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Abstract

Background: Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand
interaction motifs found in a large number of proteins with diverse functions, including innate
immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR)
proteins in worms, flies, mice and humans. We use convergent evidence from several
transmembrane-prediction and motif-detection programs, including a customised algorithm,
LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to
establish their evolutionary relationships.

Results: This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human),
many of them of unknown function. We group eLRR proteins into several classes: those with only
LRRs, those that cluster with Toll-like receptors (TlIrs), those with immunoglobulin or fibronectin-
type 3 (FN3) domains and those with some other domain. These groups show differential patterns
of expansion and diversification across species. Our analyses reveal several clusters of novel genes,
including two Elfn genes, encoding transmembrane proteins with eLRRs and an EN3 domain, and
six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are
expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex.
We have also identified a number of novel fly eLRR proteins with discrete expression in the
embryonic nervous system.

Conclusion: This study provides the necessary foundation for a systematic analysis of the
functions of this class of genes, which are likely to include prominently innate immunity,
inflammation and neural development, especially the specification of neuronal connectivity.
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Background

Leucine-rich repeats (LRRs) are protein-ligand interaction
motifs found in a large number of proteins of diverse
structure, localization and function in bacteria, fungi,
plants and animals [1]. Many of these have well-known
functions in the innate immune system [2]. Many others,
especially those with extracellular LRRs (eLRRs), are
involved in various aspects of nervous system develop-
ment [3]. In both cases, the nature of the LRR motifs is
important for generating a diversity of interactions, with
exogenous factors in the immune system and with the
huge number of different cell types in the developing
nervous system. The structure of LRR motifs and their
arrangement in repetitive stretches of variable length gen-
erate a versatile and highly evolvable framework for the
binding of diverse proteins and non-protein ligands.

Seven classes of LRR have been defined [1]; (these have
been referred to as LRR "subfamilies" [4]; we use the term
subfamily here in the phylogenetic sense to refer to sets of
closely-related genes). Within animals, four separate types
are recognised, three typically intracellular and one extra-
cellular. Whether all these different classes are evolution-
arily related by descent or represent convergent evolution
is open to debate [1] but they all share a characteristic
structure. Each repeat is typically 19-29 amino acids long
and has a well-conserved N-terminal stretch of 9-12
amino acids that is characterized by precisely-positioned
hydrophobic residues (usually leucines) and that forms a
B-strand and a C-terminal stretch of 10-19 amino acids
that is more variable in length, sequence and structure.
The arrangement of multiple repeats in tandem generates
a horseshoe-shaped solenoidal structure, with the B-
strands stacking to form the concave surface and the vari-
able stretches forming the convex surface [1,5-7]. Most
LRR regions typically also have both N-terminal and C-
terminal cap regions, which shield the hydrophobic core
of the LRR structure. In extracellular proteins these regions
(LRR-NT and LRR-CT domains, of which several subtypes
exist) are defined by precisely positioned cysteine residues

[4].

LRR proteins, both intracellular and extracellular, have
well-characterized functions in the innate immune system
that are similar from plants to mammals [2]. The extracel-
lular LRR (eLRR) proteins in animals include the Toll-like
receptors (TLRs), a family of transmembrane proteins
characterized by an LRR region, a transmembrane (TM)
domain and a cytoplasmic Toll/IL-1 receptor (TIR)
domain. This family has expanded in vertebrates to allow
detection of a diverse set of antigens [8]. In flies, the TLR
family has also expanded, where, in addition to roles in
immunity for some of these proteins [9], many are
required for various aspects of embryonic and nervous
system development [10-13]. Tol-1 in worms is also
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important in development, possibly contributing to a
code of molecules defining neuronal connectivity [14,15].
Recent reports indicate that some mammalian TLR genes
may also be expressed and function in neurons [16,17].

A large number of other eLRR proteins have been impli-
cated in various aspects of neural development, geneti-
cally in flies [18-20] and in mammals in assays of neurite
outgrowth, [21-24], fasciculation [25] and/or synapse for-
mation [26,27]. Some of these contain, in addition to the
extracellular LRR domain, immunoglobulin (Ig) or
fibronectin type-3 (FN3) domains (for review see [3]). In
some cases, the functions of eLRR proteins are mediated
by homophilic interactions [25,28-30]. In other cases they
are mediated by the binding of other proteins in cis [31-
33] and in trans [27,34-36]. Several eLRR proteins have
been found to modulate the signaling of various growth
factor pathways (e.g., [37-41]).

Surprisingly, apart from the TLR genes [42] and small
secreted proteoglycans [43], relatively few eLRR genes
have been studied genetically in mice. Among the ones
that have, examples of phenotypic effects in the nervous
system include increased plasticity, sprouting and nerve
regeneration [44], and defects in axon guidance and cell
migration [45], learning and memory [46], myelination
[47,48] and neuronal survival [35].

The importance of this class of proteins for nervous sys-
tem development in humans is apparent from the large
number of examples implicated in neurological or psychi-
atric disorders (reviewed in [49]). These include epilepsy
[50], Tourette's syndrome [51], night blindness [52], con-
genital insensitivity to pain (with mental retardation)
[53], and possible links to Alzheimer's disease [54].

Despite the growing number of eLRR proteins implicated
in nervous system development or disease this family of
proteins has received far less attention as a class than other
better characterized families like the immunoglobulin
[55,56] and cadherin [57] superfamilies. In particular,
there have been no systematic surveys of the genomic
complement of these proteins or investigation of their
evolutionary relationships. We therefore set out to cata-
logue the entire extracellular leucine-rich repeat proteome
of four organisms: Caenorhabditis elegans, Drosophila mela-
nogaster, Mus musculus and Homo sapiens. We used a hier-
archical clustering system to analyse within and between-
species relationships, revealing independent diversifica-
tion and expansion of subfamilies in each species and
rapid sequence divergence. These analyses highlight the
large number of novel, uncharacterized eLRR proteins in
each of these genomes, including several novel sub-
families. A number of these show highly restricted expres-
sion in the nervous system in mouse or fly.
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Results

Bioinformatics strategy

We began by obtaining whole proteome sets of known
and predicted proteins from each of the four species, as
described in Methods. Our initial approach was to filter
the starting proteome datasets using transmembrane
(TM) and signal peptide prediction programs (TMHMM
[58] and SignalP [59]) to identify transmembrane or
secreted proteins and then to filter that set using a motif
recognition program (Pfam [60]) to identify the subset
with motifs of interest. However, this approach using
serial filters missed a number of known axon guidance
molecules because TMHMM or SignalP misclassified
them or Pfam did not detect specific motifs. We therefore
included a number of other TM-prediction and motif-rec-
ognition programs, including a customised program to
look for LRR domains (LRRscan, see below) in the pipe-
line. In addition, we first performed a clustering step using
TribeMCL [61] on the entire proteome sets so as to iden-
tify related proteins even where these programs failed to
detect specific motifs or architectures. Rather than using
any of these programs or a combination of them as strict
filters we generated a database containing all the results
that could be browsed or searched using various criteria to
extract particular gene families of interest (Figure 1).

Protein Datasets Annotation

General

Ensembl, IPIl, MGC
(gene ID, location,...

HMMpfam with Pfam,
SMART; LRRscan
Topology

TMHMM, HMMTOP,
TMPRED, SignalP, BIG-PI
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| human, mouse | human, mouse |
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~_fly,worm_~

@emove duplicates

/non-redundant™
[ proteomes: )

human, mouse,
~_ fly,worm

[ ]
[ ]

,/

selection for eLRR

manual curation

final list

Figure |

Bioinformatics pipeline. Figure shows starting datasets
(blue), annotation programs (green) and clustering pipeline
(orange) used to generate final eLRR dataset.
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Clustering

TribeMCL is a program designed to cluster proteins into
related families based on simultaneous examination of all
pairwise BLAST similarity scores [61]. This program uses a
Markov cluster algorithm that is particularly well suited to
cluster highly divergent proteins with repeated domains
into separate subfamilies, a task for which multiple align-
ment programs are not appropriate. The Markov cluster
algorithm is based on simulated 'flow' through a network
or graph, where each node is a gene and each connection
is weighted by the symmetric pairwise BLAST score. A ran-
dom walk of a certain length from node to node through
this network, which begins within a small cluster of inter-
connected genes will have a higher probability of ending
up within that cluster than crossing to a gene that is only
related to one of them. The results of many simulated ran-
dom walks thus define the clusters. Each time this process
is reiterated the links within the clusters that emerge are
given a higher weighting and the links that were not used
are downgraded. Multiple rounds of this process eventu-
ally lead to completely separate clusters. There are two
parameters that can be varied that affect the clustering; the
first is the e-value cutoff of the BLAST scores that are used,
which determines the initial set of connections consid-
ered. The second is the inflation parameter; this deter-
mines how strongly the links are upgraded with each
iteration. A higher inflation parameter increases the 'gran-
ularity' of the output; i.e., it generates a larger number of
smaller clusters. We used a number of e-value cutoffs
(from e19to e49) and inflation parameters (1.2, 2, 3, 4
and 5) and compared the output produced.

The output from TribeMCL, for any given e-value cutoff
and inflation parameter can be viewed as a list of genes
organized into clusters with a number assigned to each
cluster (lower numbers have more members). We rea-
soned that hierarchical sorting of genes across various
inflation parameters should yield a tree-like structure,
with larger clusters at low inflation parameters splitting
into more discrete clusters at higher inflation parameters.
At each e-value cutoff we therefore sorted the list of genes
first at inflation parameter 1.2, then 2, then 3, 4 and 5. For
the most part, increasing inflation parameter does lead to
splitting of large clusters into smaller clusters and yields a
tree-like arrangement of genes with relationships appar-
ent across various levels (but see discussion on
"LRR_Tollkin" group below).

Identification of LRR motifs

To identify LRR proteins, the database was searched for all
genes containing at least one LRR, LRR-NT or LRR-CT pre-
dicted by either SMART or Pfam. The cutoff values used
were based on analysis of the results for proteins with
known architecture (see Methods for details). This analy-
sis yielded a total of 2,698 entries. These include both
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genes with intracellular LRRs and those with extracellular
LRRs. It also contains isoforms for many genes. To screen
out false positives we used the following criteria: if only
one LRR was predicted in a gene and only by one of the
programs and it was not predicted in either the mouse or
human orthologue (for mammalian genes), or in other
members of a closely-related cluster then it was consid-
ered a false positive and discarded.

Identification of extracellular LRR proteins

Comparison of several TM-prediction programs suggests
that TMHMM is the most reliable, although it is also the
most selective [62]. A quick survey of some known T™M
receptors revealed that TMHMM failed to identify TM
domains in several of them, including Robo2 in mam-
mals and Kekkon2 and 3 in flies, for example. For that rea-
son we also used two other programs, HMMTOP [63] and
TMPred [64] to search for TM domains. At least one of
these three programs successfully detected the TM domain
in all the known TM receptors examined (while also
increasing the number of false positives).

SignalP [59] was used to detect signal peptides. This suf-
fered from poor prediction of 5' exons for many mamma-
lian genes, which was solved by manual curation (see
below). The GPI-prediction program BIG-PI [65] identi-
fied a small number of GPI-linked proteins, including all
the known GPI-linked proteins such as Connectin, NgRs
and Nyx (the latter in human but not mouse, as reported
[66]). A number of other genes were tentatively assigned
to the GPI-class by manual inspection based on the pres-
ence of a characteristic short C-terminal hydrophobic
stretch (and a signal peptide).

In addition to examining the convergent evidence from
these various programs to identify eLRR proteins we used
three additional criteria. The first is the type of LRR pre-
dicted: extracellular proteins typically contain LRR types
designated LRR_1, 2 or 3 by Pfam or LRR_typical by
SMART, while the intracellular proteins have LRR_RI or
LRR_sd22 (see [1]). Second, the prediction of an LRR-NT
and/or LRR-CT domain was taken as evidence for extracel-
lular localization. Third, especially at low e-value strin-
gencies (e19), the majority of extracellular LRR proteins
cluster together with TribeMCL in one large group (and a
few small ones), distinct from the intracellular proteins.
Using these criteria in addition to the data from the pre-
diction programs described above we collected what we
believe is a comprehensive set of extracellular LRR pro-
teins across worm, fly, mouse and human. We call these
the eLRR proteome.

Manual curation of extracellular sequences
To reduce the complexity of the final data set a single pro-
tein isoform was chosen for each gene and all others were
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removed (see Methods). Many peptides that we expected
to be extracellular because of orthology, clustering or
domain structure did not have a predicted signal peptide.
Upon manual inspection of the sequences it was discov-
ered that many gene predictions in Ensembl, especially for
mammalian genes, were missing the 5'-most exon encod-
ing the signal peptide. For many such genes we identified
the 5' exon and the full coding sequence in a sequence
from another database and/or by searching with an
orthologous gene from mouse or human. In other cases
the 5' predicted sequence extended past the apparent true
methionine start codon, which could be recognised by
conservation and the presence of the signal sequence.

We identified two fly genes that have been incorrectly
annotated in Ensembl as two separate genes each.
CG32637 and CG4187 represent the 5' and 3' ends of a
cDNA encoded by AB134171, a new member of the Lgr3
family. Similarly, CG4054 and CG13487 represent the 5'
and 3' ends of the fish-lips (fili) gene, encoded by
AAV36870 [67] which is related to tartan and capricious
[67,68]. We detected one similar mis-annotation in the
worm database (pxn-1) and presume that this type of
error may also have occurred for some mammalian
sequences.

All the manually curated gene sequences are provided [see
Additional File 1]. These curated sequences were fed back
into the starting database and the BLAST and clustering
analyses were re-performed to ensure that spurious results
had not been generated by incorrect sequences.

Defining consensus architectures

In order to derive a consensus architecture for each gene
we compared the results of SMART and Pfam and the TM-
prediction programs. Even at very low stringency some
LRRs in proteins with known numbers of such repeats
were missed by HMMpfam using the SMART and Pfam
databases. This includes a number of somewhat degener-
ate LRRs in Lrrc8 proteins [69], for example, as well as
atypical LRR-CT domains in small proteoglycans and G-
protein-coupled receptors [4]. For this reason, using a
similar strategy to Smits and colleagues [69], we wrote a
customised program, LRRscan, to search for a more inclu-
sive minimal consensus that defines LRRs as well as
searching for consensus sequences derived from non-
canonical LRR-CT domains (see Methods for details).
LRRscan was successful in identifying all the predicted
LRRs in Lrrc8 proteins, including atypical or degenerate
ones [69], and additional LRRs in many other proteins
that were not detected by HMMpfam with SMART or
Pfam.

The output from LRRscan and HMMpfam was compared

for all proteins [see Additional File 2] and a consensus
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architecture including number of LRRs and presence of
LRR-NT and LRR-CT domains was derived by manual
curation. The consensus matches the architecture of a
number of eLRR proteins with published structures [5-
7,70-72], allowing for semantic differences in how the
LRRs are counted. The final LRR before the LRR-CT
domain (CT1 subtype) often contains only the first sub-
domain of nine residues; following the convention of
Matsushima and colleagues [49] we count this as one
repeat rather than part of the LRR-CT domain, which in
some cases may cause an apparent discrepancy with pub-
lished reports. We also do not count in the total number
of repeats putative LRRs which overlap with LRR-NT or
LRR-CT domains, as has been done in some published
cases [73,74].

A consensus topology for each protein was also derived by
comparison of the signal peptide, GPI anchor and TM-
prediction programs. A full list of all the eLRR proteins is
provided [see Additional File 3] and a sample is shown in
Figure 2. These are sorted hierarchically across inflation
parameters at an e-value cutoff of -40. Clustering results at
e-10 and e-25 are also presented [see Additional Files 4
and 5]. Figures 3 and 4 provide an overview of the consen-
sus protein architectures of most of the eLRR proteins,
arranged in subfamilies. A large number of singleton
LRR_Only proteins are not shown in this diagram (these
are listed separately in Table 1).

The eLRR superfamily

We categorized the eLRR proteins into four classes, based
on their architecture and clustering. These are LRR_Ig/Fn3
(containing an Ig or FN3 domain but no other extracellu-
lar domains except LRRs), LRR_Tollkin (containing a
cytoplasmic TIR domain or clustering with the Toll pro-
teins), LRR_Other (containing some other domain, such
as EGF repeats or a G-protein-coupled receptor domain)
and LRR Only (containing no other recognizable
domain). These categories are broadly supported by the
clustering results, although the LRR_Other group is clearly
arbitrary and contains a number of unrelated subfamilies.
The number of eLRR proteins in each of these classes in
each of the four organisms studied is shown in Table 2.
These are broken down into several categories, based on
predicted localization: secreted, GPI-linked, type I trans-
membrane and multi-membrane spanning (all multi-
membrane spanning proteins were classified into the
LRR_Other group). Almost all of the LRR_Ig/FN3 group
are associated with the plasma membrane, either as type I
TM or GPI-linked proteins. In contrast, the LRR_Tollkin
and LRR_Only groups contain a far higher percentage of
secreted proteins. It is clear from an examination of these
data that the eLRR superfamily has greatly expanded in
mammals (>135 genes) and to a lesser extent, flies (66),
compared to worms (29).
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Subfamily expansion and diversification

In order to assess the extent of expansion (new members
of existing subfamilies) and diversification (new sub-
families) across different organisms, we analysed the
membership of clusters across mouse and fly. For this pur-
pose, we defined clusters in such a way as to distinguish
those with species-specific expansion from those with
diversification [see Additional File 6]. For each cluster we
counted the number of fly and mouse members and then
generated histograms of the number of clusters with x fly
members and y mouse members (Figure 5). For example,
in the LRR_Ig/FN3 group there is one cluster with one fly
gene and three mouse genes (Lrigs) and there are six clus-
ters with no fly genes and three mouse genes (Ntrk, Lrrn1-
3, Lirc4, Amigo, FLRT and Lirc21 groups). These graphs
illustrate the different rates of expansion and diversifica-
tion across these groups.

For the LRR_Ig-FN3 family there is a large number of clus-
ters that have multiple mouse genes and no fly genes.
These represent the diversification of new architectures
and gene families in the mammalian lineage. There is only
one case of expansion in the mouse within a conserved
subfamily (the Lrig family which has three members in
mouse and one, lambik, in fly (as well as one in worm)).
Conversely, the kekkon family shows a specific expansion
in flies compared to mammals, where there is only a sin-
gle apparent closest orthologue, Lrrc24.

In contrast, in the LRR_Tollkin group there has been inde-
pendent expansion of subfamilies in both flies and mam-
mals (and even comparing mouse and human). Similar
expansions are observed in the subfamilies of Toll-like
receptor genes themselves and in the subfamilies of gene
encoding proteins that do not have TIR domains but that
cluster within this group (see below).

In the LRR_Only group there has also been independent
expansion, apparently followed by rapid divergence,
resulting in a very large number of singletons in each spe-
cies. These are genes with no recognizable orthologue in
the other species (fly or mouse) and no recognizable par-
alogue in their own species. The encoded proteins do not
cluster at high stringency (e-value and inflation parame-
ter) but many cluster into a very large group at lower strin-
gency. This trend may reflect increased divergence rates of
this class of proteins. There is only one case in this group
of apparent orthology, between CG6959 in fly and Tpbg/
5T4 [75] and a novel gene in mouse.

The LRR_Other group shows the opposite pattern with the
largest number of clear orthologues between mouse and
fly (clusters on the diagonal). This group also contains the
most clusters with a clear worm orthologue [see Addi-
tional File 3 and Figure 4]|. The members of this group
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External Name  Synonyms clustl 2 clust2 clust3  clust4  clust5 Location

Lrigl 156 1728 1685 1622 1591  6:95066418-95161799
Lrig2 156 1728 1685 1622 1591 3:103884357-103939517
Lrig3 156 1728 1685 1622 1591  10:125665573-125714974
Ibk Lambik 156 1728 1685 1622 1591 2R:11679210-11684383
T21D12.9 156 1728 1685 1622 1591 1V:274570-287201
Lrrn6a Lingol 636 1937 1898 1838 1809  9:56731965-56798743
Lrrn6b Lingo3 636 1937 1898 1838 1809  10:80964866-80976093
Lrrn6e Lingo2 636 1937 1898 1838 1809 4:35846472-36195578
Lrrn6d Lingo4 636 1937 1898 1838 1809 3:93887043-93892325
Lrrnl Nlrrl 636 3698 3710 3680 3664 6:108031528-108072472
Lrrn2 Nlrr2 636 3698 3710 3680 3664 1:132741816-132801420
Lrrn3 NIrr3 636 3698 3710 3680 3664 12:38061168-38095273
Lrre4 Ngl-2 636 5118 5199 5214 5224  6:28876652-28878610
Lrrc4b Ngl-3 636 5118 5199 5214 5224 7:38517725-38540037
Lrrcde Ngl-1 636 5118 5199 5214 5224  2:97172341-97336348
XP_485967 Garp/ Lrrc32 671 2804 5902 5974 5994  unmapped

Lrre33 Garpll 671 2804 7897 8069 8147 16:30952197-30974848
Lrrel5 Lib 671 3320 9586 9863 10054 |16:29076635-29091261
Gps Glycoprotein 5/GPV 671 3320 10192 10520 10743 [16:29115637-29118723
Cpn2 Carboxypeptidase N, polypeptide 2 671 3320 12102 12561 12887 [16:29063712-29074853
Igfals Als 671 7252 7532 7676 7734 17:24607540-24609348
1200009022Rik ~ mKIAA0644 671 10234 10860 11238 11494 6:53745044-53750272.
CG7509-PA 671 25631 27360 28472 29304 31:4783924-4786121
C56E6.6 1796 5143 8386 22037 22689 11:6540165-6544297
CG40500-PD 1796 5143 8386 11883 14994 Xh:214902-235557.
CG5195-PA 1796 5143 8386 27788 28588 31.:20388531-20398189
CG7896-PA 1796 5143 8386 11883 29432 3R:25809174-25816514
chp Chaoptin 1796 5143 13751 25152 25868 3R:27029904-27036452
CG4168-PA 1796 5143 13751 27464 28254 2L:15158036-15174249
CG8561-PA 1796 5143 27662 28794 29638 2R:9786463-9789735
Tol-1 1796 7985 8352 8558 8674 1:444002-461590
Toll-7 dToll7 1796 7985 8352 8558 8674 |2R:15341768-15346108
18w 18 Wheeler 1796 7985 8352 8558 8674 |2R:15626374-15631795
Tollo dToll8 1796 7985 8352 8558 8674 |3L:15200900-15208091
Toll-6 dToll6 1796 7985 8352 8558 8674 |3L:15301959-15307470
Tl dTolll 1796 9274 9759 10055 12016 3R:22624765-22668125
MstProx dToll3 1796 9274 9759 10055 12016 3R:3191661-3195027
Toll-4 dToll4 1796 9274 9759 10055 12016 2L:9084107-9089440
Tehao dToll5 1796 9274 9759 10055 29162 21.:13435637-13440955
Chad Chondroadherin 4838 5233 11926 12369 12678 11:94386155-94390215
XP_001001535 4838 5233 8540 8733 8858 15:81522436-81523284

Figure 2

Sample from list of all eLRR genes, hierarchically clustered at e-40 cutoff. Proteins have been sorted in this table
based on the clustering output from TribeMCL. This has been done hierarchically across inflation parameters, starting at 1.2,
then 2, 3, 4 and 5. For most proteins this yields a tree-like structure with cluster stringency increasing (and membership
decreasing) from low inflation parameters to high. Numbers used to identify clusters are generated by TribeMCL with larger
clusters having lower numbers. Proteins are colour-coded by species: black, mammalian; blue, fly; red, worm. For the mamma-
lian proteins, only the mouse orthologue is listed. The table shows examples of clusters in the LRR_Ig/FN3 group with mouse,
fly and worm orthologues (the Lrig subfamily) and with mouse paralogues only (the Lrrné, Lrrn1-3 and Lrrc4 subfamilies,
which cluster together at level 1.2). It also shows many of the proteins in the LRR_Tollkin group, with the hierarchical cluster-
ing apparent across inflation parameters and indicated by shading. One subfamily containing a known and novel member is
shown at the bottom. Proteins encoded by genes located in tandem in the genome are boxed in the right-hand column. A com-
plete list of all eLRR proteins is provided [see Additional File 3]. Lists clustered at the e25 and e-!° cutoff levels are given [see
Additional Files 4 and 5].
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LRR_Ig/FN3 group

Lrig1-3 Lrrc21 (Pal),
Lrrca, bk sl Lrrc22 Lrfn1-5
4b4c T21D12.9 Islr2 XP_143529.5 Lrrc24  Kek 1-6 CG16974 ZC262.3 Amigol-3 (Salm1-5) Firt1-3 Eifn1-2  B43Rik F20D1.7 Y37E3.13
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Figure 3

eLRR protein predicted architectures (part 1). Consensus architectures are shown for all proteins in the LRR_Ig/FN3
group and for all proteins in subfamilies in the LRR_Only group. An additional set of LRR_Only singletons is listed separately in
Table |. Protein names are shown below the corresponding structures (black, mammalian; blue, fly; red, worm). All figures are
drawn to scale (see Key). Consensus architectures were derived for single proteins and across subfamilies from convergent
evidence from motif and topology prediction programmes. Where there is a range in number of predicted LRRs or other
domains across members of a subfamily, this is indicated next to the domain. A range in length of the cytoplasmic domain is
similarly indicated, where it exceeds 20 amino acids. Tightly clustered subfamilies (e.g., Slits, Amigos) are listed under a single
consensus architecture. Clusters with more structurally diverse proteins are indicated by the brackets; the numbers refer to e-
value and inflation parameter at which the proteins cluster in the MCL programme. See Key for more information.
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Figure 4

eLRR protein predicted architectures (part 2). Consensus architectures are shown for all proteins in the LRR_Tollkin
and LRR_Other groups. See Figure 3 legend for details.

Page 8 of 24

(page number not for citation purposes)



BMC Genomics 2007, 8:320

Table I: List of LRR_Only singletons
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Symbol Name/synonyms

Peptide length

Consensus architecture

Mammalian proteins

BCO031901 novel 872 SS, 7LRR, TM

Cdl4 366 SS, LRRNT, I [LRR, GPI

Gplba Glycoprotein |b, alpha polypeptide 734 SS, LRRNT, 8LRR, LRRCTI, TM
Gplbb Glycoprotein Ib, beta polypeptide 214 SS, LRRNT, 2LRR, LRRCTI, TM
Gp9 Glycoprotein 9 177 SS, LRRNT, 2LRR, LRRCTI, TM
Lrgl Leucine-rich alpha-2-glycoprotein | 342 SS, LRRNT, 9LRR, LRRCT2
Lrrecl7 443 SS, LRRNT, 4LRR, LRRCTI, LRRNT, 3LRR, LRRCTI
Lrrcl9 364 SS, LRRNT, 6LRR, LRRCTI, TM
Lrrc25 297 SS, 2LRR, LRRCTI, TM

Nepn Nephrocan/5730521E12Rik 512 SS, LRRNT, I7LRR, LRRCTI

Nyx Nyctalopin (mouse) 476 SS, LRRNT, I lLRR, LRRRCTI, TM
NYX Nyctalopin (human) 481 SS, LRRNT, I2LRR, LRRRCTI, GPI
Omg Oligodendrocyte myelin protein 440 SS, LRRNT, 7LRR, LRRCT2, GPI
Q722Q7 Synleurin (human) 621 SS, LRRNT, I3LRR, LRRCTI, TM
Tsku Tsukushi/Lrrc54 354 SS, LRRNT, IOLRR, LRRCT2

Fly proteins

Con Connectin 691 SS, LRRNT, I'ILRR, LRRCTI, GPI
Gpl50 Gpl50 1051 SS, LRRNT, I5LRR, LRRCT2, TM
hfw Halfway (1 SS, LRRNT, 4LRR, LRRNT, 2LRR, LRRCT
wdp windpipe 677 SS, LRRNT, 4LRR, LRRCTI, TM
CG1504 392 I1LRR, LRRCTI, TM

CG478l1 469 SS, LRRNT, I'ILRR, LRRCTI, TM
CG50%96 491 SS, LRRNT, I2LRR, LRRCT, TM
CG5541 463 SS, LRRNT, 6LRR, TM

CG5819 915 SS, LRRNT, I7LRR, LRRCTI, TM
CG5888 455 SS, LRRNT, 8LRR

CG7702 537 SS, LRRNT, I ILRR, LRRCTI, TM
CG8852 663 SS, 10LRR, LRRCT, TM
CGl0148 329 SS, 9LRR

CGI11136 799 SS, LRRNT, I3LRR, LRRCTI, TM
CG14351 1316 SS, LRRNT, I2LRR, LRRCTI, TM
CG14662 550 SS, 6LRR, TM

CG14762 470 SS, LRRNT, I4LRR, LRRCTI
CG15658 343 SS, LRRNT, 7LRR, LRRCTI, TM
CG17667 458 SS, LRRNT, 7LRR, TM

CG18095 548 SS, I8LRR, TM

CG18480 550 SS, LRRNT, 7LRR, LRRCT, TM
CG32372 817 SS, 23LRR

Worm proteins

C02Cé6.3 369 SS, LRRNT, 8LRR, LRRCTI, GPI
C41C4.3 630 SS, 8LRR

FIOF2.4 656 SS, LRRNT, I8LRR, LRRCTI, TM
F37E3.2 568 SS, LRRNT, I'lLRR, TM

KO3Al.2 586 SS, LRRNT, 9LRR, LRRCTI, TM
T22E7.1a 341 SS, 8LRR, LRRCTI, TM
T23Gl1.6 653 SS, LRRNT, I5LRR, LRRCT, TM
Y39AIA7 187 SS, LRRNT, 4LRR

Y71F9B.8 542 SS, LRRNT, I4LRR, LRRCTI, TM
Y75B8A.5 448 SS, LRRNT, 6LRR, LRRCTI
Y76A2B.2 782 SS, LRRNT, 6LRR, GPI

List of singleton proteins in LRR_Only group not shown in Figure 3. For the mammalian proteins, only the mouse orthologue is listed, with the
following exceptions: both human and mouse Nyctalopin (Nyx) are listed as they have different topologies (GPI-linked and TM, respectively) and
synleurin is a human gene that has been pseudogenised in mouse.
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Table 2: Complement of eLRR proteins by group, localisation and species

LRR_Ig/FN3

Type | TM GPI Secreted Multi-TM Total
Worm 3 0 | 0 4
Fly 8 0 0 0 8
Mouse 35 | | 0 37
Human 35 | 2 0 38
Total 8l 2 4 0 87
LRR_Tollkin
Worm 3 | 0 0 4
Fly 12 | 3 0 16
Mouse 17 0 2 0 19
Human 17 0 2 0 19
Total 49 2 7 0 58
LRR_Other
Worm 0 0 3 | 4
Fly 0 0 2 5 7
Mouse | 0 9 16 26
Human | 0 9 16 26
Total 2 0 23 38 63
LRR_Only
Worm 1l 2 4 0 17
Fly 23 | 10 0 35%
Mouse 28 5 19 0 52
Human 32 6 19 0 57
Total 94 14 52 0 161*

The numbers of eLRR proteins in each of the four major groups is listed for each species, broken down by predicted protein localisation or
topology: type | transmembrane, GPl-linked, secreted and multiple-membrane-spanning. *includes CG 1504, unclassified localisation.

include the Slit proteins, peroxidasins, and a number of
G-protein coupled hormone receptors, which are all con-
served, as well as a number of mammal-specific families
including the Lgi proteins.

Clustering of known proteins

These analyses provide an overview of relationships
within the eLRR superfamily and highlight a number of
previously unreported associations, allowing us to classify
several novel proteins as paralogues of Lrrc21/Pal, Tpbg/
5T4, Lrrc3 or Chad, for example. Conversely, it is clear
that the recently named NLRR4 is not in fact a paralogue
of the other NLRR proteins (-1, 2 and 3; also confusingly
known as Lirn1, 2 and 3). Also, the Lrig proteins in mam-
mals are orthologous not to kekkon proteins in the fly, as
has been suggested previously [76], but to the lambik pro-
tein in flies (and T21D12.9 in worms). The mammalian
protein Lrrc24 appears to be the closest orthologue of the
kekkon proteins.

A particularly interesting finding is of a number of LRR
proteins which cluster with the Toll-like receptors in both
flies and mammals but which do not have a characteristic
TIR domain. One of these: CD180, also known as RP105,
clusters specifically with Tlr4. This protein lacks a TIR
domain and has recently been found to act as a negative
regulator of Tlr4 [77]. Also in the LRR_Tollkin group in
mammals is a subgroup of more distantly related pro-
teins: carboxypeptidase N subunit 2 (Cpn2), glycoprotein
V (Gp5) and leucine-rich repeat-containing protein 15
(Lrrc15, also known as Lib), (which form a sub-cluster), as
well as insulin-growth factor acid labile subunit (Igfals)
and KIAA0644 (which also has an FN3 domain). Lrrc32
(also known as GARP [78]) and the related protein Lirc33
also fall into this cluster, along with the novel fly protein
CG7509. In the fly there is also another subcluster that
clusters with the Tlrs. This subcluster includes chaoptin,
which is known to function as an adhesion molecule in
neural development [18] and several other novel proteins,
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Figure 5
Group-specific patterns of expansion and diversification. The graphs depict three-dimensional histograms showing the
number of clusters (on the z axis) having x members in the fly and y members in the mouse. The clusters used for this analysis
are listed [see Additional File 6]. Different patterns of expansion (new members in one species of a conserved subfamily) and
diversification (novel subfamilies in one species) are observed across the four major groups of eLRR proteins. Graphs were
generated with the SPSS program.

including one with an FN3 domain (CG40500-PD). The  cal clustering does not hold; in many cases, individual
chaoptin cluster also contains the worm tol-1 protein and  proteins in this broad family cluster into different sub-
the novel worm protein C56E6.6. The large LRR_Tollkin ~ families at different e-values and inflation parameters [see
group is one example where the expectation of hierarchi-  Additional File 4 and discussion].
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Novel protein families

These analyses have also catalogued a large number of
novel proteins and subfamilies encoding eLRR proteins in
worms, flies and mammals. Two novel clusters in mam-
mals are of special interest due to their expression patterns
in the nervous system (see below). One includes two
closely related TM proteins currently identified as
A930017NO06Rik and Lrrc62 in the mouse. These proteins
form a distinct subfamily at high stringency and are char-
acterized by a signal peptide, 6 LRR repeats, an LRR-CT
and an FN3 domain extracellularly, a TM domain and a
long cytoplasmic tail (Figures 3, 6). The cytoplasmic tail
contains a large number of tyrosines but no other detect-
able motifs. Both genes have two exons with the coding
sequence entirely in the 3' exon. We propose to name
these Elfn proteins, for extracellular-Leucine-rich repeat
Fibronectin domain proteins. (A930017NOG6Rik is Elfn1
and Lrrc62 is Elfn2).

Another cluster of related proteins comprises BC004853
(called LRRC26 in humans), Lrrc38, Lrrc52 and Lrrc55,
Lrtm1 and Lrtm2 (names derived from sequencing
projects [79]). These are all LRR_Only proteins with a sig-
nal peptide, an LRR-NT, 6 LRR repeats, an LRR-CT, a TM
domain and a short cytoplasmic tail containing a short
stretch of acidic residues (Figures 3, 7). Lrtm1 and 2 also
contain conserved predicted PDZ-binding sequences at
their C-termini, suggestive of synaptic localisation. These
proteins cluster in a group of six at low stringency (e23,
level 1), but break into several subclusters at higher strin-
gency (including Lrtm1 and 2 and Lirc38 and 55). They
are defined as paralogues in the Ensembl database but
whether they represent a true "subfamily" is unclear. For
convenience, we refer to this cluster as the "Elron" cluster,
for extracellular-Leucine-Rich repeat-Only proteins, but
have not renamed individual members.

In flies there are several subfamilies of novel proteins.
These include CG7800 and CG18249, both LRR_Only TM
proteins, CG32055 and CG6749, both secreted LRR_Only
proteins and CG10824 and CG11910, which cluster as a
pair at e35, level 2 and in a group of four with CG4950
and CG5810 at e25, level 1. CG4950 is a predicted TM
protein while the others in this cluster are predicted
secreted proteins.

In worms, a subfamily emerges comprising sym-1
(C44H4.3) and sym-5 (C44H4.2), both of which interact
genetically with mec-8[80], along with C44H4.1 and two
other predicted proteins K07A12.2 and ZK682.5. There
are also several cases of apparent one-to-one worm-fly
orthology of novel proteins, including CG16974 and
7C262.3a, CG7509 and M88.6a, CG15151 and T01G9.3
and CG5819 and K07A12.2.

http://www.biomedcentral.com/1471-2164/8/320

Genomic clustering

To assess the possibility that some related genes might
occur in clusters in the genome we examined genomic
locations for all genes in our eLRR dataset [see Figure 2
and Additional File 3]. Not surprisingly, many closely
related genes occur in tandem: five of the six Slitrk genes
occur in two clusters in the mouse, one on the X chromo-
some and one on chromosome 14. Other genes occurring
in tandem include Tlr7 and TIr8, Isir1 and Isir2, Lrrc21/Pal
and Lrrc22, Lrre8b, ¢ and d and Fshr and Lhcgr. We also
found a number of examples where more distantly related
genes occur in tandem in the genome, lending further
support to the clustering results presented above, includ-
ing Cpn2, Gp5 and Lrrc15/Lib. In the fly, several Toll-
related genes occur in adjacent pairs (Tollo with Toll-6,
Toll-7 with 18w and Toll-9 with CG5195, a novel non-TIR-
containing member of the LRR_Tollkin group), as do tar-
tan and capricious. Similarly, a number of the novel sub-
families identified above occur in tandem including
CG7800 with CG18249, CG32055 with CG6749 and
CG10824 with CG5810. In the worm genome, the C44H4
genes (.1, .2 (sym-5) and .3 (sym-1)) also occur in tandem.

We observed an interesting situation in the family of small
secreted proteoglycans that includes decorin, biglycan,
and related genes. Proteins in this family fall into several
subclusters using TribeMCL, in agreement with previous
analyses [81]. Interestingly, many of them are also
grouped in tandem in the genome in several different loci
but each locus contains a representative of two or three
subclusters. This suggests two early duplications in tan-
dem and a subsequent triplication of the entire locus, with
some additional gene losses and duplications [82]. The
Ecm2 gene is also located in tandem in one of these loci
(with Aspn, Omd and Ogn) but it is highly divergent from
the other proteins and whether it should be considered a
member of this family is debatable [74].

Expression analyses

In order to begin to assess the possible involvement of
these novel genes and families in neural development we
analysed the expression of a subset of them by in situ
hybridisation in the mouse or fly developing nervous sys-
tem. Elfn1 and Elfn2 show rather complementary expres-
sion patterns in the embryonic and postnatal mouse brain
(Figure 8). Elfnl is strongly expressed in interneurons in
the hippocampus and cortex while Elfn2 is expressed
more broadly in the cortex in presumed glutamatergic
neurons and in the hippocampus in pyramidal and gran-
ule cells. In the basal ganglia, Elfn1 is expressed in the glo-
bus pallidus, while Elfn2 is expressed more strongly in the
other major division, the striatum. These patterns are
maintained in adults, according to the Allen Brain Atlas
[83]. Based on abundance of cDNAs in the Unigene data-
base, it appears that expression of Elfn2 is quite restricted
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Alignment of Elfn proteins. Predicted amino acid sequences from Elfn| (A930017NO06Rik) and Elfn2 (Lrrc62) from the
mouse were aligned with CLUSTALW. Amino acids are colour-coded by chemical properties: blue: acidic; green: hydroxyl/
amine/basic/Q; magenta: basic; red: small, hydrophobic (including aliphatic Y). Brackets indicate the extent of predicted motifs,
including signal sequence (SS), six LRRs (the notch under the bracket indicates the end of the conserved N-terminal portion of
each LRR), LRR-CT domain, fibronectin type-3 (FN3) domain and a transmembrane domain (TM). No recognizable LRR-NT
domain was predicted. Note that the final LRR comprises the highly conserved N-terminal half-repeat only (consensus: Lxx-
LxxLxLxxN). Identical residues are indicated by an asterisk, highly conservative substitutions by two dots and conservative sub-

stitutions by a single dot.
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Alignment of proteins in Elron cluster. Predicted amino acid sequences from Lrtm|, Lrtm?2, Lrrc38, Lrrc55, Lrre52 and
BC004853 from the mouse were aligned with CLUSTALW. Brackets indicate the extent of predicted motifs (consensus limits
are shown); the notch under the bracket indicates the end of the conserved N-terminal portion of each LRR. Arrowheads
denote exon-intron boundaries. The short cytoplasmic domain is poorly conserved, but does contain similarly positioned
acidic residues (E/D) in all members. Lrtm| and 2 end in consensus PDZ-binding domains (SSSA/SSVA), underlined. Abbrevia-
tions, amino acid colour-code and conservation symbols as in Figure 7.
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to the nervous system (Unigene reference: Mm.323188),
while Elfn1 is also expressed in endocrine and reproduc-
tive tissues (Unigene reference: Mm.237102).

Among the genes in the Elron cluster, three (Lrtm1, Lrtm2
and Lrrc55) are expressed in discrete regions of the devel-
oping mouse brain, in particular marking different nuclei
in the developing thalamus as well as a number of other
areas (Figure 9). According to the Allen Brain Atlas, the
expression of Lrtm1 declines after development and is
practically undetectable in adults. In contrast, Lrtm2 is
maintained at high levels in adults in a number of discrete
regions including the granule cell layer in the olfactory
bulb, the basal ganglia, dorsal thalamus, dentate gyrus,
layers 2/3 and 5 in the cortex and Purkinje cells in the cer-
ebellum. Lrrc55 is also maintained at high levels in mitral
cells in the olfactory bulb, in the habenula and in layers 4
and 6a in the cortex. Lrrc38 is expressed at lower levels
during development (data not shown) but is expressed in
a specific pattern in the adult brain, including the CA3
region of the hippocampus and the zona incerta [83].
BC004853 and Lrrc52 do not appear to be expressed in the
embryonic or postnatal brain. This result is confirmed by
the absence of expression in the Allen Brain Atlas and by
analysis of cDNA abundance in the Unigene database,
which show that Lrrc52 (Mm.159799) is specific to mus-
cle and testis and that BC004853 (Mm.275228) is almost
exclusively expressed by the vesicular organ in the male
reproductive system. Similar cDNA abundance data for
the other four genes show that LRTM2 (in this case
human, Hs.585579) is almost brain-specific, while
Lrtm1(Mm.95780), Lrrc38 (Mm.94020) and Lrrc55
(Mm.291095) are also expressed in a small number of
other tissues.

The expression of the Elfn genes and of several genes in the
Elron cluster is thus consistent with a possible role in
specifying neuronal connectivity, especially thalamic and
cortical connectivity.

The expression patterns of many of the Drosophila eLRR
genes identified in the bioinformatic screen were also
examined in the embryo by in situ hybridisation. A sum-
mary of the expression patterns we identified and those
previously described is presented [see Additional File 7].
We describe here the expression patterns of those novel
eLRR genes identified in our survey that include expres-
sion in the nervous system (Figure 10). CG7702 is
expressed dynamically in the peripheral nervous system
(PNS), appearing at stage 11 and disappearing during
stage 15. CG40500 is exclusively expressed in the CNS and
is restricted to a subset of cells at the ventral midline,
beginning during stage 14 and remaining into stage 17.
CG11910 expression is restricted to the most dorsal layer
of the CNS in a position consistent with the longitudinal
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glia. This expression begins at stage 12 and continues
throughout embryonic development. CG5888 is
expressed from stage 5 throughout the embryo with
exception of the anterior tip (data not shown). At stage 15
expression of CG5888 is initiated in a subset of cells in the
CNS. CG11136 is expressed in an anteroposterior stripe
within the neurogenic region and in the prospective brain
lobes during stages 8-10 (data not shown) and in discrete
cells at the midline of the CNS during stages 11 and 12.
From stage 11 onwards CG11136 expression is seen pre-
dominantly in the somatic musculature.

Discussion

This study aimed to catalogue the full repertoire of eLRR
proteins in the proteomes of worms, flies, mice and
humans, to examine their evolutionary relationships and
to identify novel proteins and subfamilies that may have
important roles in nervous system development.

Methodological issues

Generating this dataset required identifying all LRR pro-
teins, distinguishing eLRR proteins among this set (i.e.,
correctly predicting cellular localisation) and analyzing
evolutionary relationships across a large set of highly
divergent, multi-domain, repetitive proteins in four dis-
tantly related species. For all of these tasks we found the
use of single programs only partly reliable. It was espe-
cially difficult to derive a single set of parameters for any
program that would reliably predict the presence of a par-
ticular motif or correctly identify orthologues and para-
logues for all proteins in the dataset. To overcome this
problem we developed an approach of parallel annota-
tion with many different programs, followed by manual
curation to arrive at a consensus architecture for each
gene, along with a hierarchical clustering method
designed to reveal relationships at multiple levels. This is
in contrast to the automated one-size-fits-all approaches
currently used by some of the large genome databases.

A comprehensive, curated dataset

Our bioinformatics searches and exhaustive manual cura-
tion have yielded what we are confident should be an
extremely comprehensive set of eLRR proteins across the
four species examined. Rather than employing a series of
strict filters we used the combined evidence from a variety
of prediction programs and from clustering to distinguish
eLRR proteins from intracellular LRR proteins. We think it
is therefore unlikely that we have missed many true eLRR
genes in any of the organisms. This obviously depends
however on the quality and comprehensiveness of the
gene predictions in our starting datasets. There may in the
first instance be cases of genes that have simply not been
predicted at all yet. We also came across numerous cases
of mispredicted genes where only a fragment was pre-
dicted or where a single ORF was split into two predicted
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Figure 8

Expression of Elfn genes in developing mouse brain.
Expression as defined by RNA in situ hybridisation is shown
for Elfnl (A-C) and Elfn2 (D-F) in coronal sections of mouse
brain at three ages (embryonic day |15 (EIS5), A, D; postnatal
day zero (PO0), B, E; and postnatal day 9 (P9), C, F). Elfnl is
strongly expressed in globus pallidus and interneurons in cor-
tex and hippocampus, while Elfn2 is expressed in striatum
and in projection neurons in cortex and hippocampus.
Arrowheads in A and B indicate presumed interneurons
migrating towards cortex. Abbreviations: cp, cortical plate;
Cx, cortex; DG(vz), ventricular zone of dentate gyrus; gcl,
granule cell layer (of dentate gyrus); GP, globus pallidus; hab,
habenula; hc, hippocampus; hi, hilus (of dentate gyrus); hy,
hypothalamus; pcl; pyramidal cell layer (of hippocampus); SB,
subiculum; sp, subplate; so, stratum oriens (of hippocampus),
str, striatum. Scale bar: E15, 200 microns; PO and P9, 500
microns.

genes, for example. In most of these cases the fragments
still clustered with other eLRR genes and a full-length
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sequence was often identifiable from one of the starting
datasets. It is difficult to estimate how common such
annotation errors are but it is reasonable to expect that
they may have caused us to miss a small number of addi-
tional eLRR genes or to misclassify some as cytoplasmic.

The manual curation of these sequences has added sub-
stantially to the value of this dataset. An appreciable per-
centage of predicted protein sequences had to be
amended in some way to yield what we consider to be the
"correct" predicted full-length protein. These corrections
were based on various factors including comparison of
architectures across orthologues or paralogues, the
absence of an expected signal peptide or the location of
the predicted start codon with respect to the signal pep-
tide.

Because degenerate or atypical LRRs have been described
[4,49,69] that do not match the consensus motifs defined
by SMART and Pfam we designed a customised program,
LRRscan, to search for a minimal consensus that defines
animal extracellular LRRs. We also searched for minimal
consensus motifs that define LRR-NT and several varieties
of LRR-CT domains found in different types of proteins,
including small proteoglycans and G-protein-coupled
receptors [4]. These predictions were compared with the
results of SMART and Pfam [see Additional File 2] and a
consensus architecture was predicted by manual inspec-
tion, based on converging evidence. The results match
those of proteins with known structures [5-7,70-73,84],
significantly better than a combination of SMART and
Pfam alone (allowing for semantic differences in whether
the final half repeat is counted as one and whether puta-
tive LRRs overlapping with NT or CT domains are
counted). The predicted transmembrane topologies are
also based on converging evidence from multiple pro-
grams and have also been subject to expert evaluation.
Nevertheless, the architectures presented should be
viewed as predictions that will require experimental veri-
fication. In particular, the absence of a predicted LRR-NT
or LRR-CT domain does not mean there is no domain
present that is performing a capping function; there may
be additional varieties of such domains that have not yet
been defined. In addition, we have chosen a representa-
tive isoform for each gene; the database thus contains no
information on alternative splice forms or other isoforms
that may have differing architectures.

Hierarchical clustering

The hierarchical clustering method we used gets around
the problem of defining a unique set of parameters that is
suitable to all proteins and levels of inter-relationship. In
most cases, it generates a tree-like structure that reveals
relationships across many different levels at once. This is
a difficult problem for multiple alignment programs such
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Figure 9

Expression of Elron cluster genes in developing mouse brain. Expression as defined by RNA in situ hybridisation is
shown for Lrtm| (A, B), Lrtm2 (C, D) and Lrrc55 (E, F) in coronal sections of mouse brain at two ages (EI5, A, C, E and PO, B,
D, F). Differential staining in subsets of thalamic nuclei and across cortex is observed. Abbreviations: Am, amygdala; dLGN,
dorsal lateral geniculate nucleus; dTh, dorsal thalamus; hab, habenula; hc, hippocampus; RS, retrosplenial cortex; sp, subplate;
str, striatum; VLGN, ventral lateral geniculate nucleus; ZI, zona incerta. Scale bar: EI5, 200 microns; PO, 500 microns.

as CLUSTALW or T-COFFEE, which work well for closely
related proteins but which are not designed to compare
highly divergent proteins with differing architectures. Pre-
vious attempts using multiple alignment programs to
derive a phylogenetic tree across many eLRR subfamilies
at once contain numerous differences from our results
and from known relationships [3,85].

In some cases, the results of TribeMCL depart from the
expected hierarchical relationship. This is the case for the
extended LRR_Tollkin group of proteins, including many
proteins characterized by an eLRR domain but lacking an
obvious TIR domain. While the clustering of these pro-
teins with the TLR group is quite convincing, based on
direct inspection of the BLAST results, it is extremely diffi-
cult, indeed impossible with these data, to discern more
discrete relationships within this large family. The reasons
for the anomalous hierarchical clustering results with
these genes may relate to the large number of LRRs present
in these proteins and the very slight differences in pairwise
similarities across the group. At different levels of strin-
gency small differences in BLAST scores may be amplified
by the TribeMCL algorithm to result in membership of
different clusters that do not share the expected hierarchi-
cal relationship. Attempts to resolve the phylogeny of all

the genes in this group using the T-COFFEE multiple
alignment program were no more enlightening, resulting
in a starburst pattern where the roots of each subfamily
are too close to each other to resolve (data not shown).
Despite these limitations, the TribeMCL analysis has
revealed a group of eLRR proteins that are clearly more
related to the TLR proteins than to other LRR_Only pro-
teins.

Nomenclature

The current nomenclature of eLRR proteins is very confus-
ing, with multiple synonyms for many genes [see Addi-
tional File 3], many of which do not give accurate
information on relationships. For example, there is a large
number of proteins designated LrrcX, where X is a
number. These names were apparently derived from large-
scale genome projects and do not represent a specific sub-
family of related proteins. For that reason we have pro-
posed the names Elfn1 and 2 for one novel subfamily. We
also identify another discrete cluster of six "novel" pro-
teins (which we refer to as the Elron cluster), although
whether they represent a true subfamily is open to debate.
In addition, some novel proteins that group into small
subfamilies with Lrrc21/Pal, Chad, Lrrc3 and Tpbg/5T4
[see Additional File 3, Figures 3 and 4] could be given
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Figure 10

Expression of novel eLRR genes in the Drosophila embryo. (A) A lateral view of a stage 12 embryo showing expression
of CG7702 in the midgut and the peripheral nervous system, PNS expression is indicated by a black arrow. (B) CG40500
expression in a stage |6 embryo, expression can be seen at the midline (indicated by a black arrow). (C and D) Lateral and ven-
tral views, respectively, of a stage |15 embryo showing CG/ 1910 expression in the central nervous system. (E) A stage 16
embryo with CG5888 expression in the CNS and midgut chamber, midgut chamber is indicated by a black arrow. (F) A dis-
sected ventral nerve cord fillet with CG5888 expression (shown at 400% magnification). (G) A stage | | embryo showing

CGI 1136 expression at the midline, indicated by a white arrow and (H) a stage |5 embryo showing expression of CG/ 1136 in
the somatic musculature. All whole embryos are shown at 200% magnification. In all views anterior is to the left, in all lateral
views dorsal is at the top, B, D and E show ventral views and G shows a dorsal view.

names to reflect that fact. Finally, while Lirnl, 2 and 3
(also known as NLRR1, 5 and 3) form a subfamily, the
recently named NLRR4 [46] is not in fact a member of this
subfamily. It does not have the Ig domain present in these
genes and does not cluster with those genes at any param-
eters.

Comparative analyses of major groups

For the purposes of some of the analyses we split the eLRR
proteins into four groups, based on architecture and clus-
tering results. The LRR_Ig/FN3 group includes the largest
percentage of mammal-specific subfamilies, many with
multiple members. Almost all of the proteins in this group
are associated with the membrane, either type I TM or
GPI-linked. The majority of these subfamilies (including
Ntrks, Lrfns/Salms, Flrts, Lrigs, Netrin-G ligands, and
Lingo proteins) show discrete expression in the nervous
system and many of them have been shown to have func-
tions in neural development [3] and/or have been impli-
cated in neurological or psychiatric disease [49].
Expansion of this class of proteins is thus correlated with
the evolution of the complex mammalian brain and plau-

sibly contributed to it by providing the requisite specifi-
city of cellular interactions to mediate a large number of
selective connectivity decisions. We have identified a
novel mammal-specific LRR_FN3 subfamily, the Elfn pro-
teins, with discrete nervous system expression.

The LRR_Only group shows independent diversification
in flies and mammals, with a large number of singletons
(unclustered proteins), suggesting rapid sequence diver-
gence. This group also contains a number of proteins
implicated in nervous system development or function
including the Nogo-receptor, Lirtm and Slitrk families,
and connectin, Gp150, Tpbg/5T4 and Nyx for example.
We have identified six proteins in another novel mam-
mal-specific cluster, the Elron cluster, several of which
show highly suggestive expression patterns in the devel-
oping nervous system. We have also discovered a number
of novel fly proteins in this class that are similarly dis-
cretely expressed in the embryonic nervous system.

The LRR_Tollkin group shows a different pattern of evolu-

tion, with parallel expansions in flies and mammals, of
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both the Toll-like receptor genes and of the genes that
cluster with them. In mammals, the latter include Cpn2,
Gp5 and Lirc15 (Lib), which form a subcluster and which
are also arrayed in tandem on chromosome 3 in humans
(16 in mouse). These proteins have diverse binding part-
ners and biochemical functions but are all involved in
inflammation in some way: as a regulatory subunit of car-
boxypeptidase [86], as a component of the platelet glyco-
protein complex (which also contains the eLRR proteins
GP1ba and GP1bp[87]), and as a mediator of the glial
response to B-amyloid [88], respectively. They form a
slightly larger cluster with Igfals, the acid-labile subunit of
insulin growth factor, which regulates IGF signaling [89]
and with the novel gene KIAA0644, which has an FN3
domain in addition to the LRR domain. Lrrc32/GARP [90]
and its paralogue Lrrc33 also cluster with this group at e-
40, level 1, but not at some lower levels. The novel fly gene
CG7509 also clusters with this group at e49, level 1 and
with other fly genes including chaoptin at some other lev-
els. Whether it can be said to be directly orthologous to
any (or all) of these mammalian proteins is hard to deter-
mine. The other fly genes in this group are mostly novel
and include CG40500-PD, which has an FN3 domain and
which shows very discrete expression in the midline of the
embryonic nervous system.

The LRR_Other group is an arbitrary default group as it
contains many unrelated genes or subfamilies. Neverthe-
less, it is interesting to note that this group contains the
highest percentage of genes with orthologues across all
species, including worms (e.g., the slits and peroxidasins
and some of the seven-transmembrane hormone recep-
tors). This group also includes the mammalian Lgi sub-
family, recently implicated in epilepsy and myelination.

Human-mouse differences

Only a small number of proteins are specific to either
human or mouse. There are two cases where there are
genes in humans that are not represented in mouse that
both seem to be caused by specific loss in mice, rather
than representing human-specific genes. The human gene
synleurin appears to have been pseudogenised in rodents,
although it is present in many other species besides
humans (including dog, cow and chick, for example).
Also, MXRA5 (or adlican), a paralogue of the large
secreted protein Igsf10, is not detectable in the mouse
genome (but is present in cow, dog and opossum, for
example).

There is also a small number of examples where there has
been independent expansion of subfamilies in either
humans or mice. These include the Toll-like receptors
TLR10 in humans and TLR11, 12 and 13 in the mouse.
They also include the unusual subfamily of LRRC37
genes, which is represented by a single gene in the mouse
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(called Lrrc37a) but multiple, highly related genes in
humans (LRRC37A, A2 and A3 and LRRC37B, as well as a
number of other partial duplicates lacking LRRs). These
are located in tandem on chromosome 17 and have arisen
from multiple duplications of the BRCA1 region in pri-
mates [91]. The extracellular domains of these TM pro-
teins are characterised by six predicted LRRs but these
make up only a small fraction of the overall protein,
which is highly variable in length. The functions and
expression patterns of these unusual proteins are
unknown.

Conclusion

This survey presents a comprehensive overview of the rep-
ertoire of eLRR proteins in various species and their inter-
relationships. As such, it provides the necessary founda-
tion for a systematic analysis of the functions of this class
of genes, which are likely to include prominently neural
development, innate immunity and inflammation. In
particular, expansion of the eLRR proteome is correlated
with increasing complexity of the nervous system. Given
the functions and discrete expression patterns of many
known members, it seems likely that this superfamily,
including the novel proteins identified here, could pro-
vide the requisite specificity of cellular interactions to
mediate a large number of selective connectivity deci-
sions.

Methods

Database pipeline

Protein sequences for all four species were retrieved from
the Ensembl FTP site: Mouse release 36 NCBI m34 assem-
bly (36471 sequences); Human release 36, NCBI 35
assembly (33869 sequences); Worm release 37, Worm-
base 150 dataset (26032 sequences); Fly release 37, BDGP
assembly release 4 (19369 sequences). In addition, 68627
mouse and 57366 human protein sequences were down-
loaded from the International Protein Index, version 3.14.
A further 24273 human and 19258 mouse protein
sequences were retrieved through the web interface [92]
from the August 2006 version of the Mammalian Gene
Collection. We also included a further 879 sequences
comprising many from an older version of the Mamma-
lian Gene Collection (February 2006) that were absent
from the August 2006 release as well as several more
added manually. All sequences were stored for easy access
in a MySQL database.

The data set was reduced through use of a small Perl script
that filters out duplicate copies of sequences for each spe-
cies and keeps either the Ensembl version or an entry with
a flag indicating its preference after manual curation. The
non-redundant data sets for mouse, human, worm, and
fly contained 85991, 74866, 22698, and 16857
sequences, respectively.
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These sequences were subjected to an all-against-all Blast
search (NCBI BlastP, version 2.2.12) carried out on a
high-performance Linux cluster. An expectation cut-off of
0.1 was specified, and the top 200 hits for each search in
tab-delimited format (-m8) were reported. The Blast
results were parsed with the mcxdeblast tool using expec-
tation cut-offs from e-10to e40and formatted for clustering
with the mcxassemble tool (options -q -r max -map -b),
both part of the MCL package (version 1.005, 05-272).
Each output was then subjected to Markov clustering with
the MCL program using inflation parameters ranging
from 1.2 to 5. The program Tribe-families was then run to
produce the final clusters.

For proteins from the IPI and MGC set that did not have
gene IDs assigned, we produced alignments using T-Cof-
fee (version 3.93) with their best Blast hits. If sequences
with matching protein names were found that are fully
contained in another one or showed identity over at least
95% and sequence difference of maximal 15% we trans-
ferred Ensembl gene ID annotation where available.
Through this, 2490 sequences from mouse and 1458
sequences from human were assigned Ensembl gene IDs.
The gene information was used to remove isoforms from
the clusters: only the protein with the longest sequence
was kept for each gene. In some cases, where dubious
excessive amino acids seem to have been added to a
sequence, manual curation was necessary to overwrite this
behavior and select proteins that seemed biologically
more plausible.

For prediction of architecture we used HMMpfam of the
HMMER package (version 2.3.2) [93], together with the
SMART (release 25 Nov. 2004) and Pfam (version 19.0)
HMM libraries. Transmembrane predictions were pro-
duced by the programs TMHMM (version 2.0 [58]),
HMMTOP (version 2.1 [63]), and TMPred [64]. Signal
Sequence analysis was carried out using SignalP (version
3.0 [59]) and GPI-link results calculated by the BIG-PI
program [65] were obtained for human [94] and fly [95].
In addition, information about the genomic location and
synonyms for a gene were retrieved from Ensembl, MGI,
Wormbase and Flybase. Clustering and annotation infor-
mation were combined into a large spreadsheet for the
final output.

LRRscan

Based on a number of published studies [1,4,49,96] and
our own inspection of the sequences in our dataset we
defined the minimal N-terminal part of a single extracel-
lular-type LRR as: LxxLxLxxN. This is followed by a C-ter-
minal part of each LRR of typically 10-21 amino acids
that are quite variable. Consensus sequences for the LRR
capping domains (LRR-NT at the N-terminus and LRR-CT
at the C-terminus) have been defined by [4], including
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three different consensus sequences for the LRR-CT
domain, derived from different classes of proteins. LRR-
CT1 is the most common type, LRR-CT2 is found in small
proteoglycans and LRR-CT3 in G-protein-coupled recep-
tors:

LRR-CT1 domain: P(w/f)xCxCxoxWLxxw(9-24)oxC(9-
18)CxxP

LRR-CT2 domain: nl(s/t)xogxxdFCxoxxxxo(4-5)y(4)Lxx
Npo(6)PxxfxCo

LRR-CT3 domain: LxxAxL(s/t)YPSHCCAFxN(6-19)nosx
CnxsxxR...

LRR-NT domain: (7-10)CP(2-5)CxC(4-17)oxC(2-4)ox
xoPxxoP

x" represents any residue and "o" a non-polar residue [4].

We derived a minimal consensus sequence from each of
the above and designed a new program, LRRscan, to
search for these sequences as well as the minimal LRR
defined above. The search for LRR-NTs and LRR-CTs
focuses exclusively on the cysteines, which are the most
conserved amino acids in these motifs. The regular expres-
sions applied are as follows:

LRR: L.L.L.N.{10,21}

LRR-NT: C.{2,8}C.C.{6,19}C.{11,15}
LRR-CT1: ...C.C.{19,34}C.{9,18}C.{3}
LRR-CT1_short: ...C.C.{19,34}C.{22}
LRR-CT2: .{10}C.{30,31}C.

LRR-CT3: ..CC.{14,27}C.{6}

(Each dot represents any single letter, numbers in curly
brackets indicate a repeat frequency, either exact or as a
range where two numbers are given. Dots at the beginning
or end of a domain denote spacing from the start or end
of other motifs, including LRRs).

LRRscan was written in Perl and has been especially
designed for the detection of LRR motifs. Input consists of
a sequence file in FASTA format as well as search parame-
ters. Each sequence is scanned for patterns, specified as
strings, and alternative amino acids for certain positions,
specified as triplets comprising position, alternative
amino acid and score. The LRR pattern used in our search
was 'LxxLxLxxN', where a small 'x' acts as a placeholder for
any amino acid. The alternative options were amino acids
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A, 1, V, F, G, M, or W for any of the leucines and C, S, or T
instead of the asparagine. Each exact match between an
amino acid and the search pattern produces a score of 1,
whereas a match to an alternative letter only scores 0.4.
The scores are summed up over the length of the pattern
and a minimum score of 2 would lead to further consid-
eration of the sequence region. To allow for maximum
sensitivity an exhaustive search is carried out, i.e., all pat-
terns that match the search criteria are initially captured
even if they overlap.

In the next step the regions are grouped into stretches of
LRRs located within a specific distance from each other, in
our case allowing for a gap of 20 to 30 amino acids
between starts of pattern. Within a sequence of LRRs the
overlaps are removed by only keeping the highest scoring
regions. However, overlaps between sets of LRRs are
allowed in the LRRscan output. Such occurrences are indi-
cated in the output by a backward shift in the sequence
location, i.e. the end of one stretch of LRRs might be
printed again at the beginning of the next one. This is usu-
ally interpreted in the manual curation process as an
insertion in the LRR domain. Each sequence is also
scanned for a minimal LRR-NT pattern in the upstream
sequence and for a minimal LRR-CT pattern (one of three
possible types) in the downstream sequence. These are
allowed to overlap with predicted LRRs to maximise the
detection rate. The presence of additional elements from
the more complete consensus sequences defined by
Kajava was considered as supportive evidence in the man-
ual curation process. Two alternative types of LRR-NT
have been proposed, with different numbers of cysteines
[97]. We found it difficult to ascertain whether these were
really evolutionarily distinct or whether some cysteines
were simply not well conserved and SMART and Pfam can
detect both types. For these reasons we have not
attempted to distinguish between these putative types of
LRR-NT. Similarly, some LRR-CT domains could not be
categorized definitively as CT1 or CT2 subtypes; these are
denoted as LRR-CT in Table 1 and [see Additional File 3].

The output from LRRscan reports the sequence that was
searched and the positions of the motifs found followed
by the sequence of the motifs themselves. The LRRs are
numbered sequentially (within a set of grouped LRRs)
and spaced to easily distinguish the well-conserved N-ter-
minal from the more variable C-terminal part [see Addi-
tional File 2]. We ran LRRscan on a set of protein
sequences for which HMMpfam had predicted LRR motifs
already (using the PFAM and SMART databases). The high
sensitivity might result in an excessive number of false
positives if applied to other sequences, but our goal was to
further increase the detection rate of LRRs in sequences
that showed an initial sign of LRR occurrence. A summary
graphical output was generated for the output of each pro-
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gram for each sequence and aligned for easy comparison
[see Additional File 2]. Through extensive manual cura-
tion a consensus predicted architecture was produced. It
was found during manual curation that the cysteine resi-
dues in the NT and CT domains were not always posi-
tioned strictly according to the above consensuses and
some flexibility was allowed for in these cases. We
counted the final half repeat before the CT domain as one
and did not include putative LRRs that overlapped with
well-defined LRR-NT or LRR-CT domains in the total
number of repeats.

RNA in situ hybridization
Please [see Additional File 8] for details.
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type 3; GPI, glycosyl phosphatidyl inositol; Ig, immu-
noglobulin; LRR, leucine-rich repeat; LRR-CT, leucine-rich
repeat C-terminal domain; LRR-NT, leucine-rich repeat N-
terminal domain; TIR, Toll/IL-1 receptor; Tlr, Toll-like
receptor; TM, transmembrane.

Authors' contributions

The project was designed by KM and GT. SO'K and KH car-
ried out bioinformatics analyses. JD, KW, TO and SM per-
formed analyses on mouse genes. SA performed analyses
on fly genes. The manuscript was prepared by KM, JD,
KW, SA, KH and GT. All authors read and approved the
final manuscript.

Additional material

Additional file 1

Curated sequences of eLRR proteins. List of curated sequences of eLRR
proteins in FASTA format.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-320-S1.doc]

Page 21 of 24

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-8-320-S1.doc

BMC Genomics 2007, 8:320

Additional file 2

LRRscan_out.html. Graphical comparison of HMMpfam and LRRscan
results. A compressed archive (Irr_plots.tar.gz) containing 372 images in
Portable Network Graphics (PNG) format, an information file
(0OREADME.txt) and two HTML-formatted pages, one with output from
LRRscan (LRRscan_out.html) and one that links all the images together
(00plots.html). After downloading, the archive must be to uncompressed
and unpacked. Most modern operating systems (e.g. Windows XP, Mac
OS X) will do this automatically when double-clicking on the file. Alter-
natively, you can use the free tool 'Stuffit Expander' (http://
wwuw.stuffit.com) or your favourite unpacker. On Linux or Unix systems
apply the following command: tar zxf lrr_plots.tar.gz. Please note that
some browsers might uncompress the file during download without chang-
ing the file ending. If you have trouble unpacking the file try renaming it
to Irr_plots.tar and double-click on it again. Unpacking the archive creates
a new folder (Irr_plots) in which you can find a file called '00plots.html'".
Open this file in a web-browser, either by double-clicking onto it or by
using the 'File->Open File' menu (or equivalent) of your browser. This
will bring up a web-page with plots of LRR motifs for 372 proteins. If you
click on an image you can see the text output from LRRscan in a new win-
dow.
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Table S1. Complete list of genes, clustered at e40.
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Table S2. Complete list of genes, clustered at e25.
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Table S3. Complete list of genes, clustered at e10.
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Table S4. List of clusters used in Figure 5.
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Table S5. Summary of fly gene expression
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