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Single-cell RNA-sequencing (scRNA-seq) technologies enable the measurements of gene
expressions in individual cells, which is helpful for exploring cancer heterogeneity and
precision medicine. However, various technical noises lead to false zero values (missing
gene expression values) in scRNA-seq data, termed as dropout events. These zero values
complicate the analysis of cell patterns, which affects the high-precision analysis of intra-
tumor heterogeneity. Recovering missing gene expression values is still a major obstacle in
the scRNA-seq data analysis. In this study, taking the cell heterogeneity into consideration,
we develop a novel method, called single cell Gauss–Newton Gene expression Imputation
(scGNGI), to impute the scRNA-seq expression matrices by using a low-rank matrix
completion. The obtained experimental results on the simulated datasets and real scRNA-
seq datasets show that scGNGI canmore effectively impute the missing values for scRNA-
seq gene expression and improve the down-stream analysis compared to other state-of-
the-art methods. Moreover, we show that the proposed method can better preserve gene
expression variability among cells. Overall, this study helps explore the complex biological
system and precision medicine in scRNA-seq data.
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INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) technologies have revolutionized the throughput and
resolution of bulk RNA sequencing in transcriptome studies (Tal 2014; Jaitin et al., 2014; Gierahn
et al., 2017; Zheng GXY. et al., 2017). The scRNA-seq can characterize the gene expression of
individual cells without ignoring the potential cell heterogeneity (Macosko et al., 2015). In recent
years, the advancements of scRNA-seq have significantly enhanced the classification of cell subtypes
(Usoskin et al., 2015; Zeisel et al., 2015), the quantification of gene expressions (Xue et al., 2013;
Treutlein et al., 2014), and the identification of differentially expressed genes (Lee et al., 2014; Kim
et al., 2015). The scRNA-seq analysis is also used in other studies, such as the immune system
(Bjorklund et al., 2016; Papalexi and Satija, 2018), the brain neuronal mechanisms (Zeisel et al., 2015;
Lake et al., 2016; Lake et al., 2018), and the cancer-related diseases (Zheng C. et al., 2017: Guo et al.,
2018; Peng et al., 2019; Zhang et al., 2020). As the precision medical technology continues to develop,
more researchers are using the scRNA-seq data analysis to explore cancer heterogeneity. However,
the sparse gene expression matrix limits the performance of scRNA-seq technology to provide
accurate measurements in single cells. For example, the zero counts of the typical matrix may have
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exceeded 90% of the counts in the droplet-based datasets (Huang
et al., 2018; Van-Dijk et al., 2018). Most zero counts are produced
by the partially low expression of genes, the low-sequencing depth
of cells, and dropout events (Kharchenko et al., 2014; Lun et al.,
2016; Ziegenhain et al., 2017; Patruno et al., 2021). Especially, the
dropout events may lead to non-biological zero counts (missing
gene expression values), which hinder a high-precision analysis in
scRNA-seq data (Gong et al., 2018; Huang et al., 2018; Li and Li,
2018; Van-Dijk et al., 2018).

Recently, several imputation methods have been proposed to
address the problems of missing gene expression values in
scRNA-seq data. We can roughly divide these methods into
four categories: model-based, smoothing-based, deep learning-
based, and matrix theory-based methods. For example, Li et al.
proposed scImpute (model-based) to automatically identify
dropouts and detect outlier cells with additional information
about the cell types (Li and Li, 2018). Huang et al. developed
SAVER (model-based) by utilizing a Markov chain Monte Carlo
algorithm to infer all the parameters, but results in the extremely
high computational complexity (Huang et al., 2018). Van-Dijk
et al. put forward MAGIC (smoothing-based) to impute missing
gene expression values by projecting the data into a low-
dimensional space (Van-Dijk et al., 2018). Gong et al.
proposed DrImpute (smoothing-based) by using the average
values of the gene expression in similar cells (Gong et al.,
2018). However, the smoothing-based methods reduce the
gene expression variability between cells. Taking advantages of
the superior performance of the neural network, Arisdakessian
et al. developed DeepImpute (deep learning-based) to impute
missing gene expression values by learning the scRNA-seq data
patterns (Arisdakessian et al., 2019), which leads to the
unexplainable problem for the scRNA-seq data analysis.
Linderman et al. put forward ALRA (matrix theory-based) to
impute the missing values for the expressed genes (non-zero
values) by using matrix approximation, which preserves the
biological meaning of non-expressed genes (Linderman et al.,
2018). Although these methods can impute missing gene
expression values at a certain level, they have not considered
the cell heterogeneity. It is still a challenge to recover missing gene
expression values more effectively in scRNA-seq data. Previous
studies (Narayanamurthy et al., 2019; Nguyen et al., 2019;
Kummerle and Verdun, 2021; Zilber and Nadler, 2021) have
shown that the low-rank matrix can recover missing values based
on a few observable entries due to its low-rank structure.
Considering this, we apply low-rank matrix completion to
missing value imputation in scRNA-seq data.

This study proposes a novel scRNA-seq imputation method,
called single cell Gauss–Newton Gene expression Imputation
(scGNGI), to impute the missing gene expression values in
scRNA-seq data. It associates the cell heterogeneity with the
low-rank matrix, and regards dropout events as the main
source of missing values (Lun et al., 2016; Ziegenhain et al.,
2017). Gauss–Newton linearization is applied to the
approximation iteration of sparse gene expression matrices in
the proposed scGNGI method. We conduct a large number of
experiments on the real and simulated scRNA-seq datasets by
comparing with six state-of-the-art methods. The obtained

experiment results show that our method, scGNGI, is an
effective tool to recover the biologically meaningful expression
of genes in scRNA-seq data, improve the low-dimensional
representation and clustering analysis, and recover the gene-
wise relationship. We also evaluate its performance for the
imputation of marker gene expression and the preservation of
gene expression variability among cells. All in all, this study helps
explore complex biological systems, cancer-related diseases, and
precision medicine in scRNA-seq data.

MATERIALS

The gene expression data analysis helps evaluate the imputation
performance in scRNA-seq data. Real human and mice datasets
were used for this experiment. Furthermore, we also use
simulated scRNA-seq datasets to evaluate the proposed
method extensively.

Real scRNA-seq Datasets
We collected two real scRNA-seq datasets from the studies of
human embryonic stem cells (ESCs), and mouse arcuate nucleus
and median eminence cells (ANMECs), respectively.

Human ESC scRNA-seq Dataset
The first real data set is from a human study, where Chu et al.
dissected the human embryonic stem cell entry into endoderm
progenitors (Chu et al., 2016). In this human ESC study, four
expected count matrices are provided. We only used one of
them, which contains 1,018 single cells measured on the lineage-
specific progenitor cells. The 1,018 single cells are divided into seven
known cell types: undifferentiated H1 and H9 ESCs, definitive
endoderm derivative cells (DECs), endothelial cells (ECs),
foreskin fibroblasts (HFFs), neuronal progenitor cells (NPCs),
and trophoblast-like cells (TBs). To some extent, these different
cell types reveal the heterogeneity for each type of progenitors. These
gene expression measurements can be regarded as the “Cell Type”.
We downloaded the expected count matrix from the data repository
NCBI Gene Expression Omnibus (GEO access number: GSE75748).
This countmatrix is analyzed as one table with columns representing
the cells and rows representing the genes. We obtained
1,018 samples (single cells) and 19,097 attributes (genes).

Mouse ANMECs scRNA-seq Dataset
The second real dataset is from a mouse study about arcuate
hypothalamus and median eminence cell types, where Chu et al.
performed the single-cell RNA-seq for two adult male RIP-Cre
mice (Saunders et al., 2017). The gene counts matrix contains
25 cells without the detailed subpopulation information. These
gene expressionmeasurements can be viewed as the “RIP-Cre”. We
obtained the expected count matrix from the data repository NCBI
Gene Expression Omnibus (GEO access number: GSE90806). We
obtained 25 samples (single cells) and 30,927 attributes (genes).

Simulated scRNA-Seq Datasets
We used the R package Splatter (v1.17.1) (Zappia et al., 2017) to
generate three simulated scRNA-seq datasets with three different
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dropout rates (56.3%, 50.2%, and 13.4%). The R function
splatSimulate was used by setting the different number of genes,
cells, and cell types. Consequently, we obtained “SimulatedData 1”,
“Simulated Data 2”, and “Simulated Data 3” for scRNA-seq count
data, respectively. “Simulated Data 1” contains 18,000 genes and
1,000 cells with five cell types, “Simulated Data 2” includes
13,000 genes and 700 cells with four cell types, and “Simulated
Data 3” has 1,000 genes and 800 cells with three cell types. In the R
function (splatSimulate) settings, we used the default values to
generate the ground truth for the remaining parameters.

Data Pre-Processing
To reduce the error produced by the technical noise in the scRNA-seq
dataset, we performed pre-processing for all the data. Firstly, we
removed the duplicate genes for all real and simulated scRNA-seq
datasets. Then, we filtered out genes expressed in <5 cells, and cells
with expressed genes <200 for all datasets. Next, we performed the
log-transformation, log(count + 1), for all filtered data, which
reduces the variances in the raw read counts. Finally, we obtained
Cell Type data with 17,191 genes and 1,018 cells, RIP-Cre data with
11,217 genes and 25 cells, Simulated Data 1 with 17,392 genes and
1,000 cells, Simulated Data 2 with 12,543 genes and 700 cells, and
SimulatedData 3 with 995 genes and 800 cells. To obtain the artificial
missing data, we randomly masked the 2%, 5% and 10% non-zero
gene expressions for four datasets: Cell Type, RIP-Cre, Simulated
Data 1, and Simulated Data 2. To illustrate the effectiveness of the
proposed method on a large number of missing values, the 10 and
35% non-zero gene expressions were randomly masked in Simulated
Data 3. Note that we can obtain the corresponding ground truth from
the raw data for these artificial missing data to evaluate the
performance of imputation methods in the experiments.

METHODS

Notations
The single-cell gene expression matrix is denoted as
X � (xij) ∈ Rm×n, where m is the number of genes, and n is

the number of cells. The updating gene expression matrix is
denoted as X′ � (xij

′) in the optimization process, and the final
imputed gene expression matrix is denoted as Xp � (xp

ij). The
number of cell types and non-zero gene expression values are
denoted as c and d, respectively. Furthermore, f refers to the
imputation operator, and ε is regarded as the linear measurement.

Proposed Method
To impute the missing values of scRNA-seq data, we proposed a
novel scRNA-seq imputation method i.e., scGNGI, by using the
low-rank matrix completion. The overview of gene expression
imputation using the proposed scGNGI method is shown in
Figure 1. Firstly, these scRNA-seq datasets are preprocessed to
obtain the gene expression data X; then, X is inputted into the
proposed scGNGI, which produces the imputed data. Finally, the
imputed gene expression matrix can be used to perform the
downstream analysis including the mask analysis for missing
data, visualization of cell types, clustering analysis, marker gene
analysis, and coefficient of variation for the gene expression.

Imputation Operator and Linear Measurements
For the gene expression matrix X ∈ Rm×n, the set of non-zero
gene expression values (observed entry) are denoted as Ω �
{xij|xij ≠ 0} (|Ω| � d). Let ID � {(i, j)} denotes the index of
non-zero values in X. Given the decomposition X � UVT

with U ∈Rm×r and V ∈Rn×r, (m + n)d variables are involved.
To recover the missing gene expression values more accurately,
we set the imputation operator f and the linear measurement ε.
The imputation operator is a linear map f: Rm×n → Rd, which
is to extract d non-zero entries from gene expression matrix X.
These extracted d non-zero gene expression values are
compressed into a vector as the output of the imputation
operator; for example, f(X) � f(UVT ) ∈Rd. Since the d
non-zero values are updated after iteration, we use a sampling
operator σΩ to extract the d observed gene expression values
corresponding to the position of the d non-zero values in X. The
output of σΩ is set as the linear measurement ε. For instance,
ε � σΩ( ~X) � {eij | (i, j) ∈ ID} ∈Rd, where ε is a vector of size d,

FIGURE 1 | Overview of the proposed scGNGI for single-cell RNA-seq imputations and downstream evaluations.
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~X � X + βUtVT
t is the updated decompositions of X on Ut and

Vt, and β is the hyper-parameter.

Mathematical Formulation of scGNGI
The low-rank matrix completion is widely used for recovering
lost information (Nguyen et al., 2019; Kummerle and Verdun,
2021; Zilber and Nadler, 2021), where the missing data are usually
estimated by using the low-rank structure of the known data for
highly sparse matrices. To consider the cell heterogeneity, we
associate the number of cell types and the rank of gene expression
X together. Here, we designed a single cell Gauss–Newton Gene
expression Imputation (scGNGI), which utilizes the low-rank
structure and cell heterogeneity to obtain the optimal
approximation of missing data in scRNA-seq data.

The proposed scGNGI is to minimize the differences between
the imputation operator and the linear measurements, which is
formalized as follows:

min
X

����f(X) − ε
����22

s.t. rank(X) ≤ c, (1)

where f is the imputation operator (f: Rm×n → Rd), ε is the
linear measurements (ε ∈Rd), c is the known or potential cell types.

Optimization Solution
To solve the optimization problem in Eq. 1, we consider the
decomposition X � UVT. Equation 1 is equivalent to

min
(U,V)

����f(UVT ) − ε
����22. (2)

Gauss–Newton linearization is applied to the approximation
iteration of the sparse gene expression matrix. We use the
Singular Value Decomposition (SVD) algorithm to obtain the
initial estimates (U1, V1). Next, we acquire an update (ΔU,ΔV),
which minimizes Eq. 2. Given (U2, V2) � (U1 + ΔU, V1 + ΔV),
Eq. 2 can be equivalently written as

min
(ΔU,ΔV)

����f(U1V
T
1 + U1ΔVT + ΔUVT

1 + ΔUΔVT) − ε
����22. (3)

The second order term ΔUΔVT can be neglected, which yields the
general scheme as follows:

(ΔU1,ΔV1) � argmin
ΔU,ΔV

����f(U1V
T
1 + U1ΔVT + ΔUVT

1 ) − ε
����22,

(U2, V2) � (U1 + ΔU1, V1 + ΔV1).
(4)

To make a better optimization, we design a family of solutions of
Eq. 4 by using a scalar as the hyper-parameter. By changing the
variables to be optimized ΔU � U − 1+β

2 U1, ΔV � V − 1+β
2 V1 in

Eq. 4, we get

(U1
′, V1

′) � argmin
U,V

����f(U1V
T + UVT

1 − βU1V
T
1 ) − ε

����22,
(U2, V2) � (1 − β

2
U1 + U1

′,
1 − β

2
V1 + V1

′). (5)

In this work, the procedure of the proposed scGNGI is
summarized as in Algorithm 1. The initial (U1, V1) are

calculated by the solution of SVD on the gene expression matrix
X. Since the LSQR algorithm (Paige and Saunders, 1982) can find
the least-squares solution to a large, sparse, and linear system of
equations, we use it to solve the optimal solution of the least squares
for E′

t. In general, the LSQR algorithm is implemented in some
standard packages. During the optimization process shown in Eq. 5,
we tried to explore different optimization solutions utilizing different
β values. Empirically, the solutions with β � 1 had the better
performance.

In the t + 1 iteration, we obtained the optimal estimate values
X′ � (xi,j

′) � Ut+1VT
t+1. Obviously, the value is non-negative in the

gene expression matrix. Therefore, we define

S � (si,j) � ⎧⎨⎩ 0 if xi,j
′ < 0

xi,j
′ otherwise,

(6)

where i � 1, 2, . . . , m and j � 1, 2, . . . , n. Since the observed data
of the gene expression matrix X are usually more accurate, we
only impute the missing data. Thus, we define

Xp � (xp
i,j) � { si,j if si,j ∉ Ω

xi,j if xi,j ∈ Ω, (7)

where Ω is the non-zero gene expression values in the gene
expression matrixX. Finally, we obtain the optimal imputed gene
expression matrix X*.

Algorithm 1. The proposed scGNGI method.

EXPERIMENTS AND RESULTS

Experimental Settings
Evaluation Metrics
To evaluate the imputation accuracy of the proposed scGNGI
method, we quantify the consistency between imputed data and
full data by using four metrics, which are Frobenius Error (FE),
Correlation (Cor), Mean Squared Error (MSE), and
L1 Norm (L1).

FE is defined as follows:

FE �

∑m
i�1∑n

j�1
∣∣∣∣∣(Xp

i,j −Xi,j)pM∣∣∣∣∣2√
∑m

i�1∑n
j�1

∣∣∣∣Xi,j

∣∣∣∣2√ (8)
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wherem is the number of genes, n is the number of cells,X* is the
imputed gene expression matrix,X is the gene expression matrix,
and the indicator matrix is M � (mi,j), mij ∈ (0, 1), that
indicates the missing entries in scRNA-seq data.

Furthermore, X* and X are transformed to X̂
*
and X̂,

respectively. X̂
* � X**M and X̂ � X*M. Here, X̂

* ∈ Rm×n and
X̂ ∈ Rm×n, where m is the number of rows with X, and n is the
number of columns with X.

Cor is defined as follows:

Cor � cov(X̂p
, X̂)

σX̂pσX̂
� E[(X̂p − μX̂p)(X̂ − μX̂)]

σX̂pσX̂

, (9)

where c ov, σ, and μ are the covariance, standard deviation, and
mean values of the samples, respectively.

MSE is defined as follows:

MSE � 1
mn

∑mn

i�1 (X̂p − X̂)2 (10)

L1 is defined as follows:

L1 � 1
mn

∑mn

i�1
∣∣∣∣X̂p − X̂

∣∣∣∣ (11)

To evaluate the effectiveness of scGNGI imputation for cell
clustering, Normalized Mutual Information (NMI) is defined
to measure the consistency between estimated and predefined
cell clusters in scRNA-seq data. Let U′ � {u1′, u2′, . . . , u′k} and V′ �
{v1′, v2′, . . . , v′k} denote the estimated and true clustering partition
across k class, respectively.

NMI is defined as follows:

NMI � 2I(U′, V′)
H(U′) +H(V′) . (12)

To measure gene expression variation between cells before and
after imputation, Coefficient of Variation (CV) is defined to
evaluate different imputation methods.

CV is defined as follows:

CV �
∣∣∣∣∣∣∣∣∣∣∣
μXki

″

σXki
″

∣∣∣∣∣∣∣∣∣∣∣, (13)

where i ∈ (1, 2, . . . , c), c is the number of cell types, ki is the
number of cells from cell type i,Xki

″ represents the gene expression
of cell type i, and μ and σ are the mean values and standard
deviation of gene expression, respectively.

Parameter Settings
In the proposed scGNGI method, there is an important
hyperparameter β in Eq. 5 to control the update of ΔU and
ΔV. Empirically, the solution of β � 1 resulted in better
performance. Thus, we set β equal to 1 as the default value in
the experiment. In Eq. 1, c is viewed as the number of known cell
types. Empirically, c is set to five for the scRNA-seq data of
unknown cell types, where c = 5 represents the number of
potential cell types. All experiments of the proposed scGNGI
and other methods were run on the four NVIDIA Tesla Ampere
A100-PCIe-40 GB GPUs and Ubuntu18.04 system.

Mask Analysis for the Missing Data
To assess the imputation accuracy, we randomly mask non-zero
gene expression values through data masking experiments to
compare the recovering performance of different methods. For
four scRNA-seq datasets (Cell Type, RIP-Cre, Simulated Data 1,
and Simulated Data 2), we randomly obtained the non-zero gene
expression of the observed data with masking percentages 2%,
5%, and 10%, respectively. These gene expression values were
masked to be zero values, which can generate a masked matrix.
For the newly generated gene expression matrix, we applied
different imputations to recover the missing values.
Subsequently, we computed Cor, FE, MSE, and L1 between
estimated and masked values to measure the imputation
performance. As shown in Figure 2, we show the results of
60 masking replicates to measure the correlation between
imputed and masked values. Generally, the proposed scGNGI
outperforms other existing methods in Cell Type, Simulated Data
1, and Simulated Data 2. The scImpute, MAGIC, and
DeepImpute follow the performance of the proposed scGNGI
closely, while ALRA, DrImpute, and SAVER do not show a
wonderful performance. For instance, in Cell Type data, the
correlation of the masked truth and estimated values by
scGNGI is 0.72 with the masking percentage of 2%, while the
results of other methods are 0.67 (scImpute), 0.68 (MAGIC), 0.67
(DeepImpute), 0.63 (ALRA), 0.61 (DrImpute), and 0.27
(SAVER), respectively. In addition, these methods produce
similar results for four scRNA-seq datasets with the masking
percentage of 2, 5, and 10%. As expected, the performances of the
proposed scGNGI and other methods descend slowly as the
masking percentage increases. Especially, for the dataset of
unknown cell types (RIP-Cre), our method still has a better
performance than most methods in Figure 2, even though
MAGIC is slightly superior to scGNGI. This is because our
method considers the cell heterogeneity and utilizes the
number of known cell types as a constraint for the
optimization solution. Therefore, this shows the proposed
scGNGI method has a better performance, especially for the
scRNA-seq data of known cell types.

As shown in Figure 3, the results of 60 masking replicates
show the Frobenius error between the masked truth and imputed
values. Our method obtained the smallest Frobenius error value
than all other methods on the four datasets: Cell Type, RIPCre,
Simulated Data 1, and Simulated Data 2. For example, in Cell
Type data, the Frobenius error value of the masked truth and the
estimated values by scGNGI is 0.09 with the masking percentage
of 10%, while the results of the other methods are 0.11
(scImpute), 0.10 (MAGIC), 0.10 (DeepImpute), 0.11 (ALRA),
0.21 (DrImpute), and 0.28 (SAVER), respectively. In addition, the
MSE and L1 results also show a better performance in our
method, as shown in Supplementary Figures S1, S2. These
masking experiments show that the proposed scGNGI method
can accurately recover the true gene expression for missing values
in real and simulated scRNA-seq data.

Visualization of Different Cell Types
The scRNA-seq data consist of many cell types and the high dropout
rate results in the vague differences among cell types. Imputation can
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help recover cell types for downstream clustering analyses by
improving the scRNA-seq data quality. To measure the
imputation performance on separating known cell types more
accurately, we visualized the imputed data performed by different
methods on synthetic datasets (Simulated Data 1, Simulated Data 2,
and Simulated Data 3) with different masking percentages (10% and
35%). The t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm (Van-der-Maaten and Hinton, 2008) is applied to
visualize the imputed scRNA-seq data with known cell-type
labels. To compare the visualization results more reasonably, we
also used the Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) algorithm for visualization.

As shown in Figure 4 and Supplementary Figure S3, the
proposed scGNGI is superior to other imputation methods on
Simulated Data 1 with 5 known cell types. Compared to the
visualization of raw data with a 10% masking percentage, SAVER
and DrImpute have no obvious improvement, and scImpute

slightly improved the scRNA-seq data. However, scGNGI can
maintain a similar cell sub-population structure to Ground Truth
according to the cell clustering results (Figure 4 and
Supplementary Figure S3), which helps separate known cell
types. For Simulated Data 2 with 4 known cell types, we can find
that scGNGI still outperforms other imputation methods, as
shown in Supplementary Figures S4, S5, which is similar to
the result of Simulated Data 1.

To further evaluate the cell sub-population separability, we
utilized Simulated Data 3 with 3 known cell types. Lots of zero
values cause mixed cell sub-populations in the raw data. The
different masking percentages (10% and 35%) make it more
difficult to distinguish cell sub-population according to the
first visualization plot in Figure 5 and Supplementary Figures
S6–S8. However, the imputed Simulated Data three by the
proposed scGNGI can help separate the cell cluster. As shown
in Figure 5 and Supplementary Figure S6, scGNGI resembles

FIGURE 2 | Correlation between the masked truth and imputed values by using different methods in the scRNA-seq data masking experiments. Rows represent
the four different datasets (Cell Type, RIP-Cre, Simulated Data 1, and Simulated Data 2). Columns represent three different masking percentages (2%, 5, % and 10%).
Boxplots represent the correlation values from 60 masking replicates, where the correlation of each cell is calculated in turn and the mean correlation values are plotted
across cells.
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the most to that of Ground Truth compared to other methods.
The visualization of the scRNA-seq data imputed by MAGIC,
SAVER, and DrImpute shows that many cells from different cell
types overlap with each other as raw data with a 10% masking
percentage. As can be seen from these visualization results, the
cells are divided into different small groups in the same cluster,
which does not reflect the cell types. This is inconsistent with the
visualization of the cells with similar data structures from the
same cell type.

As shown in Figure 5 and Supplementary Figure S6, the
visualization of the data imputed by scGNGI suggests that the
clear data structures are similar to Ground Truth. For Simulated
Data 3 with a 35% masking percentage, our method still
outperforms scImpute, SAVER, MAGIC, ALRA, and DrImpute,
as shown in Supplementary Figures S7, S8. In Figure 5 and
Supplementary Figure S8, we can find that the imputation
performance of different methods descends with the increase of

masking percentages in raw data. This shows that more missing
data may hinder the accurate imputation of scRNA-seq data.
However, our methods can still improve the scRNA-seq data,
which helps separate many cell types more clearly.

Accordingly, the visualizations by t-SNE and UMAP show
that our method can provide higher-quality data by imputing
missing values of scRNA-seq data, which makes various cell
subpopulations more separable. Compared to other methods,
the proposed scGNGI method is more helpful for recovering
missing values caused by dropouts and true cell clusters.

Clustering Analysis of Different Imputation
Methods
After obtaining the imputed data, K-means is applied to the
clustering cells. Normalized Mutual Information (NMI) is used
as the clustering metrics to measure the results on real and

FIGURE 3 | Frobenius error between the masked truth and imputed values by different methods in the scRNA-seq data masking experiments. Rows represent the
four different datasets (Cell Type, RIP-Cre, Simulated Data 1, and Simulated Data 2). Columns represent three different masking percentages (2%, 5%, and 10%).
Boxplots represent the Frobenius error values from 60masking replicates, where the Frobenius error of each cell is calculated in turn and themean Frobenius error values
are plotted across cells.
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simulated datasets. The clustering accuracy is showed in Figure 6.
We compared scGNGI and other imputation methods in Cell
Type, Simulated Data 1, and Simulated Data 3. As shown in
Figure 6A, the NMI obtained by the scGNGI is 0.576 for Cell
Type data. Compared with ALRA (0.574), DrImpute (0.556),
MAGIC (0.563), and SAVER (0.57), the scGNGI exhibits higher
accuracy. For Simulated Data 1, the scGNGI (0.987) outperforms
ALRA (0.851), DrImpute (0.978), and SAVER (0.981), and obtains

the same clustering accuracy withMAGIC (0.987) in Figure 6B. In
addition, one can find that the proposed scGNGI is slightly lower
than scImpute according to the clustering accuracy in Figures
6A,B. This shows that scGNGI has better imputation
performances in Cell Type and Simulated Data 1 datasets,
which helps improve the identification of the cell types.

In Simulated Data 3, we obtained two different scRNA-seq
datasets at the missing value ratios of 10 and 35% to evaluate the

FIGURE 4 | Imputation performance on the Simulated Data 1 with 5 known cell types. Visualization of the cells by the first two t-SNE components on the raw data,
missing data, and imputed ones by different methods. Each dot is a single cell, and different colors represent different cell types.

FIGURE 5 | Imputation performance on the Simulated Data 3 with 3 known cell types. Visualization of the cells by the first two UMAP components on the raw data,
missing data, and imputed ones by different methods. Each dot is a single cell, and different colors represent different cell types.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9526498

Huang et al. Imputing Missing Gene Expression

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


clustering accuracy of imputed data by different imputation
methods. As shown in Figure 6C, the proposed scGNGI
reaches the highest accuracy (0.501) compared with ALRA
(0.5), DrImpute (0.476), MAGIC (0.342), SAVER (0.476), and
scImpute (0.489). Furthermore, our method still maintains the
best imputation performance to help identify cell types in
Figure 6D. Specifically, the clustering performance of the
imputed data by all imputation methods gradually decreases as
the missing value ratio increases, as shown in Figures 6C,D.
Accordingly, the proposed scGNGI method helps identify
different cell types more accurately in real and simulated data.

Marker Genes Analysis
In biology, the marker genes define the cell populations and reveal
substantial cell markers to distinguish different cell types. Apart
from improving the overall imputation accuracy, the proposed
imputation method needs to capture the dependence relationship
between marker genes. For the real scRNA-seq data (Cell Type
dataset), we identified marker genes (KLF4, NANOG, SOX2, CD9,
CDH11, EFNA2, and PRSS50) by searching markers of diverse cell
types in CellMarker databases (Zhang et al., 2019). Given that these
scRNA-seq data were obtained from complex biological systems,
there are many non-linear gene–gene dependencies from complex
and multi-cell type samples. It is also much more difficult to
capture the non-linear relationships between genes. Furthermore, a
marker gene can be used to delineate between taxonomic lineages.
Here, we examine the non-linear relationships between the marker

gene pairs in the Cell Type data imputed by different methods and
explore the imputation performance of different methods for the
marker genes.

Recovery of Non-linear Gene–Gene Relationships
To explore the non-linear relationships between marker genes in the
imputed data, we use the maximal information coefficient (MIC)
(Reshef et al., 2011) to evaluate the recovery of non-linear gene–gene
relationships. In statistics, the MIC is a measure of non-linear
association between two variables, which belongs to the maximal
information-based non-parametric exploration (MINE). Here, the
MIC is defined to measure the non-linear dependence structure
between estimated gene pairs. As shown in Figure 7, the proposed
scGNGI obtains the highest MIC value
(MIC � 0.411, P.value � 5.515 × 10−26) for the marker gene pair
(NANOG and PRSS50), compared to scImpute, SAVER, ALRA, and
DeepImpute. Additionally, Supplementary Figure S9 shows that the
non-linear recovering performance by our method outperforms
scImpute, SAVER, and DeepImpute for the marker gene pair
(EFNA2 and PRSS50). While the MIC value by the proposed
scGNGI (MIC � 0.374, P.value � 4.439 × 10−06) is slightly lower
than ALRA (MIC � 0.411, P.value � 6.064 × 10−70) in
Supplementary Figure S9. For other marker gene pairs
(SOX2 and PRSS50, CDH11 and PRSS50), our method still better
recovers the non-linear relationships between marker genes, as
shown in Supplementary Figures S10, S11. Although our
method fails to recover the strong non-linear relationships

FIGURE 6 | Clustering performance on four scRNA-seq datasets. The results of K-means clustering are measured by the Normalized Mutual Information (NMI) on
real and simulated data using different imputation methods.
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(MIC> 0.8) in the four marker gene pairs, it can still recover the
general and weak non-linear relationships between marker genes
(MIC> 0.3). However, as shown in Figure 7 and Supplementary
Figures S9–S11, not including ALRA in Supplementary Figure S9,
theMIC values between imputedmarker genes by the other methods
fail to exceed 0.3. This shows that the proposed scGNGI method can
recover the non-linear relationships between marker genes.

Imputation Performance of Different Methods for
Marker Genes
To show the imputation performance of different methods for the
marker genes, we computed the correlation coefficient between
marker genes in the raw and imputed data by different methods.
As shown in Figure 8, for the marker gene (CD9), we obtain the
highest correlation coefficient (r � 0.964) performed by the

FIGURE 7 | Scatter plots of the expression levels between marker genes (NANOG and PRSS50) in the raw and imputed data by using different methods. On the
top, the corresponding maximal information coefficient (MIC) and p value are shown for gene expression values. The two-sided Wilcoxon rank-sum test is used for p
values. Each dot represents a cell.

FIGURE 8 | Scatter plots of the expression level for the marker gene (CD9) in the raw and imputed data by using different methods. On the top, the corresponding
correlation coefficient (r) and p value are shown for gene expression values. The two-sided correlation test is used for p values. Each dot represents a cell.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 95264910

Huang et al. Imputing Missing Gene Expression

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


proposed scGNGI method, compared to scImpute, SAVER,
MAGIC, ALRA, and DeepImpute. This shows that our
method can maintain a better correlation with the expression
level of the raw marker gene (CD9). Furthermore, for another
marker gene (NANOG), we find that the proposed scGNGI can
obtain similar results with marker gene (CD9), as shown in
Supplementary Figure S12. Accordingly, our method can
better impute expression values of marker genes in the real
scRNA-seq data.

Coefficient of Variation for the Gene
Expression
Missing gene expression in a cell affects the scRNA-seq data
analysis of the corresponding cell type.

It is necessary to evaluate the imputation of all missing values
within individual cell types. To quantify the recovering performance
of the mean gene expression within individual cell types, we
computed the coefficient of variation (CV) to represent the gene
expression variability between cells. For each cell type, we compared
the CV of non-zero values (before imputation) with the CV of the
imputed values (after imputation) between cells. As shown in
Figure 9, two CV values (before and after imputation) from DEC
cells are constructed in Cell Type data, and the gradually changing
colors represent the different zero proportions (non-zero mean gene
expression levels). Generally, if the dropout events result in zero
values of the gene expression, the two CV values are expected to be
similar before and after imputation. This is because the distributions
of non-zero values and imputed values are consistent before and after
imputation. Conversely, if the low gene expression leads to these zero
values, theCVvalue after imputation is expected to be higher than the
CV value of non-zero gene expression. This is because the gene
expression values of non-zero values are usually higher than the

imputed data before and after imputation. Accordingly, the CV value
after imputation is either higher than or equal to the CV before
imputation. In Figure 9, we find that our results satisfy the
aforementioned explanation, where two CV values of most genes
from the DEC cells are similar before and after imputation in Cell
Type data. In addition, the CV values of most imputed genes are
higher for DEC cells imputed by ALRA, DrImpute, SAVER, and
scImpute. This suggests that ALRA, DrImpute, SAVER, and
scImpute regard non-dropout events as the source of most zero
values. For almost all genes, we can obtain the smaller CV values of
imputed data byDeepImpute, which shows thatDeepImpute reduces
the gene expression variability within DEC cells after imputation.

As shown in Supplementary Figures S13–S18, we also examine
other cell types (EC, H1, H9, HFF, NPC, and TB) in the Cell Type
dataset. For theEC,H1,H9,HFF,NPC, andTBcells, we stillfind similar
resultswithDECcells. Especially, for thefive cell types in SimulatedData
1, and four cell types Simulated Data 2, these results show similar
patterns with the Cell Type data, as shown in Supplementary Figures
S19–S23, and Supplementary Figures S24–S27. More reasonably, the
zero values are viewed as the dropout events for the imputation of the
scRNA-seq data. The aforementioned results suggest that the proposed
scGNGI regards the dropout events as themain source ofmissing values
to impute the scRNA-seq data. Generally, ourmethod canpreserve gene
expression variability within each cell type while imputing the
expression values of scRNA-seq data.

DISCUSSION

Single-cell RNA-sequencing (scRNA-seq) technologies have
improved the measurements of gene expression in individual cells.
However, various technical noises complicate the analysis of cell
patterns, which leads to false zero values (missing gene expression

FIGURE 9 | Gene expression variation between the raw data and the imputed data for DEC cells in the Cell Type dataset. The coefficient of variation (CV) is
computed for each gene in all DEC cells after imputation (y-axis) by using different methods, and the x-axis represents the CV of non-zero cells before imputation. Each
dot represents a gene, and the mean level of the non-zero values is distinguished by its color.
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values) in the scRNA-seq data. It is still a challenge to recover missing
gene expression valuesmore effectively in the scRNA-seq data.Weuse
Gauss–Newton imputation to impute the missing values in scRNA-
seq expressionmatrices. The experimental results have shown that the
proposed method can effectively impute missing values.

In detail, the experimental results of the mask data show that the
missing values imputed by our method are closer to the real values
(ground truth). Since our method considers the cell heterogeneity by
regarding the number of cell types as an optimization constraint, we
make the imputed data maintain the characteristics of the original data
to a greater extent. Compared with other imputation methods, it is
more reasonable to impute missing values by using the proposed
methods. Furthermore, the results of cell type visualization show that
the obtained high-quality data using the proposed method make
various cell subpopulations more separable. The cluster results show
that our method can improve the clustering accuracy more effectively.
In biology, themarker genes define the cell populations. The recovered
marker gene expressions have shown that the proposed method helps
distinguish different cell types. To recovermean gene expressionwithin
individual cell types, we explore the coefficient of variation (CV)
between cells before and after imputation. The result of CV shows
that the gene expression variability can be better preserved within each
cell type using the proposed scGNGI method. Given of the limitations
of the scGNGI model, our method does fail to achieve an excellent
recovery performance for a large number of missing values, such
as more than 70% of the missing items in the scRNA-seq data.
To recover a large number of missing values, we will consider
applying prior information from bulk data to the proposed
scGNGI. In addition, we can consider improving the proposed
scGNGI method for other biological data, such as sequence data. In
the future, the improved scGNGI will be applied to some features
generated by some tools, such as BioSeq-Analysis2.0 (Liu, et al., 2019)
and BioSeq-BLM (Li, et al., 2021), which would improve the
performance of the current method.

CONCLUSION

The single-cell RNA sequencing technology enhances the
characterization of thousands of individual cells. Recovering
missing gene expression values improves the analysis of cell
patterns at the single-cell level. Here, we present a novel
imputation method, i.e., scGNGI, to impute the missing gene
expression values in the scRNA-seq data by combining the low-
rank matrix completion with the potential cell heterogeneity. The
experimental results show that scGNGI effectively imputes the
missing values of gene expression and improves the low-
dimensional representation. Furthermore, the cells clustering
and identifying cell types are also enhanced in the imputed
data. It is easier to recover the non-linear relationships
between imputed marker genes. Especially, the results of the
gene expression variability among cells suggest that the proposed
scGNGI views the dropout events as the main source of zero
values to estimate the missing gene expression more reasonably.
In general, our method is more helpful for exploring the complex

biological system in scRNA-seq data and improving the cancer-
related disease therapy and precision medicine.

SUMMARY

The single-cell RNA sequencing technology has improved the analysis
of individual cells in transcriptome studies. The proposed scGNGI is an
effective imputation method to impute the scRNA-seq data by using
the low-rank matrix completion with the potential cell heterogeneity.
scGNGI improves the low-dimensional representation and the
identification of cell types in the low-quality scRNA-req data. In
addition, scGNGI facilitates the clustering accuracy of cells and the
non-linear relationships between marker genes. The results of gene
expression variability show that scGNGImodels the zero values of gene
expression caused by the dropout events. Specifically, ourmethods help
explore the complex biological system and improve the analysis about
cancer-related diseases in scRNA-seq data. In the future, we will
consider imputing a large of missing values in a scRNA-seq matrix
by improving the proposed scGNGI.
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