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ABSTRACT Effective tuberculosis treatment requires at least 6 months of combina-
tion therapy. Alterations in the physiological state of the bacterium during infection
are thought to reduce drug efficacy and prolong the necessary treatment period,
but the nature of these adaptations remain incompletely defined. To identify specific
bacterial functions that limit drug effects during infection, we employed a compre-
hensive genetic screening approach to identify mutants with altered susceptibility to
the first-line antibiotics in the mouse model. We identified many mutations that in-
crease the rate of bacterial clearance, suggesting new strategies for accelerating
therapy. In addition, the drug-specific effects of these mutations suggested that dif-
ferent antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be
limited by cellular permeability, whereas isoniazid is preferentially affected by repli-
cation rate. Many mutations that altered bacterial clearance in the mouse model did
not have an obvious effect on drug susceptibility using in vitro assays, indicating
that these chemical-genetic interactions tend to be specific to the in vivo environ-
ment. This observation suggested that a wide variety of natural genetic variants
could influence drug efficacy in vivo without altering behavior in standard drug-
susceptibility tests. Indeed, mutations in a number of the genes identified in our
study are enriched in drug-resistant clinical isolates, identifying genetic variants that
may influence treatment outcome. Together, these observations suggest new ave-
nues for improving therapy, as well as the mechanisms of genetic adaptations that
limit it.

IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibi-
otic treatment is necessary to rationally devise more effective tuberculosis (TB) che-
motherapy regimens. Using genome-wide mutant fitness profiling and the mouse
model of TB, we identified genes that alter antibiotic efficacy specifically in the in-
fection environment and associated several of these genes with natural genetic vari-
ants found in drug-resistant clinical isolates. These data suggest strategies for syner-
gistic therapies that accelerate bacterial clearance, and they identify mechanisms of
adaptation to drug exposure that could influence treatment outcome.

KEYWORDS antibiotic treatment, host-microbe interactions, microbial genomics,
Mycobacterium tuberculosis

The current regimen for tuberculosis (TB) chemotherapy was developed through a
series of large clinical trials in the early 1970s (1). The resulting “short-course

regimen” consists of four drugs, isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and
ethambutol (EMB) (2). Combining these agents reduced the duration of treatment from
12 to 18 months to as little as 6 months (3). The wide-scale application of this regimen
is generally considered a public health success and is estimated to have cured over 50
million patients in the last 2 decades (4). Despite this success, delivering the extended
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therapy necessary to prevent recurrent disease is difficult in many settings and TB
remains a leading cause of infectious death worldwide (4). The rational design of more
rapid and effective therapies would be facilitated by understanding the mechanisms
that limit the efficacy of our current drugs.

It has been clear since the first animal treatment studies that the requirement for
prolonged therapy correlates with the relatively slow killing of Mycobacterium tuber-
culosis in the host (5, 6). Both INH and RIF are rapidly bactericidal in laboratory culture,
but these agents clear bacteria much more slowly from the lungs of infected animals
(7). While drug penetration into TB lesions can be limiting (8), suboptimal drug
exposure alone is unlikely to fully account for persistence of viable bacteria. In addition,
bacterial adaptations to the host environment have been proposed to limit drug
efficacy via a number of mechanisms. For example, the rate at which most antibiotics
kill is related to growth rate and metabolic activity of bacteria (9–11), and the relatively
slow replication of M. tuberculosis during infection correlates with reduced drug efficacy
(12). More specific adaptations to this environment, such as the induction of stress
responses (13), changes in cell wall permeability (14), and expression of efflux pumps
(15), have also been proposed to play an important role.

In addition to these inducible adaptations to the host environment, the widespread
application of TB chemotherapy has also selected for stable genetic variants that
promote bacterial survival. Most obviously, strains harboring high-level resistance
conferring mutations in drug targets or prodrug activators have become common (16).
The resulting “resistance” phenotype increases the MIC of the corresponding antibiotic.
Recent studies have shown that even small changes in MIC can negatively affect
treatment outcome (17). In addition, recent bacterial genome-wide association studies
(GWAS) have identified genetic variants that are associated with drug resistance but do
not directly affect MIC. Some of these mutations compensate for the fitness cost
imposed by primary resistance-conferring variants (18). In other cases, mutations may
promote prolonged bacterial survival in the presence of antibiotic (19), a phenotype
termed drug “tolerance.” While hundreds of drug resistance-associated variants have
been described (19–22), the vast majority have not been functionally characterized.

In order to more globally define bacterial pathways that alter drug efficacy during
infection, we designed a study to identify efficacy-altering mutations directly during
infection using transposon sequencing (TNseq) in an animal model of TB. TNseq
provides an unbiased approach to study conditional gene essentiality by comprehen-
sively comparing the effects of loss-of-function mutations in different environments.
Unlike previous studies that focused on individual mechanisms that broadly alter drug
efficacy in vitro (23–25), our unbiased study found that most efficacy-altering mutations
are antibiotic specific, are unrelated to growth rate, and alter the effect of antibiotics
only in the in vivo environment. A number of these efficacy-altering genes harbor
mutations that are associated with drug resistance in clinical M. tuberculosis isolates,
indicating that similar mechanisms may influence treatment outcome.

RESULTS
Selection of transposon mutant libraries in antibiotic-treated mice. A differen-

tial selection strategy was designed to identify bacterial mutants that alter the efficacy
of each of the first-line TB therapeutics, INH, EMB, RIF, and PZA. Mice were infected with
a complex transposon mutant library representing �50,000 independent insertion
events via the intravenous (i.v.) route. The infection was allowed to progress for 2 weeks
to establish the adaptive immune responses that accentuate drug tolerance (26). We
initially assessed bacterial survival in the spleen, since the representation of the entire
library could be maintained in each individual mouse at this site. Spleen infection is a
model of intracellular growth in the presence of adaptive immunity, a combination of
conditions that resembles many aspects of the primary pulmonary site of infection
(27–29). At the initiation of drug treatment, the bacterial population had expanded to
an average of 2 � 107 CFU/spleen. As expected, different antibiotics cleared the
bacteria at distinct rates (Fig. 1A). However, each drug, even the bacteriostatic agent,
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EMB, significantly reduced bacterial burden over 5 weeks of therapy. At this time point,
all drugs had reduced the bacterial burden by �100-fold, but relatively diverse libraries
could still be recovered. Similar rates of clearance were observed in the lung (see Fig. S1
in the supplemental material). Only in PZA-treated mice did we observe a decreased
rate of killing between 2.5 and 5 weeks, suggesting the possible expansion of resistant
clones.

To identify genes that alter bacterial fitness in this environment, we used TNseq to
quantify the relative abundance of each transposon mutant in libraries recovered
before infection; immediately before the initiation of therapy; from mice treated for 1,
2.5, or 5 weeks; or from untreated mice at the same time points (Fig. 1B). Surviving
bacteria were recovered from the spleen of each mouse by plating. Transposon-
chromosome junctions in chromosomal DNA were ligated to unique molecular iden-
tifiers (UMI), amplified, and sequenced (30). The relative abundance of each mutant in
a pool was estimated based on the number of corresponding UMI sequences. This
design allowed the independent quantification of mutant fitness under the pressures
imposed by the host and by the combined pressure of host immunity and antibiotic
therapy.

Identification of genes necessary for bacterial fitness in untreated animals.
Initially, TNseq libraries recovered from the untreated mice were analyzed to determine
the relative fitness of each mutant over the time course of our infection. Libraries
recovered at each time point were compared to the input libraries used for the
infection (Table S1). In total, 562 genes were found to be required for optimal fitness
in vivo by 49 days postinfection (Fig. 2A and Table S2). We observe up to 77% overlap
with genes previously reported to be required for replication in the mouse model using
similar approaches (Table S2) (27, 29, 31). These genes encode a wide variety of
functions previously verified to be necessary for replication in mice, including type VII
protein secretion (ESX1), cholesterol (Mce4) and fatty acid (Mce1) catabolism, and
siderophore transport (IrtAB, MmpL4/S4). The 231 novel genes identified in our study
likely reflect the longer period of infection and more accurate quantification that
resulted from the greater number of animals used.

FIG 1 Genetic strategy to identify mutations that alter susceptibility to antibiotic treatment in mice. (A) Spleen CFU from BALB/c mice
infected with transposon mutant library either untreated (black circles) or treated with indicated antibiotic. Treatment was started at
14 days postinfection. Mean and standard deviation from biological replicates are plotted (n � 2 to 7 per time point). (B) Diagram of TNseq
screen design. BALB/c mice were infected via intravenous route with 2 � 106 bacteria/mouse. At 14 days postinfection, pretreatment
libraries were collected, via plating, and treatment regimens were initiated. Time points were collected, via plating, from untreated and
treated mice at 21, 32, and 49 days postinfection. Comparison of transposon insertion abundances pre- and posttreatment identifies
mutants more susceptible (decrease in insertions) and less susceptible (increase in insertions).
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FIG 2 Genes required for optimal fitness in vivo. (A) Volcano plot of in vivo libraries compared to in vitro
input library at indicated time points (dpi, day postinfection). Q-value �0.05 is indicated by the dashed
line. Genes meeting significance (Q-value �0.05) are indicated by filled circles. (B) Heatmap of the relative
abundance of 562 genes significantly underrepresented in vivo at each time point. Genes are hierarchi-
cally clustered based on log2 fold change at individual time points. (C and D) TNseq phenotype of
genes/operons significantly underrepresented in vivo at each time point: biotin biosynthesis genes (C)
and mce4 operon (D). Significance (Q-value �0.05) is indicated by red symbols.
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The availability of time course data allowed the assessment of mutant fitness at
different stages of infection. The 2-week time point captures the early expansion of the
bacteria, before the onset of the adaptive response. The later time points reflect
additional pressures imposed by T cells that control bacterial replication. As expected,
we observed a progressive depletion of mutants over this time course (Fig. 2B), and
distinct sets of genes were found to be important in establishing infection or persisting
at later time points. For example, biotin biosynthetic mutants were dramatically un-
derrepresented at the earliest time points, reflecting their known inability to replicate
in vivo (32) (Fig. 2C). In contrast, Mce4 mutants were well represented at the early time
point but became progressively depleted from the pool, reflecting their specific deficit
in fitness upon onset of adaptive immunity (33) (Fig. 2D). These data validated our
methodology and provide insight into the stresses that M. tuberculosis may encounter
during different times of infection independent of drug treatment.

Identification of mutants with altered susceptibility to antibiotics. A critical
requirement for TNseq-based comparisons is maintaining the complexity of each library
to reduce stochastic effects. Treatment decreases the number of viable bacteria, which
could result in decreased representation of mutants across the genome. As a result, we
first assessed the complexity of the libraries recovered from drug-treated mice. Initial
analyses, calculating the average reads derived from transposon insertions in each
gene, indicated that libraries exposed to extended RIF or PZA treatments were less
complex than the rest (Fig. 3A and Fig. S2). This effect was particularly clear for PZA,
where the library became dominated by mutants with a disrupted pncA gene, which
encodes the activator for the PZA prodrug. A similar, but less pronounced, effect was
found upon RIF treatment, where mutants with mutations in the cmaA2 gene became
the most abundant strains in each sample from extended RIF treatments. The cmaA2
gene encodes a cyclopropane synthase which modifies the mycolate layer of the cell
wall and alters cellular permeability (34). In both cases, transposon insertions through-
out these genes were enriched, indicating that the loss of gene function was respon-
sible for altering drug efficacy. While a small number of other mutants appeared to be
enriched upon extended therapy, these were not consistent between samples and
represented single insertion events, likely reflecting the presence of spontaneous
resistance-conferring mutations that are unlinked to the insertion. Thus, the lack of
complexity in these libraries led to the exclusion of long-term RIF and PZA samples
from the following comparative analyses.

We next compared mutant abundance between pre- and posttreatment samples to
quantify mutant survival during therapy (Fig. 3B and Table S3). We first compared
mutant fitness in treated versus untreated animals, by comparing each time point to
the pretreatment sample, to estimate the relationship between replication rate and
drug efficacy (Fig. 3C). We observed the most overlap in the context of INH, a drug with
clear growth-rate-dependent effects in vitro (35). However, this effect was not apparent
for other drugs (Fig. 3C and Fig. S2), indicating that the drug tolerance phenotypes we
observed were not primarily related to changes in growth rates of mutants.

We next used a nonparametric resampling strategy to identify mutants that were
differentially represented in pre- and posttreatment pools. For each antibiotic regimen,
we observed mutants that were both under- and overrepresented in the posttreatment
samples (Fig. 3D). The genes identified are involved in a range of functions and include
pathways known to alter antibiotic efficacy. For example, pncA and glpK mutants were
found to be less sensitive to PZA treatment, consistent with previous studies (36).
Conversely, we identified mutants in ppe50/51, which had previously been shown to
increase the efficacy of a multidrug regimen (36). We also identified multiple mutants
lacking putative antibiotic efflux pumps, including ABC transporters Rv1747 and
Rv1273, which were more susceptible to INH and RIF, respectively. Overall, we found
160 mutants that altered efficacy of antibiotic treatment (Table S4).

Validation of mutant phenotypes in an aerosol infection model. To determine
how well the TNseq study predicted the phenotype of loss-of-function mutations, a
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FIG 3 Mutants with altered susceptibility to antibiotics. (A) Average reads of transposon insertions for each open reading frame (ORF) in the H37Rv genome.
(Top) PZA-treated libraries; pncA is indicated by the green line; average reads for each TA dinucleotide site in pncA at 5 weeks posttreatment. (Bottom)
RIF-treated libraries; cmaA2 is indicated by orange line; average reads for each TA dinucleotide site in cmaA2 at 5 weeks posttreatment. (B) Volcano plots of
treated libraries at individual time points compared to pretreatment libraries. Treatment lengths indicated by symbol: triangles, 1 week; squares, 2.5 weeks;
circles, 5 weeks. Negative log2 fold change � underrepresented posttreatment. Positive log2 fold change � overrepresented posttreatment. Q-value �0.05
is indicated by the dashed line. Genes meeting significance (Q-value �0.05) are indicated by filled symbols. (C) The relative abundance, log2 fold change, for
each gene in untreated libraries (x axis) or treated libraries (y axis). Genes significantly altered posttreatment are in black. The red dashed line indicates the
threshold for genes that are attenuated in vivo and less susceptible to antibiotic treatment. (D) The number of genes with a significant decrease in transposon
insertions (left) and a significant increase in transposon insertions (right), under each treatment condition.
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series of deletion mutants were generated. These genes were selected based on
statistical criteria that consider each distinct transposon insertion in a gene to be an
independent assessment of the loss-of-function phenotype. As a result, genes that are
predicted to alter drug efficacy contain a number of independent insertions that all
produce a similar effect (Fig. S3). We also included mutants that disrupt different
cellular functions and produce both qualitatively and quantitatively distinct pheno-
types. For this analysis we included previous TNseq data from mice treated with the
combination regimen HRZE (consisting of INH, RIF, PZA, and EMB) using a parallel
treatment regimen (36).

Individual deletion strains were constructed to contain a barcode at the site of deletion
which served as an identifier for downstream quantification via sequencing. To measure
susceptibility of the knockout strains, mutant and wild-type strains were mixed into a pool
of nine strains for infection via either intravenous (i.v.) or aerosol routes. Treatment was
initiated at 2 weeks postinfection, and the duration for individual antibiotics was adjusted
to produce a similar decrease in CFU for each of the bactericidal regimens and to maintain
library complexity (Fig. S4). At indicated time points, bacteria were isolated via plating the
spleen or lung for i.v. and aerosol infections, respectively. The abundance of each mutant
relative to wild type was calculated and normalized to their pretreatment abundance,
allowing a direct comparison to the TNseq data (Fig. 4A to I).

In nearly every case, the altered susceptibility phenotypes predicted by TNseq were
reproduced using deletion mutants upon i.v. and/or aerosol infection. Many mutants
were predicted to enhance the efficacy of individual antibiotics. These included genes
that were among the 10 strongest hypersusceptible phenotypes for RIF (rv1184c,
rv3822, and rv1174c) and INH (cinA) (Fig. 4A to D). Additionally, mutations affecting two
ABC transporters, Rv1747 and Rv1273c, suggested that these proteins could function as
efflux pumps for INH and RIF, respectively (Fig. 4E and F). PZA-specific effects were
observed as well. We confirmed that ppe51 mutant strains have increased susceptibility
to PZA-containing regimens (Fig. 4G), consistent with previous work (36). Other muta-
tions were predicted to decrease efficacy. For example, mutants lacking the succinate
dehydrogenase component, Rv0248c, were consistently cleared less rapidly than wild-
type bacteria. This phenotype was observed upon treatment with different regimens
(INH, RIF, and HRZE), suggesting that this mutation produces tolerance to many
unrelated antibiotics (Fig. 4H). CmaA2 mutants were predicted to have a complex
phenotype, with opposing susceptibilities to EMB and RIF (Fig. 4I). We validated CmaA2
mutants as more susceptible to EMB treatment, consistent with previous studies (34),
and less susceptible to RIF, as we observed in our initial analyses of library complexity
(Fig. 3). These opposing phenotypes may compensate for each other during combina-
tion therapy, as we observe a neutral phenotype in the HRZE regimen.

To assess whether the relative abundance determined by sequencing mutant pools
reflected genuine differences in viable bacteria, we mixed the Δrv1273c putative efflux
pump mutant strain and its complemented strain and performed additional infections
using CFU as a measure of abundance. Using a competitive model in which each mutant
was mixed at a 1:1 ratio with wild type and inoculated via the aerosol route, we observed
that the Δrv1273c mutant was cleared more rapidly from the lung than wild type or the
complemented strain by RIF treatment (Fig. 4J), as anticipated. We conclude that the TNseq
data provide an accurate assessment of relative mutant abundance in this system.

Mutations produce drug-specific effects. Having validated the accuracy of the
TNseq data, we analyzed the composite data set to understand more broadly how
bacterial functions alter drug efficacy. Again, we included a previously generated HRZE
treatment condition, which was produced using identical methodology (36). Compared
to the pretreatment time point, the number of mutants identified with altered abun-
dance varied for each antibiotic condition (Fig. 5A and Table S4). The majority of
mutations only had significantly altered susceptibility to a single agent, while a smaller
subset had effects under multiple conditions (Fig. 5A). The largest overlap, 13 genes,
was observed between INH and EMB, two drugs that inhibit cell wall synthesis by
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FIG 4 Validation of mutant phenotypes. (A to I) The relative abundance, log2 fold change, of mutants after TNseq (circles), i.v. (triangles), or aerosol (squares)
infections. Mean and standard deviation from biological replicates for i.v. and aerosol infections are plotted. Significance is indicated by increased symbol size:
TNseq, resampling Q-value �0.05; i.v. and aerosol, unpaired t test with Benjamini-Hochberg multiple testing correction, P � 0.05. Conditions are indicated by
color: untreated (black), INH (blue), EMB (purple), RIF (orange), PZA (green), HRZE (red). HRZE data were obtained from reference 36. (J) Lung CFU of H37Rv
(black), Δrv1273c (orange), and complement (gray) strains after aerosol infection and treatment with RIF. Data represent two aerosol infections of combined

(Continued on next page)
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interrupting mycolate or arabinogalactan production. Similarities between conditions
were also evident upon hierarchical clustering of significantly altered genes (Fig. 5B).
Conditions clustered primarily based on regimen. Higher-order similarities based on
mechanism of action were also seen, as the cell wall inhibitors (INH and EMB) were
found in a branch of the dendrogram distinct from the other treatments. In addition,
PZA clustered closely with HRZE, suggesting that the bactericidal activity of the
combination regimen is largely driven by PZA.

While these simple comparisons indicated that each treatment generally selected a
distinct set of mutants, we sought to clearly define bacterial functions that were
selectively affected by each treatment. We therefore devised a multidimensional anal-
ysis to identify the bacterial genes that are most responsible for defining the treat-
ments. Principal-component analysis (PCA) was applied to transposon insertion counts
of genes across conditions to map them onto orthogonal axes (linear combinations of
conditions). We then performed a Varimax rotation (37) to maximally realign the top
principal components with treatment conditions, resulting in six abstract dimensions
that differentiate the antibiotics based on their effects on conditional gene essentiality.
All treatment groups were assigned to a distinct dimension, except for PZA and HRZE,
which were similar enough to share one (Fig. 5C). This analysis also identified a clear
inverse correlation between INH treatment and the untreated condition that we
previously inferred (Fig. 3C). The bacterial genes most closely aligned with each
Varimax dimension were identified based on their rotated PCA loadings, and the
significance of these associations was determined using an approach called projection
resampling (see Materials and Methods). This analysis identified between 2 and 14
genes that are significantly associated with individual treatment conditions (Fig. 5D and
Table S5). For example, mutations in an operon consisting of ppe1, rv0097, fcoT, fadD10,
and nrp were found to increase survival in the presence of INH, an effect that is
consistent with previous work (35). Increased abundance of mycobactin mutants
distinguishes EMB from the other treatment conditions. Genes associated with the RIF
dimension include previously validated genes rv1184c, rv3822, and cmaA2 (Fig. 4).
Seven of these eight genes are involved in cell wall, lipid, or arabinan metabolism (pks2,
phoR, mmaA3, cmaA2, ephD, rv1184c, and rv3822) (38–43), suggesting that the perme-
ability of the mycobacterial envelope is the primary determinant of RIF activity during
infection. The PZA/HRZE dimension is associated with pncA, the activator of the
prodrug PZA, as well as mutations in the ppe51 gene that is involved in glycerol/glucose
uptake (44) and was previously found to enhance the activity of HRZE (36) (Fig. 4). In
addition, mutations in several genes dedicated to the synthesis of the cell envelope
lipid, phthiocerol dimycocerosate (PDIM), decreased HRZE efficacy. The untreated
dimension is associated with two genes, grcC2 and rv1543, that enhance susceptibility
under all drug-treated conditions and encode a polyprenyl-diphosphate synthase and
a predicted fatty acyl coenzyme A (acyl-CoA) reductase, respectively.

Many susceptibility phenotypes are specific to the in vivo environment. To
evaluate the importance of the infection environment in shaping the mechanisms of
drug susceptibility, we investigated whether mutations found to alter efficacy in
animals also had an effect under standard culture conditions. We first compared the
mutants found in our in vivo study with those previously found to alter the MICs of INH,
EMB, or RIF in vitro using an analogous TNseq approach (25). We observed a small but
significant overlap of genes associated with INH (overlap of 8 genes between 68 in vivo
and 90 in vitro, P � 0.0004), EMB (overlap of 4 genes between 54 in vivo and 67 in vitro,
P � 0.02), and RIF (overlap of 10 genes between 59 in vivo and 75 in vitro, P � 4 � 10�7)
treatment, identifying functions that alter treatment efficacy both in vitro and during

FIG 4 Legend (Continued)
bacteria, 1:1 Rv and Δrv1273c mutant (filled squares) and 1:1 Rv and complement (open squares). Mean and standard deviation are plotted; individual points
are biological replicates. Significance was determined using unpaired t test with Benjamini-Hochberg multiple testing correction: * (0.03), ** (0.002), and ***
(0.0002). ns, not significant.
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infection. Despite these similarities, the majority of mutations were predicted to alter
either in vivo efficacy or in vitro MIC values, but not both.

To more directly quantify in vitro effects, we took advantage of our deletion mutant
set (Fig. 4). Each mutant was exposed to the antibiotic that resulted in the most

FIG 5 Mutations associated with individual antibiotic treatments. (A) (Top) The number of genes with a significant change in transposon
insertions under each condition. (Bottom) Venn diagram displaying the overlap between each treatment condition. (B) Dendrogram displaying
the relationship between treatment conditions and individual time points. Relationship was determined by hierarchical clustering of
significantly altered genes based on TNseq log2 fold change at each time point. (C) Correlation between individual time points and conditions
with each Varimax loading. (D) Heatmap of genes significantly associated with a Varimax dimension. Signal is based on TNseq log2 fold change.
Boxes indicate genes significantly associated with dimensions. HRZE data were obtained from reference 36.
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differential selection for that strain in vivo (RIF or INH), and both the MIC50 and rate of
killing were determined in vitro. While MIC differences between wild type and three
mutants met statistical significance, none differed by more than 2-fold. (Table 1). When
the rate of killing was measured, no differences were observed under RIF treatment. In
INH treatment only a single mutant, the ΔcinA strain, displayed increased killing that
was consistent with the in vivo phenotype (Fig. 6). Thus, consistent with the TNseq
comparison, this analysis indicated that many of the mutations that alter in vivo drug
efficacy have little effect during in vitro culture.

Natural variants in efficacy-altering genes are associated with drug resistance.
In the mouse model, we identified many genes that have the capacity to alter antibiotic
efficacy (Fig. 3B and Table S4). Reasoning that naturally occurring polymorphisms in
these genes might be selected in the context of antibiotic treatment, we investigated
if there was overlap between genes identified in our mouse studies and those previ-
ously found to contain resistance-associated single nucleotide polymorphisms (SNPs) in
clinical isolates. We utilized data from three published GWAS (19, 20, 22) that identified
genes that are subject to convergent evolution in drug-resistant isolates. We compared
these genes to the loss-of-function mutations that we found to either increase or
decrease antibiotic killing in the mouse, since naturally occurring polymorphisms could
increase, decrease, or alter the functions of these genes. Of the 328 genes identified by

TABLE 1 Antibiotic susceptibility of deletion strains in vitro

Strain

IC50 (�g/ml � SD)a

INH RIF

H37Rv 0.03 � 0.002 0.0033 � 0.0003
Δrv0248c 0.04 � 0.005* 0.0035 � 0.0002
ΔcmaA2 0.03 � 0.001 0.0025 � 0.0003*
Δrv1174c 0.03 � 0.001 0.0033 � 0.0004
Δrv1184c 0.03 � 0.001 0.0029 � 0.0007
Δrv1273c 0.03 � 0.005 0.0032 � 0.0006
Δrv1747 0.03 � 0.004 0.0028 � 0.0009
Δppe51 0.05 � 0.005* 0.0041 � 0.0001*
Δrv3822 0.03 � 0.002 0.0030 � 0.0003
aIC50 � mean of three individual experiments. *, P � 0.05.

FIG 6 Rate of killing of mutants in vitro. CFU of H37Rv and deletion mutants after RIF treatment at
0.5 �g/ml (A) or INH treatment at 0.6 �g/ml (B). Mean and standard deviation from triplicates are plotted.
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GWAS, 14 were also identified in our TNseq study with a Q-value of � 0.05, and 21
overlapped with a Q-value less than 0.1 (Fig. 7 and Table 2). Genes known to alter drug
sensitivity (pncA) and tolerance (glpK) were identified, along with a number of genes
that have not been shown to influence drug efficacy. For example, we find that
disruption of the nonribosomal peptide synthase gene, nrp, produces tolerance to INH
in the mouse, which likely explains the association of nrp variants with clinical INH
resistance (19). Similarly, loss of pks2 (polyketide synthase) function reduced RIF activity
in mice, and SNPs in the pks2 gene are associated with clinical ofloxacin resistance (20).
As individual resistance traits in multidrug-resistant isolates are linked, these observa-
tions are consistent with pks2 mutations contributing to this phenotype either by
increasing RIF tolerance or by influencing the effects of multiple drugs, including
fluoroquinolones, which were not tested in the mouse. While the overlap between
these data sets was relatively small, this analysis allowed us to causally implicate
variants in at least 14 M. tuberculosis genes in the evolution of drug resistance. As many
of the efficacy-altering mutations found in the mouse model have little effect in vitro
(Table 1 and Fig. 6), we speculate that the effects of these natural variants may not be
apparent under similar in vitro conditions. If so, these variants could represent cryptic

FIG 7 Comparison between in vivo susceptibility and association with clinical resistance. Three hundred
twenty-eight genes associated with clinical resistance are plotted by genomic order (x axis), and Q-values
from TNseq conditions are indicated (y axis). Dashed lines indicate Q-values �0.05 and �0.01. TNseq hits
overlapping genes associated with clinical resistance are indicated by filled circles.

TABLE 2 Genes with SNPs associated with resistance and altered susceptibility phenotypes in vivoa

Gene Phenotype(s) GWAS data set GWAS phenotype

rv0101 (nrp) INH; EMB Hicks et al. (19) INH
rv0244c (fadE5) EMB Zhang et al. (20) KAN
rv0353 (hspR) INH Farhat et al. (22) RIF; INH; EMB; CAP
rv0859 (fadA) INH Zhang et al. (20) OFX; KAN
rv2043c (pncA) PZA; HRZE Farhat et al. (22) AMI; CAP; EMB; ETA; INH; KAN; MXF; PZA; RFB; RIF; STR; LIN
rv2344c (dgt) INH Hicks et al. (19) INH
rv2571c HRZE Farhat et al. (22) KAN; CAP; AMI; ETA; PZA; STR; RFB
rv2942 (mmpL7) INH; EMB Farhat et al. (22) RIF
rv3211 (rhlE) INH Hicks et al. (19) INH
rv3267 INH Hicks et al. (19) INH
rv3696c (glpK) INH; EMB; RIF; PZA; HRZE Farhat et al. (22) AMI; INH; KAN; RFB; RIF; CAP; LIN; EMB; ETA; PZA
rv3825c (pks2) RIF Zhang et al. (20) OFX
rv3859c (gltB) EMB Farhat et al. (22) STR
rv3877 (eccD1) HRZE Zhang et al. (20) CAP
rv0560c* PZA Hicks et al. (19) INH
rv0600c* HRZE Zhang et al. (20) KAN
rv1282c (oppC)* HRZE Hicks et al. (19) INH
rv1330c (pncB1)* INH Farhat et al. (22) KAN; CAP; ETA; RIF; STR
rv1860 (apa)* HRZE Farhat et al. (22) STR, RIF
rv2080 (lppJ)* RIF Zhang et al. (20) ETH; KAN
rv3919c (gid)* INH Farhat et al. (22) EMB; INH; MXF; PZA; RFB; RIF; STR; CAP; LIN; ETA; KAN
aSymbols and abbreviations: bold, overrepresented in drug-treated TNseq samples; italic, underrepresented in drug-treated TNseq samples; GWAS phenotype, the
drug resistance pattern associated with SNPs; INH, isoniazid; EMB, ethambutol; RIF, rifampin; PZA, pyrazinamide; KAN, kanamycin; CAP, capreomycin; OFX, ofloxacin;
MXF, moxifloxacin; AMI, amikacin; ETA, ethionamide; STR, streptomycin; RFB, rifabutin; LIN, linezolid; *, Q-value �0.1.
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determinants of treatment outcome that preferentially alter drug efficacy during
infection.

DISCUSSION

Many studies investigating antibiotic efficacy and new drug target discovery are
performed in vitro. While it is possible to change discrete aspects of the culture
conditions to mimic individual stresses (25, 45–48), these models do not fully recapit-
ulate the complex environment encountered by the bacterial population during infec-
tion. In this study, we identified genes important for bacterial survival under antibiotic
pressure in the mouse model of TB, where the bacteria grow intracellularly (49) in the
presence of a fully functional adaptive immune response. By collecting data across
several time points, we were able to discern a number of new insights into the
processes necessary to sustain an infection and persist through antibiotic treatment.

This time-resolved study provides the most detailed assessment of M. tuberculosis
genes necessary to persist in the mouse model to date, identifying 562 genes (see
Table S2 in the supplemental material). Our data are consistent with previous studies
and identified a large number of known virulence factors. We also identified 231 genes
that were not found in previous TNseq studies, reflecting the increased accuracy of
UMI-based quantification of transposon insertions and the increased number of repli-
cates and time points. These included functions already known to be important, such
as a number of genes encoded by a large genomic region dedicated to cholesterol
catabolic functions (kshA, rv3538, rv3549c, echA20, rv3557c, rv3562, rv3570c, and rv3575c)
(50, 51). Similarly, several additional genes related to type VII protein secretion were
identified: cyp143, ppe27, and esxN are components of the ESX5 system (52), esxW is
homologous to ESX substrates and has been associated with TB transmission (53), and
rv3866 (espG) is a component of the ESX1 system (54). A number of novel functions
were identified as well. For example, we found genes encoding a succinate dehydro-
genase complex (sdhA, sdhB, and sdhD), the proton-translocating NADH dehydrogenase
(nuoE and nuoK), and the Mce3 transporter that is homologous to lipid importers
(mce3A, mce3B, mce3C, and lprM). Overall, this data set enhances our understanding of
the genomic requirements for infection.

When infected animals were treated with antibiotics, we found only a small number
of genes that broadly alter drug efficacy. These included glpK, which is necessary for
glycerol metabolism and has been shown to alter the effect of HRZE in vivo (36) and
several drugs in vitro (55). Similarly, mutation of a putative fatty-acyl-CoA reductase
encoded by rv1543 broadly sensitizes the bacterium to different drugs. These obser-
vations highlight the importance of primary metabolic functions in general alterations
in drug sensitivity. A much larger collection of mutations produced relatively drug-
specific effects (Fig. 5). We used a PCA-based strategy to find condition-defining
mutations, similar to an approach previously applied to TNseq data (56). By designing
a new statistical framework to assess the significance of gene-condition associations,
we identified sets of mutants that can be used to infer the primary mechanisms that
determine the efficacy of some antibiotics. For example, nearly all of the genes
associated with RIF treatment are likely to be involved in cell wall formation, such as
acyltransferases Rv1184c and Rv3822 and cyclopropane synthase CmaA2. While rv1184c
and rv3822 mutants are more susceptible to RIF, mutations in cmaA2 result in increased
survival, indicating that changes in permeability can affect RIF efficacy in multiple ways.
More generally, the abundance of cell wall-modifying enzymes indicates that perme-
ability is an important determinant of RIF efficacy during infection, which is consistent
with previous in vitro observations (57–59). Similarly, mutants in the mycobactin
biosynthesis pathway were overrepresented specifically post-EMB treatment, indicating
a role for iron utilization in EMB efficacy. Finally, the specific correlation between in vivo
fitness and drug efficacy for INH (Fig. 3C and Fig. 5C), a drug known to be affected by
growth rate in vitro (10, 35), suggested that INH is preferentially affected by the
decreased replication rate of the bacterium during infection.

Drug efflux may also produce drug-selective effects. For example, Rv1273c is
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predicted to be a multidrug transporter based on sequence homology (60), and we
found this mutant was hypersusceptible only to RIF. Similarly, loss of the ABC trans-
porter encoded by rv1747 specifically increased INH susceptibility (Fig. 4). Despite these
in vivo effects, we found no evidence that mutating these genes altered drug suscep-
tibility in vitro, suggesting that both systems are regulated. Indeed, Rv1747 is an ABC
transporter that is controlled via phosphorylation by PknF (61), indicating a potential
mechanism of inducing INH tolerance in response to environmental cues. In contrast,
Rv1273c expression is increased in clinical isolates (62), leading to the hypothesis that
this may be an inducible efflux pump, similar to a previously identified mycobacterial
drug efflux system that is expressed during intracellular growth (15).

While we did not globally assess the effect of transposon mutations on antibiotic
efficacy in vitro, we compared our in vivo data set to a previous TNseq study (25) and
directly measured in vitro effects for a selection of mutants. Both efforts indicated that
many of the efficacy-altering mutations that we identified in the mouse model have a
minimal effect on in vitro MIC or rate of killing. This observation has important
implications, as it suggests the possibility that many genetic variants that alter drug
activity do not produce an effect that is measurable in standard drug susceptibility
testing (DST). Recent evidence showing that very small MIC alterations predict human
treatment outcome (17) highlights the potential importance of these variants.

Genetic variants that are selected by drug exposure can be identified via GWAS
approaches using the thousands of available whole-genome sequences from M. tuber-
culosis clinical isolates (19, 20, 22). While these data are immediately useful for geno-
typic drug susceptibility assessment (63, 64), the functional roles played by the majority
of these variants remain unknown. In this work, we leveraged our TNseq data to identify
a number of variants that are likely to directly alter drug efficacy, suggesting new
mechanisms that are relevant to treatment outcome. However, the relatively modest
overlap between the TNseq and GWAS data sets was also notable. It is possible that this
observation indicates that only a small fraction of the variants identified by GWAS
directly alter drug efficacy. However, this conclusion should be approached with
caution, as there are significant physiological differences between human and mouse
TB. Furthermore, the TNseq approach only assesses the effect of loss-of-function
mutations in the context of a splenic infection, raising the possibility that some
lung-specific effects could have been missed. Thus, the ultimate functional assessment
of natural genetic polymorphisms still requires the individual investigation of each
variant.

Understanding how Mycobacterium tuberculosis survives prolonged antibiotic pres-
sure also suggests new strategies to improve treatment. Our data indicate that a large
number of potential synergies exist that could be exploited to accelerate bacterial
clearance. While we do not assess sterilization or ultimate “cure” in this model, rapidly
eliminating viable bacteria remains an important goal. While the relatively drug-
selective effects of these synergies represent a potential challenge, our data indicate
that more effective regimens are possible and their development could be facilitated by
this type of unbiased chemical-genetic study.

MATERIALS AND METHODS
Transposon sequencing. BALB/cJ (stock no. 000651) mice were purchased from Jackson Laboratory

(Bar Harbor, ME, USA). Housing and experimentation were in accordance with the guidelines set forth by
the Department of Animal Medicine of University of Massachusetts Medical School and Institutional
Animal Care and Use Committee and adhered to the laws of the United States and regulations of the
Department of Agriculture. Eight- to 12-week-old female animals were infected with 106 CFU of a himar1
transposon library (65) via the intravenous route. At 14 days postinfection, antibiotics were administered
via drinking water at the following concentrations: 0.1 g/liter isoniazid (Sigma), 0.6 g/liter ethambutol
(Sigma), 0.1 g/liter rifampin (Sigma), 15 g/liter pyrazinamide (Sigma). At indicated time points, mice were
sacrificed, spleens and lungs were isolated and homogenized, and CFU was determined by plating
dilutions on 7H10 agar with 10 �g/ml kanamycin. For library recovery, approximately one million CFU per
mouse were plated on 7H10 agar with kanamycin (10 �g/ml). Genomic DNA was extracted and the
relative abundance of each mutant was estimated and normalized as described previously (30). Statistical
analysis of log2 fold change (log2FC) in normalized counts between conditions was performed by
resampling (66). Hierarchical clustering [using hclust() in R, with average-linkage clustering] was applied
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to vectors of log2FC for each gene across all conditions. PCA and Varimax rotation were performed on
log fold changes (LFCs) using the procedures prcomp() and varimax() in R, where the LFC for each
condition was calculated as the log2 of the ratio of the mean insertion count in that condition relative
to the grand mean across all conditions.

M. tuberculosis strains and culturing. M. tuberculosis H37Rv was grown in Middlebrook 7H9
medium containing oleic acid-albumin-dextrose-catalase (OADC), 0.2% glycerol, and 0.05% Tween 80
and grown with shaking (200 rpm) at 37°C. Hygromycin (50 �g/ml) or kanamycin (20 �g/ml) was added
when necessary. All work with M. tuberculosis adhered to the CDC-NIH guide for biosafety in microbio-
logical and biomedical laboratories (67). Deletion strains were constructed by allelic exchange as
previously described (68), and this work adhered to NIH guidelines for research involving recombinant
DNA molecules. Genes were replaced by the vector pKM464 carrying one of seven unique q-Tag
sequences to identify each mutant for deep sequencing (69) (see Table S6 in the supplemental material
for strain details).

In vivo antibiotic susceptibility. Mice were infected with pools of strains at equal ratios via the
intravenous route (106 total CFU/mouse) or aerosol route (500 to 1,000 CFU/mouse). Groups of mice were
treated with antibiotics, as described for the TNseq study. Treatment was administered starting at 14 days
postinfection for i.v. infections and 21 days postinfection for aerosol infections. At indicated time points,
approximately 10,000 CFU from the spleen homogenate of each mouse was plated on 7H10 agar.
Genomic DNA was extracted for sequencing as described previously (30). Sequencing libraries spanning
the variable region of each q-Tag were generated using PCR primers binding to regions common among
all q-Tags, similarly to previously described protocols (70) (see Table S6 for primer details). During this
PCR, a unique molecular counter was incorporated into the sequence to allow for the accurate counting
of input templates and account for PCR jackpotting. The libraries were sequenced to 1,000-fold coverage
on an Illumina NextSeq platform using a 150-cycle Mid-Output kit with single-end reads. Total abun-
dance of each mutant in the library was determined by counting the number of reads for each q-Tag with
a unique molecular counter. Relative abundance of each mutant in the pool was then calculated by
dividing the total abundance of a mutant by the total abundance of reads for wild-type H37Rv. This value
was then normalized to the relative abundance at the pretreatment time point to obtain the final relative
abundance for each mutant in the pool. Statistical significance was determined by unpaired t test with
Benjamini-Hochberg multiple testing correction.

Competition infections were performed by infecting mice with a 1:1 mixture of Δrv1273c and H37Rv
strains (chromosomally integrated plasmid pJEB402 encoding kanamycin resistance) or a 1:1 mixture of
Δrv1273c complement strain and kanamycin-resistant H37Rv via the aerosol route (500 to 1,000 CFU/
mouse). After 21 days postinfection, RIF was administered to groups of mice. At indicated time points,
mice were sacrificed and CFU in lung and spleen homogenate was determined by plating on 7H10 agar
containing either hygromycin (50 �g/ml) or kanamycin (20 �g/ml).

In vitro antibiotic susceptibility. For MIC testing, bacteria were inoculated to a starting optical
density at 600 nm (OD600) of 0.05 in 96-well plates with 7H9 medium containing OADC, 0.2% glycerol,
and 0.05% Tween 80. Isoniazid and rifampin were used at 0.4 and 0.05 �g/ml, respectively, and serially
diluted 2-fold for a total of 6 dilutions. Growth was monitored by OD600, and conditions were assessed
in triplicate. Fifty percent inhibitory concentration (IC50) was determined by plotting OD versus concen-
tration of antibiotic and plotting a curve using [inhibitor] versus response model.

For kill curves, bacteria were inoculated to a starting OD600 of 0.05 in inkwells containing 7H9
medium containing OADC, 0.2% glycerol, and 0.05% Tween 80. At an OD600 of �0.8 to 1.0, antibiotics
were added to a final concentration of 0.6 and 0.5 �g/ml for isoniazid and rifampin, respectively. At
indicated time points, samples from the cultures were taken and CFU/ml was determined by plating on
7H10 agar with 50 �g/ml hygromycin. Conditions were assessed in triplicate.

Projection resampling. In order to identify genes significantly associated with individual Varimax
dimensions, we devised a sampling-based version of the permutation test. We redistributed the original
observations (insertion counts at TA sites) representing individual experimental conditions over the
Varimax dimensions, weighted by the loadings of each condition on each Varimax dimension. Since
loading coefficients (from PCA plus Varimax rotation) could be positive or negative, we used the squares
of the loading coefficients as weights, normalized by the sum of squares across all conditions (so they
sum to 1). Let Wc,v be the matrix of weights (normalized squares of loadings) of each condition c (i.e.,
drug) projected onto each Varimax dimension v. If the loading coefficients are �c,v, then Wc,v � �2

c,v/	j

�2
j,v.

For a given gene G, we collected the normalized insertion counts at all TA sites in the gene across
all conditions (drug treatments), averaging over replicates. We call this matrix of observations Oi,c, where
i indexes the TA sites in the gene. We computed projected counts, Pi,v, for each TA site i on each Varimax
dimension v as a weighted combination. In matrix notation, P(i,v) � O(i,c) � W(c,v).

We then used resampling (66) (as a nonparametric permutation test) to determine the degree to
which the projected counts were unusually high (or low) in each Varimax dimension, compared to all the
others. Let D be the Varimax dimension of interest for testing the association of gene G. The redistributed
observations for G were divided into two groups, A (those counts associated with dimension D) and B
(those counts not associated with dimension D). Finally, the significance of the difference in mean counts
in A versus B was determined by a permutation test, where a null distribution on the difference in means
was generated by randomly permuting the counts between groups A and B 10,000 times, from which a
P value for the association of gene G with dimension D was derived. P values were adjusted post hoc
by the Benjamini-Hochberg procedure (71) for multiple test correction (to limit the false-discovery
rate to 5%).
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Data availability. Raw sequencing data in FASTQ and processed formats are available for download
from NCBI Gene Expression Omnibus (GEO) under accession number GSE154627. Data processing
pipelines used in this work are available on GitHub: https://github.com/sassettilab/Bellerose_et_al
_mSystems_TnSeq_analyses.
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