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This study involved developing a computer-aided diagnosis (CAD) system for discriminating the grades of breast cancer tumors
in ultrasound (US) images. Histological tumor grades of breast cancer lesions are standard prognostic indicators. Tumor grade
information enables physicians to determine appropriate treatments for their patients. US imaging is a noninvasive approach
to breast cancer examination. In this study, 148 3-dimensional US images of malignant breast tumors were obtained. Textural,
morphological, ellipsoid fitting, and posterior acoustic features were quantified to characterize the tumor masses. A support vector
machine was developed to classify breast tumor grades as either low or high. The proposed CAD system achieved an accuracy of
85.14% (126/148), a sensitivity of 79.31% (23/29), a specificity of 86.55% (103/119), and an A

𝑍
of 0.7940.

1. Introduction

Breast cancer is a leading cause of death in womenworldwide
[1].Thehistological grade of a breast cancer tumor is regarded
as a crucial prognostic indicator [2]. Rapid and accurate
assessment of tumor grades is crucial for enabling a physician
to determine the appropriate treatment options for patients.
Previous studies have reported ultrasound (US) imaging to
be an effective supplement to mammography in screening
for breast cancer [3–5]. This study involved developing a
computer-aided diagnosis (CAD) [6] system for assessing the
tumor grades of breast cancer according to US images.

A histological tumor grade is ameasure of the differentia-
tion between cancerous andnormal cells [2].TheNottingham
system [7] categorizes breast cancer into 3 grades. In general,
cancer of lower grades tends to be less aggressive than cancer
of higher grades.The grade of a tumor is typically determined
through a morphological assessment of biopsied tissue and
cells performed by pathologists using a microscope. The
grading process is invasive and time consuming and can
be subjective. Assessing the grades of breast cancer tumors
online by using noninvasive approaches is more desirable.

Research has indicated that tumor grades are correlated
with sonographic characteristics. Lamb et al. [8] observed
that high-grade tumors exhibited posterior enhancement and
well-defined margins. Kim et al. [9] demonstrated that paral-
lel orientation and echo patterns were correlated with tumor
grades and certain biological markers in breast cancer. Aho
et al. [10] indicated that infiltrating ductal carcinoma tumors
that exhibited posterior shadowing in US images were likely
to be low-grade ones. Wojcinski et al. [11] evaluated the
interrelationship between tumor grades and BI-RADS [12]
features and determined that high-grade tumors were asso-
ciated with strong posterior acoustic enhancement and weak
shadowing. Chang et al. [13] quantified stellate features by
using US images and observed that masses of breast cancer
associated with stellate features tended to be low-grade
tumors. Another study revealed that the presence of posterior
enhancement in US images was correlated with an increased
likelihood of the tumor being of a high grade [14].

In this study, a CAD system was developed to determine
the tumor grades of the breast cancer masses captured in 3-
dimensional (3D) US images. The specific objectives were to
(1) quantify features of breast cancer lesions in US images, (2)
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Figure 1: The sonographic A-view, B-view, and C-view images and a segmented volumetric tumor mass.

identify a set of US image features that significantly correlate
with tumor grades, and (3) develop a model that can be
applied to distinguish between high-grade and low-grade
tumors. In this study, volumetric US breast images were col-
lected. The tumor lesions were segmented, and the features
of these tumor masses were quantified. A support vector
machine (SVM) classifier was developed to distinguish tumor
grades, and a genetic algorithm (GA) was used for feature
selection and model parameter optimization.

2. Materials and Methods

2.1. Volumetric Ultrasound Image Acquisition. The breast US
images used in this study were samples of diagnostic cases
obtained during routine clinical care at Changhua Christian
Hospital (Changhua, Taiwan). A total of 148 cases were exa-
mined. The images were acquired using a US scanner (Volu-
son 730; GE Healthcare, Zipf, Austria) equipped with a 5.6–
18MHz volume transducer (RSP6-16; GE Healthcare, Zipf,
Austria).The images were quantized into 256 gray levels, and
the mean voxel resolution was 0.2mm on each side. Regard-
ing patients that exhibited multiple tumor masses, only ima-
ges of the largest lesions were included in the study.The lesion
sizes ranged from 0.134 to 24.061 cm3 (median: 2.669 cm3).
The grades of the tumors were identified based on patholog-
ical diagnoses, which involved biopsy methods and the Not-
tingham grading system. The numbers of grade I, II, and III
tumors were 25, 94, and 29, respectively. In this study, grades
I and II were defined as low-grade, whereas grade III was
considered as high grade.The images were collected between
June 2007 and August 2009. The ages of the patients ranged
from 24 to 87 years (median: 49 years). The ethics committee
of the hospital approved the study. No patient identifications
were disclosed to avoid diagnosis bias and ensure patient
privacy.

2.2. Tumor Segmentation. Segmentation was performed to
extract the tumor lesions in the US images.The tumormasses
were segmented semiautomatically by using ITK-SNAP [15],

which performed active contouring based on a level set algo-
rithm [16–19]. During the segmentation process, the opera-
tors identified the lesions in the US images and placed seeds
(i.e., starting points) at appropriate locations inside the tumor
masses. The seeds expanded until they reached the tumor
boundaries. Appropriate control parameters were set to
ensure that optimal segmentation results were attained [15].
Compared with manual methods, semiautomatic segmenta-
tion is more consistent and less laborious when accurate con-
tours must be sketched. Semiautomatic segmentation is par-
ticularly suitable for use with 3D US images. Figure 1 shows a
segmented volumetric tumor mass. Experienced radiologists
verified the segmentation results.

2.3. Feature Quantification. Features were quantified to des-
cribe the characteristics of the tumors.The features were cate-
gorized into 4 types: textural, morphological, ellipsoid fitting,
and posterior acoustic. The textural features represent the
spatial correlations in gray level among the voxels of a tumor
mass. The textural features were calculated using a gray
level cooccurrencematrix (GLCM) [20]. During this process,
the gray level of the US image subjected to analysis was
reduced from 256 to 16. The frequencies of the gray level
differences between 2 adjacent voxels in the image were then
cumulated to form the GLCM P

𝑑
∈ R16×16, where 𝑑 ∈

R3 is the displacement vector that represents the geometric
relationship between the 2 adjacent voxels [21]. Six textural
features, namely, the angular second moment 𝑇ASM, contrast
𝑇Con, inverse difference moment 𝑇

𝐼
, entropy 𝑇

𝐸
, dissimilarity

𝑇
𝐷
, and correlation 𝑇Cor [20, 22], were then calculated using

P
𝑑
. In this study, 4 displacement vectors 𝑑 were considered:
(1, 1, 1), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Thus, 24 textural
features were quantified.

Morphological features [23, 24] describe the superficial
regularity of the tumor masses. Six morphological features
were included in this study. Volume𝑀

𝑉
(unit: mm3) and sur-

face area𝑀
𝐴
(unit: mm2) described the basic structural cha-

racteristics of a tumor mass. Classical compactness𝑀Cc was
used to measure the degree of similarity between a tumor
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Figure 2: A tumor mass (gray) and its optimally fitted ellipsoid
(red).

mass and its optimally fitted sphere, whereas discrete com-
pactness 𝑀Cd was used to evaluate the degree of similarity
between a tumor mass and its optimally fitted cube [24, 25].
The mean radius 𝑀

𝑅𝑚
and standard deviation of radius

𝑀
𝑅std characterized the size and surface irregularity of tumor

masses.
Ellipsoid fitting features [24] depict the degree of simi-

larity between a tumor mass and its optimally fitted ellipsoid
(Figure 2). The optimally fitted ellipsoid can be regarded as
the baseline against which the degree of shape irregularity of
a tumor mass can be measured. Nine ellipsoid fitting features
were quantified: axis ratio 𝐸

𝐴
, surface ratio 𝐸

𝑆
, volume cov-

ering ratio 𝐸
𝑉
, number of regions outside the ellipsoid 𝐸

𝑅𝑂
,

number of regions inside the ellipsoid 𝐸
𝑅𝐼
, number of total

regions 𝐸
𝑅
, number of regions with angularity outside the

ellipsoid 𝐸
𝑅𝑂𝑎

, number of regions with angularity inside the
ellipsoid 𝐸

𝑅𝐼𝑎
, and number of total regions with angularity

𝐸
𝑅𝑎
. The parameter 𝐸

𝑉
was defined as the ratio of the volume

of the intersection between the tumor and the ellipsoid vol-
ume to the tumor volume; 𝐸

𝑅
is the sum of 𝐸

𝑅𝑂
and 𝐸

𝑅𝐼
; and

𝐸
𝑅𝑎

is the sum of 𝐸
𝑅𝑂𝑎

and 𝐸
𝑅𝐼𝑎

.
Posterior acoustic features [26–28] are characterized by

the discrepancy in the gray levels of a voxel between a tumor
mass and its corresponding posterior region (the region
beneath the tumor in the A-view image in Figure 3). When
acoustic enhancement occurs, the gray level of the posterior
region is greater than the gray level of the lesion in ultrasound
images [29]. Five posterior acoustic features were defined: the
standard deviation of the gray levels in the posterior region
𝑃std, the ratio of the mean gray level in the posterior region
to that in the tumor region 𝑃

𝑅𝑚
, the ratio of the gray level

standard deviation in the posterior region to that in the tumor
region 𝑃

𝑅std, the difference between the gray level means
of the posterior and tumor regions 𝑃

𝑆𝑚
, and the difference

between the gray level standard deviations of the posterior
and tumor regions 𝑃

𝑆std. In this study, the section area (C-
view image in Figure 3) of the posterior region was defined as

A-view
C-view

Figure 3: Sonographic A-view and C-view images of a tumor mass
and its posterior region. The posterior region is the area under the
tumor in the A-view image. The C-view image shows the section
contour of the tumor lesion (external curve) and the section contour
of the posterior regions (internal curve).The blue line in the C-view
image indicates the plane of the A-view image. The green line in the
A-view image indicates the plane of the C-view image.

two-thirds of themaximum tumormass section area to avoid
the edge-shadowing effect [26, 28]. The section area of the
posterior region was derived using distance transform [30].
The height of the posterior region was defined as the tumor
mass height and could not exceed 100 voxels [28].

2.4. Tumor Grade Classification and Attribute Selection. Soft-
margin SVM classifiers with radial basis function kernels
were developed to differentiate between high-grade and
low-grade tumors. Because the dataset used in this study
was unbalanced (119 low-grade tumors and 29 high-grade
tumors), the soft-margin parameter ratio was set as the recip-
rocal of the tumor number ratio between the 2 grades [31].
The classifiers were developed using LIBSVM [32]. During
the model development process, a GA was applied to identify
an optimal set of features as the model inputs and to deter-
mine the soft-margin and kernel parameters for the model
[33]. Feature selection is crucial for the performance of CAD
systems. Including inappropriate attributes can result in an
overfitted model [34] and can therefore reduce the system
performance. In this study, the fitness function [33] of the
GA was set as a linear combination of the product of the
model sensitivity and specificity (with a weight of 0.8) and the
reciprocal of the number of selected features (with a weight
of 0.2). The calculation was performed using MATLAB
(MathWorks, Inc.).

2.5. Performance Assessment. Receiver operating characteris-
tic analysis was applied to measure the performance levels of
the CAD systems by using tenfold cross validation (CV). Six
indices were calculated: the area under the curve (𝐴

𝑍
), accu-

racy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) [35–37]. The sensitivity
and the specificity were defined as the percentages of actual
high-grade and low-grade tumors, respectively, that were
correctly classified.The PPV and theNPVwere defined as the
percentages of predicted high-grade and low-grade tumors,
respectively, that were correctly classified.
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Table 1: Values of the features of low- and high-grade tumors.

Features Low-grade High-grade
𝑃 value

Mean ± SD Median Mean ± SD Median
Textural
𝑇
𝐴(1,1,1) 0.025 0.026 0.201
𝑇Con(1,1,1) 3.227 ± 0.696 3.260 ± 0.686 0.815
𝑇
𝐼(1,1,1) 0.482 0.485 0.927
𝑇
𝐸(1,1,1) 3.936 ± 0.206 3.911 ± 0.149 0.542
𝑇
𝐷(1,1,1) 1.360 ± 0.170 1.372 ± 0.147 0.715
𝑇Cor(1,1,1) 0.623 ± 0.088 0.590 ± 0.078 0.069
𝑇
𝐴(1,0,0) 0.031 0.033 0.218
𝑇Con(1,0,0) 1.874 ± 0.433 1.864 ± 0.354 0.914
𝑇
𝐼(1,0,0) 0.583 ± 0.043 0.580 ± 0.032 0.747
𝑇
𝐸(1,0,0) 3.727 ± 0.203 3.706 ± 0.151 0.608
𝑇
𝐷(1,0,0) 1.002 ± 0.138 1.005 ± 0.108 0.900
𝑇Cor(1,0,0) 0.783 ± 0.057 0.770 ± 0.041 0.233
𝑇A(0,1,0) 0.026 0.027 0.214
𝑇Con(0,1,0) 2.925 ± 0.631 2.959 ± 0.549 0.795
𝑇
𝐼(0,1,0) 0.507 ± 0.044 0.501 ± 0.026 0.504
𝑇
𝐸(0,1,0) 3.905 ± 0.206 3.887 ± 0.146 0.647
𝑇
𝐷(0,1,0) 1.291 ± 0.163 1.305 ± 0.119 0.658
𝑇Cor(0,1,0) 0.661 ± 0.082 0.631 ± 0.060 0.072
𝑇
𝐴(0,0,1) 0.040 0.043 0.496
𝑇Con(0,0,1) 1.104 ± 0.271 1.134 ± 0.220 0.583
𝑇
𝐼(0,0,1) 0.669 ± 0.039 0.661 ± 0.029 0.331
𝑇
𝐸(0,0,1) 3.493 ± 0.198 3.489 ± 0.144 0.916
𝑇
𝐷(0,0,1) 0.736 ± 0.109 0.754 ± 0.084 0.413
𝑇Cor(0,0,1) 0.873 ± 0.034 0.860 ± 0.030 0.061

Morphological
𝑀
𝑉

2.596 × 10
3

2.904 × 10
3 0.824

𝑀
𝐴

1.268 × 10
3

1.419 × 10
3 0.783

𝑀
𝑅𝑚

9.259 ± 2.919 9.691 ± 3.774 0.502
𝑀
𝑅std 1.533 1.896 0.599
𝑀Cc 0.377 ± 0.101 0.373 ± 0.111 0.868
𝑀Cd 0.998 ± 0.002 0.998 ± 0.003 0.111

Ellipsoid fitting
𝐸
𝐴

1.622 1.757 0.521
𝐸
𝑆

1.238 ± 0.089 1.225 ± 0.114 0.503
𝐸
𝑉

0.910 ± 0.015 0.913 ± 0.018 0.427
𝐸
𝑅𝑂

15 18 0.082
𝐸
𝑅𝐼

7 10 0.055
𝐸
𝑅

23 30 0.047
𝐸
𝑅𝑂𝑎

4 4 0.642
𝐸
𝑅𝐼𝑎

1 1 0.842
𝐸
𝑅𝑎

5 5 0.595
Posterior acoustic
𝑃std 33.459 ± 6.517 34.870 ± 7.021 0.305
𝑃
𝑅std 1.438 ± 0.318 1.570 ± 0.408 0.061
𝑃
𝑆std 9.841 ± 6.939 12.173 ± 8.391 0.122
𝑃
𝑆𝑚

32.666 ± 26.935 42.986 ± 34.495 0.083
𝑃
𝑅𝑚

1.802 ± 0.780 2.035 ± 0.851 0.158
The mean value, standard deviation (SD), median value, and 𝑃 value of 𝑡-test or Mann-Whitney 𝑈 test of each feature. Student’s 𝑡-test was applied if a feature
is normally distributed; otherwise, Mann-Whitney𝑈 test was applied. The Kolmogorov-Smirnov test was applied to normality test.
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Table 2: Performance of the proposed CAD system when different feature sets were used.

Feature type
Selected All Morphological Ellipsoid fitting Textural Posterior acoustic

Accuracy 85.14% 77.03% 66.89% 70.95% 66.22% 78.38%
Sensitivity 79.31% 62.07% 37.93% 41.38% 72.41% 48.28%
Specificity 86.55% 80.67% 73.95% 78.15% 64.71% 85.71%
PPV 58.97% 43.90% 26.19% 31.58% 33.33% 45.16%
NPV 94.50% 89.72% 83.02% 84.55% 90.59% 87.18%
Az 0.7940 0.6953 0.4490 0.5575 0.7068 0.6647
Accuracy = (TP + TN)/(TP + TN + FP + FN); sensitivity = TP/(TP + FN); specificity = TN/(TN + FP); PPV = TP/(TP + FP); NPV = TN/(TN + FN), where
TP is true positive (the number of high-grade tumors classified correctly); FN is false negative (the number of high-grade tumors classified incorrectly); FP is
false positive (the number of low-grade tumors classified incorrectly); TN is true negative (the number of low-grade tumors classified correctly).

3. Results and Discussion

3.1. Feature Analysis. A total of 44 features were collected.
Table 1 lists the mean values, median values, and standard
deviations of the features concerning the low-grade and high-
grade tumor lesions. Regarding the textural features, the
numbers in the parentheses denote the associated displace-
ment vectors. Student’s 𝑡-test and the Mann-Whitney 𝑈 test
were applied to evaluate the differences in feature values bet-
ween the tumors of different grades. The tests indicated that
the 𝐸

𝑅
values differed significantly between the low-grade

and the high-grade tumors (𝑃 < 0.05). The 𝑃 values of some
features were marginal (e.g., 𝑇Cor(1,1,1), 𝑇Cor(0,0,1), 𝐸𝑅𝐼, 𝑃𝑅std,
and 𝑃

𝑆𝑚
).

3.2. Selected Features. Fourteen features were selected using
the proposed GA-based approach:𝑇

𝐴(1,1,1)
,𝑇Con(1,1,1),𝑇𝐼(1,1,1),

𝑇Cor(1,1,1), 𝑇Cor(1,0,0), 𝑇𝐴(0,1,0), 𝑀𝑉, 𝑀Cd, 𝑀𝑅𝑚, 𝐸𝑆, 𝐸𝑅, 𝐸𝑅𝑂𝑎,
𝑃
𝑆𝑚
, and 𝑃

𝑅𝑚
. The selected feature set contained 6 of the 24

textural features, 3 of the 6 morphological features, 3 of the 9
ellipsoid fitting features, and 2 of the 5 posterior acoustic fea-
tures, indicating that an appropriate combination of feature
types might improve the performance of the CAD system.

3.3.Model Performance Evaluation. SVMmodels were devel-
oped using the selected features, all of the available features,
all of the morphological features, all of the ellipsoid fitting
features, all of the textural features, or all of the posterior
acoustic features, separately. During the model development
process, the GA was implemented to optimize the model
parameters. Table 2 shows the CV classification performance
results of the 6 models. The model that was developed using
the selected features outperformed the other models. Prac-
tically, high-grade tumors are more severe. Misdiagnosing a
high-grade tumor as a low-grade tumormay increase the risk
of harm and should be avoided.Therefore, the sensitivity and
the NPV are 2 critical indices for evaluating the performance
of CAD systems. The model that was developed using the
selected features attained reasonable sensitivity (79.31%) and
a high NPV (94.50%). The model developed using all of
the features was inferior to the model developed using the
selected features, possibly because of overfitting (including
too many trivial explanatory variables in the model).

4. Conclusion

This study proposed a CAD system for discriminating the
tumor grades of breast cancer in US images.The effectiveness
of the proposed system was verified based on clinical data.
The textural, morphological, ellipsoid fitting, and posterior
acoustic features of the tumors were quantified using the
US images. An SVM classifier was developed using a GA to
facilitate feature selection andmodel parameter optimization.
An optimal set comprising 14 features (out of 44 total fea-
tures) was determined.The proposed CAD system effectively
distinguished between high-grade and low-grade tumors
at an accuracy of 85.14% (126/148), a sensitivity of 79.31%
(23/29), a specificity of 86.55% (103/119), and an𝐴

𝑍
of 0.7940.

Additional features, such as the angle of the long axis of the
fitted ellipsoid or the abrupt interface between tumor and
normal tissue, can be included in future research to further
improve the CAD system.
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