK to determine whether (i) the Gaussian mixture models
were adequately trained to distinguish between variants of differing
reliability, and (ii) whether the empirically determined base quality
score recalibrations appear reasonable for the sequencing platform.

In cases in which sequence data from different template prepara-
tion methods are not available, it will not be possible to identify shared
variants from orthogonal approaches as we did with sorghum
sequence data. We ensured the variants designated as truth for VQSR
originated from an analysis target produced by a different method
(e.g., variants found in reduced representation data were used for
VQSR of a WGS analysis target). This enforced that variants used
in VQSR were found in two independent template preparation meth-
ods to approximate variants found using orthogonal methods. Since
such genomic resources may not always be available, we also evaluated
performance of a use case where only WGS data were available, and
we showed that high levels of sensitivity and positive predictive value
can be achieved using only WGS data. In cases in which the analysis
target is the only source of variants, we and other GATK users have
had some success by taking the analysis target through the naive
pipeline, hard filtering to generate a temporary sensitive variant re-
source, and using that temporary sensitive variant resource to BQSR
the analysis target. This procedure is iteratively repeated until the
BQSR results from the current and preceding iteration converge,
and then a specific variant resource is generated by stringently hard
filtering to use as a bootstrapped variant resource in VQSR. This
ultimately skews VQSR based on the annotations used to hard filter
the variants during bootstrapping, but communities lacking sufficient
data sources may find this procedure to be an acceptable alternative.

The RIG workflow enables research communities to use the GATK
(i) to interrelate different sequencing template preparation methods
such as reduced representation and WGS into common, standardized
file formats; (ii) accurately call genetic variants from genomic
sequence data; and (iii) to iteratively refine variant resources. The
RIG workflow will contribute to progress in construction of more
complete catalogs of genetic variation, and the ability to readily
interrelate variants from different sequence data sources using the
GATK will increase the rate at which variants associated with
a phenotype lead to the identification of the genetic variation that
causes the phenotype.
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