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Automated exploitation of the big configuration
space of large adsorbates on transition metals
reveals chemistry feasibility

Geun Ho Gu® 2% Miriam Lee3, Yousung Jung® 2% & Dionisios G. Vlachos® 3%

Mechanistic understanding of large molecule conversion and the discovery of suitable het-
erogeneous catalysts have been lagging due to the combinatorial inventory of intermediates
and the inability of humans to enumerate all structures. Here, we introduce an automated
framework to predict stable configurations on transition metal surfaces and demonstrate its
validity for adsorbates with up to 6 carbon and oxygen atoms on 11 metals, enabling the
exploration of ~108 potential configurations. It combines a graph enumeration platform, force
field, multi-fidelity DFT calculations, and first-principles trained machine learning. Clusters in
the data reveal groups of catalysts stabilizing different structures and expose selective cat-
alysts for showcase transformations, such as the ethylene epoxidation on Ag and Cu and the
lack of C-C scission chemistry on Au. Deviations from the commonly assumed atom valency
rule of small adsorbates are also manifested. This library can be leveraged to identify cata-
lysts for converting large molecules computationally.
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he advancement in density functional theory (DFT) has

enabled mechanism development and in silico catalyst

design!. DFT calculations have been performed for several
small-molecule chemistries, including hydrogen evolution and
oxidation reactions®3, oxygen reduction and evolution
reactions*8, CO, reduction, N, reduction®!0, and CH,
activation!!. Computing the species configurations and thermo-
chemistry is essential, as correlated uncertainty quantification
reveals that more thermodynamic parameters than activation
energy parameters affect the kinetics!2. Adsorbate configurations
are prerequisites in computing activation energies of elementary
reactions. While manual DFT calculations have been adequate for
small molecules, they are impractical for large molecules due to the
combinatorial size of the reaction network that includes all
intermediates!3, Thus, an extension of computations to large
molecules on transition-metal catalysts has been lagging. Estab-
lishing a framework for modeling large molecules would thus be
essential to significantly accelerate mechanistic and discovery stu-
dies, for example, in renewable energy, such as biomass pyrolysis
and gasification!41°, biomass upgrade via hydrogenation!®-18 and
hydrodeoxygenation!®?0, and hydrogen production via biomass
reforming?!, and recycling of plastics.

Surprisingly, the challenge in DFT calculations of adsorbates is
not merely the computational cost-databases in the order 10° are
becoming commonplace?2-2°. A challenge is the automated gen-
eration of stable adsorbate configurations on surfaces. The
adsorption configuration of large molecules is combinatorially
intractable to enumerate in practice due to the multiple adsorption
sites and several surface-binding atoms?6. Each stable configuration
can undergo different chemistry, and the reaction network thus
depends critically on identifying all (or at least the most) stable
configurations. It turns out that this task escapes intuition.

Several tools can ease the generation of stable configurations.
Peterson et al.>” developed a global adsorbate configuration opti-
mization method using the constrained minima hopping method,
but its scalability is limited as DFT-based annealing is used. Med-
ford and coworkers utilized the minima hopping with faster density
functional theory tight-binding (DFTB) methods for bidentates, but
obtaining reliable DFTB parameters is not trivial?8. Bligaard and
coworkers have implemented graph-based enumeration for biden-
tate adsorbate configurations2’, and Greeley and coworkers devel-
oped a python-based graph theory package to encode the
adsorption structure into a graph to identify the adsorption struc-
tures and generate high coverage configurations uniquely?®. Cur-
rently, no general strategy exists that systematically identifies stable
adsorbate configurations with three or more surface-binding atoms
needed to adequately describe the chemical reactions of large
molecules on metal surfaces.

Here, we introduce a general framework to predict a nearly
complete set of stable adsorbate configurations on metal surfaces.
We introduce expert knowledge-based enumeration rules to
generate the configuration space, containing most, if not all,
stable configurations. The configurations are optimized using a
force field, and strained configurations are removed. For the
configurations with <3 heteroatoms (non-hydrogen organic
atoms), we perform multi-fidelity DFT calculations to assess the
configuration stability. With this data, we train a machine
learning (ML) model and use it as a screening tool to predict the
stability of larger adsorbates before performing DFT calculations.
The workflow is summarized in Fig. 1. We apply the framework
to close-packed surfaces of Ag, Au, Co, Cu, Ir, Ni, Pd, Pt, and
discover 4,979 stable configurations. The predictive ability of the
ML model-based screening is further demonstrated for 1650
configurations with 4 < heteroatoms < 6 also computed via DFT.
We find that distinct trends in stable configurations among cat-
alysts explain the observed selectivity in experimental systems,
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Fig. 1 Workflow for the automated identification of stable adsorption
configurations in the huge chemical space. Skeleton configurations
containing only the carbon are enumerated exhaustively using the
knowledge-based rules, followed by force field (FF) optimization to remove
strained configurations. An unstrained skeleton is converted to adsorbates
by substituting O and adding hydrogen atoms. For adsorbates with <3
heteroatoms (non-hydrogen atoms), multi-fidelity DFT calculations are
performed to assess their stability. The model is used to predict the stability
of larger adsorbates. Based on the score, screening selects the promising
candidates for DFT calculations. The stable adsorbates are gathered to
make the final set.

and the clustering in the adsorbate data is rationalized by the d-
band/adsorbate interactions. We propose that stable inter-
mediates are essential for a catalyst to carry out a specific reac-
tion, and the extensive library created here can be leveraged to
pre-screen catalysts for all commonly metal-catalyzed chemis-
tries. This work paves the foundation toward mechanistic insights
into and design principles of large molecule conversion.

Results

Skeleton enumeration. We introduce graph transformation rules
to enumerate “skeleton” configurations, which contain carbons
and their connectivity patterns to the surface, inspired by Rud-
digkeit et al3! The initial pool of configurations are built by
adding carbon on top, bridge, and hollow sites on a large surface
lattice graph. Then, the rules that precisely add one carbon atom
are repeatedly applied to build larger configurations. Hydrogen
additions and electronic effects are considered later.

Four types of rules can comprehensively enumerate all possible
adsorbate configurations. The first type adds an adsorbed carbon
to an adsorbed carbon (surface propagation rules). These rules
can be made systematically using the following steps. First, find
all possible one atom binding sites on close-packed surfaces (top,
bridge, and hollow sites; inset 1 in Fig. 2a). Second, enumerate
two-atom configurations by exhaustively evaluating (1) the
number of metal atoms that participate in two binding sites,
e.g., an atom involved in bonding of two bridge sites, and (2) the
total number of the adsorbate-surface bonds-1, 2, and 3 for top,
bridge, and hollow sites (Fig. 2a). Third, remove unreasonable
configurations of unrealistic bond distances. Fourth, convert the
two-atom configurations (e.g., green box in inset 2 in Fig. 2a) to
graph transformation rules (e.g., blue box in inset 2 of Fig. 2a). A
rule consists of a pattern graph (left-hand side of the blue box)
and a replacement graph (right-hand side of the blue box). A
graph transformation is applied to a configuration by searching
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Fig. 2 Enumeration rules for generating adsorption configurations. a Surface propagation rules developed by exhaustively assessing two-atom
configurations in two dimensions, the number of binding sites sharing one or two metal atoms, and the total number of adsorbate-surface bonds (1, 2, and
3 for top, bridge, and hollow sites, respectively). Configurations in the red boxes are omitted due to their unreasonable geometry. Inset 1: a graphic
representation of top, bridge, and hollow sites. Inset 2: graphical representation of the unstrained atom pair configurations converted into a graph
transformation rule. b Graph transformation rules for the addition of non-surface-bonding atoms. ¢ Rules for configurations with an “arc” employ the
distances between the anchoring surface atoms dsyface and the two nearest neighbor surface metals atoms dyearest neighbor: respectively. d Stability based on
the descriptor computed using DFT with the (CH,), adsorbate on Pt(111) as a probe adsorbate. @ An anchoring rule adds an adsorbed carbon to a non-
surface-bonding carbon under the descriptor constraint in d. f A ring rule constructs a ring by adding an adsorbed carbon to two adjacent carbons. The
purple edges and nodes represent the close-packed surface lattice. The red and yellow lines indicate bridge and hollow site bonds with adsorbate atoms,
respectively. The green nodes and edges represent the adsorbate atoms and the bonds between them.

for the occurrence of the pattern graph in the configuration, and
by replacing the found occurrence with the replacement graph.
The two-atom configuration (the green box) becomes the
replacement graph (right side of the blue box). The pattern
graph (left side of the blue box) is made by removing an atom in
two-atom-configurations (the green box). The key postulates are
(1) the systematic enumeration of all possible two-atom
configurations and (2) the larger configurations consist of two-
atom configurations (e.g., a six-atom skeleton can be decomposed
to the two-atom configurations). This framework applies to other
planar surfaces, such as fcc(100), hep(1010), and bee(110).

The second type of rule accounts for non-surface-bonding
carbons (e.g., -CH,- and -CH3). Non-surface-bonding carbon can

be added to an adsorbed carbon on top, bridge, or hollow site.
Also, non-surface-bonding carbon can be added to another non-
surface-bonding carbon to increase the chain length. We call
these rules vacuum propagation rules (Fig. 2b).

As shown in Fig. 2c, adsorbates form an “arc” containing a
non-surface-bonding atom chain and two anchoring adsorbed
atoms (e.g., (CH,),). Rules that add an adsorbed carbon to a non-
surface-bonding atom can be used to construct arcs, but two
anchoring atoms cannot be too far apart. Thus we introduce two
metrics, as shown in Fig. 2¢c, where dqyface and diearest neighbor are
the distance between the two anchoring surface atoms and the
distance between two nearest neighbor surface atoms, respec-
tively. The ratio of the two defines a normalized length threshold
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for the arc to be stable (Fig. 2d), which we estimate using DFT
with (CH,), on Pt(111). The line between the stable and unstable
data indicates the decision boundary we used to decide the arcs’
stability. Figure 2e demonstrates a rule for anchoring an arc
(called anchoring rules), the pattern graph of which has to respect
the distance constraint of Fig. 2d.

The last type of rule adds an adsorbed carbon to two adsorbed
carbons, forming a ring (ring rules). Figure 2f shows the ring rules
developed by enumerating three adsorbed-carbon chains and
building the pattern graph by removing the central atom.

After the enumeration, surface atoms in each enumerated
configuration are systematically pruned to build a unique,
unambiguous graph (see Supplementary Fig. 1). Duplicate
configurations are removed by comparing their hash, such as
the SMILES string.

Force field screening. We remove strained configurations by
optimizing the structures of skeleton configurations with the
universal force field3? with additional interactions between the
adsorbate and the surface (see methods for details) with heuristic
parameters. The structures with C-C bond lengths outside the
range of 0.8 A and 1.65 A are removed, which is a broad threshold
based on the covalent radius of carbon and oxygen.

Transformation to an adsorbate. The unstrained skeleton con-
figurations produce realistic configurations on which we substitute
carbon with oxygen at all possible locations and add hydrogens to
carbons and oxygens while respecting the valency rule. A varying
number of hydrogens is added to the skeleton to represent all
possible degrees of saturation; thus, the number of configurations
significantly increases in this step.

Multi-fidelity DFT screening. We perform low-fidelity DFT
calculations of configurations with <3 heteroatoms with an early
stopping criterion upon configuration divergence to assess the
stability. The parameters used for the low-fidelity DFT setup
result in less accurate but more efficient calculations (see meth-
ods). These achieve decent accuracy compared to the standard
DFT relaxation (see methods). The configuration of the DFT-
calculated structures is built by determining the connectivity
between atoms using dj; < H(reov,i + 7cov,)» Where dj; is the distance
between atoms i and j, t is the tolerance factor (1.18 used), and
Tcov,i 18 the covalent radius of atom i. The stable configurations are
further refined using high-fidelity DFT calculations.

ML-based stability prediction. We rapidly screen the stability of
the configurations with >3 heteroatoms by introducing a
fingerprint-like descriptor-based logistic regression (FLDLR),
shown in Fig. 3a, with fingerprint-like descriptors as input
features33. In this method, all possible subgraphs of adsorbate are
enumerated, and, for each subgraph, surface atoms connected to
the adsorbate are added. The output feature vector contains the
number of occurrences for each fingerprint. The training data set
is obtained by performing DFT calculations for configurations
with <3 heteroatoms where the stability is quantified as 1 (stable)
or 0 (unstable). A configuration is labeled stable if the con-
nectivity does not change after the DFT relaxation (i.e. the con-
figuration represents a local or global minimum on the potential
surface). If the connectivity pattern changes upon DFT relaxation,
we labeled them unstable, as the configuration represents an
unstable point on the potential surface. As the model will pri-
marily be used to predict configurations of larger adsorbates,
we devise a similar extrapolation test. We train the model
with adsorbates of <2 heteroatoms and assess its error on
adsorbates with three heteroatoms. Logistic regression calculates

the probability (a continuous value between zero and one) that a
configuration is stable. The probability threshold is used as a
tunable parameter for screening. Its effect on the model perfor-
mance is assessed by the test set recall, precision, F; score,
selectivity, and accuracy in Fig. 3b-e, and Supplementary Fig. 2.
As we are interested in a comprehensive database containing
nearly all stable configurations, a high recall TP/(TP + FN) value
is desired. Here T, F, P, and N are true, false, positive, and
negative, respectively. A low threshold of 0.2 (Fig. 3b) ensures
that 95% of all stable configurations are sampled (a high recall).
However, a low threshold implies also that unstable configura-
tions are also selected (undesired). The precision TP/(TP + FP) in
Fig. 3¢ shows that only 10% of the selected configurations will be
stable (a low precision). The F; score in Fig. 3d shows the har-
monic mean of the precision and recall. A threshold of 0.76 most
efficiently samples the stable configurations at the cost of unac-
counted stable configurations. The selectivity TN/(TN + FP) in
Fig. 3e indicates the DFT cost-saving from the ML screening,
where we would screen out 44% of the unstable configurations
using ML at the threshold of 0.2. Supplementary Figure 2 shows
that the accuracy is high at higher tolerance, as most of the
enumerated configurations are unstable.

Incorporating FLDLR as a screening tool before performing DFT
calculations can significantly reduce the computational cost for
larger adsorbates. We retrained the model with <3 heteroatoms
configurations, and randomly sampled 50 configurations each for 4,
5, and 6 heteroatoms on 11 metals using the uniform distribution
over stability score, and performed DFT calculations. The FLDLR
calculated score and the DFT inferred stability are compared in
Supplementary Fig. 3. We find that 99% of the configurations with
low scores (<0.05) are unstable. Since the configurations with low
scores (<0.05) comprise most of the large molecule configuration
space (84%, 95%, and 99% for 4, 5, and 6 heteroatoms, respectively),
one to two orders of magnitude reduction in DFT calculations is
expected using the low score as a screening criterion. We believe
that ML predictions in the low score region extrapolate well to
larger adsorbates; the fingerprints causing instability in the small
adsorbate configurations are also present and also cause instability
in larger adsorbate configurations. Some of the converged structures
with 6 heteroatoms are shown in Fig. 4.

Enumerated data distribution. The number of configurations in
the various methodological stages is shown in Fig. 5. It increases
exponentially with increasing the number of atoms, reaching
~108 configurations for six heteroatoms. The number of DFT-
calculated stable structures (green points) scales less steeply than
the enumerated ones. The ML screening (using a threshold of 0.2)
reduces the number of calculations by two orders of magnitude
for adsorbates with 6 heteroatoms.

Figure 6 demonstrates the distribution of the stable configura-
tions assessed using DFT. Intuitively, the atom valency, defined here
as (number of the electrons in the valence shell)-(number of
neighbor adsorbate atoms), generally follows the number of the
coordinated surface atoms (1, 2, and 3 for top, bridge, and hollow
sites) as shown in Fig. 6a. Many configurations violate this
traditional rule, demonstrating the importance of exhaustive
enumeration compared to simple intuition. For complex multi-
dentate adsorption, the valency of a single heteroatom is not the
only dictating principle; strain effects from stretching the bonds to
accommodate the metal lattice and the adsorption characteristics of
the other atoms collectively matter. Minimizing the energy of the
entire species is the overarching principle. Figure 6b shows the
principal component analysis of the stable configurations. The
binary matrix is constructed with dimension (number of metals) x
(number of configurations), where the matrix element is set to 1 if
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11 surfaces, respectively. The inset indicates the metric equation where T, F, P, and N indicate true, false, positive, and negative, respectively. The threshold
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Fig. 4 Selected stable structures of large adsorbate configurations. These structures are obtained by performing FLDLR score-based selection, followed
by DFT calculations, demonstrating the diversity of the configurations generated by the algorithm.

Ir(111)

the given configuration is observed and 0 otherwise (configuration
stability matrix in Fig. 6b). We observe that metals form clusters of

data. Pt,

Pd, Re, Ru, and Ir favor intuitive valency-based

configurations: the adsorbate heteroatom valency matches the
number of adsorbate-surface bonds (e.g., top, bridge, and hollow
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sites for CHs, CH,, and CH, respectively). Adsorbates fulfill their
valency by making the necessary number of bonds with the metal
atoms. For Ag and Cu, the number of adsorbate-surface bonds is
less than or equal to the valency. The weakly binding Au has the
lowest number of stable configurations. Ni and Co contain
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structures where the number of adsorbate-surface bonds exceeds
the adsorbate atom valency. In this regard, several theoretical and
experimental investigations reported that the methyl radical on
hollow sites makes three adsorbate-surface bonds (3) and exceeds
its valency (1)34-3¢ The hollow site adsorption is attributed to the d-
band coupling with the adsorbate orbitals>*. This observation is
furthermore validated as the adsorption becomes stronger for the
metal with a d-band center closer to the Fermi level. Similarly, the
d-band center has also been shown to correlate to the energy of
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adsorbates, we used FLDLR33 with a threshold of 0.2.
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adsorbates with a varying number of adsorbate-surface bonds®’.
Thus, we calculated the d-band center relative to the Fermi level for
the metals considered here: Co >Ni > Rh > Ru>Pd >Re > Cu>Pt >
Ir>Au>Ag (Supplementary Table 1). The excess adsorbate-
surface bonds for Rh, Ni, and Co are due to their enhanced d-band
center interaction. Finally, Pt, Pd, and especially Au disfavor
n mode interaction between the m-orbit and the metal atoms.
As a result, the C=0 and C=C substructure is observed less on
these metals.

Some molecules do not adsorb on some metals. For example,
ethylene (CH,CH,) does not adsorb on Au(111) and Ag(111) but
adsorbs on Cu(111) in n adsorption mode, in agreement with
previous DFT calculations®®. Thus, we perform a principal
component analysis of a binary matrix with dimension (number
of metals) x (number of molecules), where the matrix element is
set to 1 if the given molecule adsorbs on metals and 0 otherwise
(molecule adsorption stability matrix in Fig. 6¢c). Compared to the
previous matrix, the second dimension runs over molecules.
There are essentially three clusters of data: the first cluster
contains mostly strongly binding metals (Pt, Ni, Rh, Co, Ir, Re,
Pd, and Ru). On these metals, most of the molecules have
multiple stable adsorbed configurations. The second includes
several multidentate molecules and molecules with high valency
that do not adsorb on Au. This explains the poor performance of
Au for C-C scission (encountered, for example, in steam and dry
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Fig. 6 Analysis of stable adsorbate configuration data. a Binding site distribution of stable configurations based on the atoms’ element and valency
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component (pc) analysis of the configurations stability matrix. Four stable configuration groups are discovered based on the number of bonds and the
adsorbed atoms’ valency. The percentage in the axis indicates the explained variance of the matrix. ¢ Principal component analysis of the molecule
adsorption stability matrix. Two outlier clusters are observed where (1) several molecules with high valency do not adsorb on Au and (2) some ring
molecules are stable on Ag and Cu. The corresponding structures are depicted on the right of the panel.
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reforming of larger fuels, e.g., ethanol) and isomerization, as
important dehydrogenated reaction intermediates, such as
CH;CHO, CH,CH,, and CH,C, do not adsorb on Au3%40,
Similarly, Au is a poor catalyst for the Fischer Tropsch synthesis
as important intermediates for C-C coupling typically have high
valency*!=43. The third contains Ag and Cu that can adsorb three
atom-ring structures that are unstable on other metals which
typically dissociate. Some of these molecules are dehydrogenated
ethylene oxide (epoxide). Ag and Cu have long been used for
selectively producing ethylene oxide*4*>. Hence, these metals’
affinity for the stable ethylene oxide derivatives may be the key to
their high selectivity.

Predicting selective catalysts. Exploiting the concept of stability of
adsorbates being crucial for selectivity, we predict selective catalysts
for four heteroatom closed-shell molecules using ethylene oxide as a
reactant. We enumerate all possible reaction paths between ethylene
oxide and four heteroatom closed-shell molecules by adding and
removing C, H, and O in the enumeration rules. For each metal, the
shortest reaction paths containing stable intermediates were
extracted. The stability of adsorbates was assessed using DFT for <3
heteroatom adsorbates and FLDLR with a threshold of 0.95 (high
probability of stability) for >3 heteroatom adsorbates. The paths to
closed-shell molecules with less than 5 viable metals are shown in
Fig. 7 as examples of selective catalysts. The thermochemistry and
kinetics were not assessed, thus realizing these chemistries requires
further investigation. We find that Au(111) is selective to all nine
molecules whereas seven other surfaces are selective to a few.
Especially, eight out of nine molecules contain rings, which are
typically produced by homogeneous organic reactions. Specifically,
homogeneous gold catalysts produce small rings with less than six
atoms?®, and some cyclization transfers to gold nanoparticles*’.
These facts indicate that the discovered pathways could be experi-
mentally viable.

Discussion

The conversion of large molecules is poorly understood due to the
large size of the reaction network and the lack of automation for
initializing DFT calculations of large adsorbates. This, in turn, stems

A

= Ag(111)
= Au(111)
== Co(0001)
Ni(111)
== pd(111)
P(111)
== Re(0001)
Ru(0001)

Fig. 7 Pathways from ethylene oxide to metal-selective closed-shell
molecules. Pathways consist of adsorbates and molecules represented by
nodes, which are connected by lines, representing elementary reactions. An
elementary reaction can add or remove C, H, and O, and perform C-C
coupling. Blue, green, and red circles indicate the reactant ethylene oxide,
intermediates, and closed-shelled molecules, respectively. The color of the
lines indicates the metal surface that has stable intermediates between
ethylene oxide and close-shelled molecules. Closed-shell molecules with
less than five metals are shown. The stability of <3 heteroatom adsorbates
are assessed using DFT and >3 heteroatom adsorbates using FLDLR with a
threshold of 0.95.

from the combinatorial explosion of complex adsorbate config-
urations that dictate thermochemistry and reaction pathways. The
intuitive binding of adsorbates, based on the heteroatom valency,
has long been used. We discover it can fail, yet certain clusters of
data are observed based on the d-band/adsorbate orbital interaction.
To the best of our knowledge, this work presents the first systematic
enumeration of multidentate adsorbate configurations with arbi-
trary binding motifs. Importantly, we also find correlations between
configurations with the d-band. We observe that the stability of
intermediates is essential for highly selective catalysis, as a corre-
lation between the intermediate stability and selectivity is demon-
strated for the ethylene oxide and Fischer Tropsch process. More
generally, a catalyst cannot produce a molecule if its reaction
intermediates are not stable on it, and the library of molecules we
built can be leveraged to understand if a metal catalyst can conduct
specific chemistry. Potentially, highly selective catalysts can be made
by designing catalytic sites that selectively adsorb desired adsor-
bates. Furthermore, we often assume in creating volcano curves for
materials discovery that the reaction pathway, intermediates, and
rate-determining step are the same on all catalysts. Our results
clearly identify clusters of materials for which this is true but expose
profound differences among clusters. The developed database could
aid in the theoretical investigation of large molecules by predicting
adsorbate thermodynamic properties and enabling a database for
lateral interaction models’’, Brensted—Evans—Polanyi relations*®
(scaling relationship between reaction energy and activation
energy), and transition state structures. These investigations could
enable microkinetic model development toward elucidating catalyst
design principles. We emphasize that, while we focused on the
widely studied close-packed surfaces, the framework can be
expanded to other surfaces such as fcc(100), stepped surfaces, and
alloys by constructing an appropriate surface lattice, and differ-
entiating surface atoms by elements and location (e.g., step-edge,
corner, terrace). Other heteroatoms, such as nitrogen and sulfur,
with pharmaceutical applications, can trivially be considered.

The number of enumerated configurations becomes compu-
tationally vast, reaching 108 for adsorbates with six C and O
atoms, posing a significant challenge in studying large molecules.
The difference in the slopes of enumerated configurations and
DFT-calculated stable configurations is notable, underscoring
that an improved enumeration algorithm could potentially be
developed. We expect the performance of the ML model to
improve significantly by adding structures of four C and O atoms,
as an adsorbed carbon has a maximum of three neighbors. We are
expanding the database to improve the ML model.

Our scheme can be further improved in several directions.
Lateral interactions between adsorbates are well-known to affect
the adsorption energy and potentially change the preferred site*’.
While we used a relatively low coverage, the effect of lateral
interactions on the configuration stability remains unclear. We
also did not assess the vibrational modes of adsorbates, and thus,
some adsorbates may be on unstable saddle points on the
potential energy surface. Our scheme faces an additional chal-
lenge for larger biomass molecules, such as glucose involving 12
C, O atoms, requiring >10° DFT calculations. Potentially online
learning, where we repeat the cycle of data sampling and model
training, can improve model accuracy and reduce the number of
candidates continuously on the fly. Our scheme has similarities
with global optimization techniques aiming to identify all minima
in a high-dimensional space. Integration with advanced global
optimization algorithms®9->2 can improve scalability as well. As
we focused on the enumeration of adsorbates’ connectivity pat-
terns, our scheme does not account for cis/trans isomers not
implicitly accounted for by the connectivity pattern (Supple-
mentary Fig. 4). The assessment of the quality of the data is
critical. While we addressed the challenge of the enumeration of
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Table 1 Added distance constraint for the force field
optimization.

Distance constraint k (kcal mol-1A-2) r,, (R)
SA-its lattice position, plane direction 10° 0
SA-its lattice position, normal direction 103 0
AA-SA 4x103 2

SA and AA indicate surface atom and adsorbate atom, respectively.

Table 2 Added angle constraint for the force field
optimization.

Angle constraint k (kcal mol—"rad—2) Oeq (°)
SA-carbon (1 valency)-AA 300 109.5
SA-carbon (2 valency)-AA 150 145
SA-carbon (3 valency)-AA 150 180
SA-oxygen-AA 150 120
AA-AA (1 valency)-AA 200 109.5
AA-AA (2 valency)-AA 200 145
AA-AA (3 valency)-AA 200 180
SA-AA-SA 4000 109.5
SA and AA indicate surface atom and adsorbate atom, respectively.

connectivity patterns, future work should include the curation of
the data, which can include manual curation, and the use of
statistics to identify faulty data.

Methods

Force field optimization. The universal force field as implemented in RdKit
(Rdkit.org) is modified to generate the structures. In addition to the standard UFF
parameters, distance and angle constraints are added using the quadratic relations,

E, = 1/2k(r — ro)°

1

Ey = k(6 — Geq)2 W
where E, and Ejy are the distance and angle energy, k is the force constant, r and 6
are radius and angle, and the subscript eq represents the equilibrium value. Forces
that hold surface atoms in their lattice position and describe adsorbate
atom-surface atom bond are added, as shown in Table 1. Also, various angle
constraining forces are added to generate reasonable structures, as shown in
Table 2. The heuristic forces provide a plausible initial guess structure for DFT
calculations, typically better than the manually guessed structures. As a strong force
constant is used for the adsorbate-surface bond, the strain manifests as the dis-
torted adsorbate-adsorbate bond, which we used to decide the strained, unstable
configurations.

DFT calculations. We performed DFT calculations using the Vienna ab initio
Simulation Package’. The electron exchange and correlation energies were com-
puted using the PBE functional®®. Our previous study finds that the choice of
functional and dispersion correction does not affect the geometry of a large
molecule, namely furan, significantly>®. The core electrons were calculated with the
projector augmented-wave (PAW) pseudopotentials®®. The Brillouin zone is
sampled with a Methfessel-Paxton smearing of 0.1 eV>7.

To construct the slab, the lattice constants of the metals are optimized using
15 x 15 x 15 Monkhorst-Pack k-point mesh with Blochl correction®8%, D3
dispersion correction®, and the plane-wave cutoff energy of 500 eV. Close-packed
surfaces (fcc(111), hep(0001)) were modeled with a four-layer deep 4 x 4 unit cell
with a 20 A vacuum where the bottom two layers are fixed.

For assessing configuration stability, we used low-fidelity parameters. The cutoff
energy of 300 eV was used with non-spin polarized calculations. Gamma point was
used to sample the Brillouin zone. The quasi-Newton algorithm was used to
converge the structure into its instantaneous ground state. The DFT calculations
were stopped if the configuration diverged to another configuration. Molecular
graphs are constructed by adding an edge between two atoms if the distance
between the two is less than the sum of the two elements’ covalent radius
multiplied by 1.18. If the calculation did not converge after 200-800 ionic steps, we
used the conjugate-gradient algorithm to relax the structure. Here, the early
stopping is not used to observe the final structure. The configuration graph is
determined using covalent radius-based graph construction®. To test the stability
convergence, we compare the stability of adsorbates with <2 C, and O atoms on

Pd(111) between the low-fidelity and standard DFT parameters. The high-fidelity
calculations entail cutoff energy of 400 eV with 3 x 3 x 1 Monkhorst-Pack k-point
mesh®$, spin-polarization, and D3 dispersion correction®’. Here, 9 out of the

52 stable configurations of standard DFT calculations diverged in low-fidelity (see
confusion matrix in Supplementary Table 2). Out of these, the binding energies of
the four configurations are >0.5 eV higher than the ground state configuration
binding energy of the respective adsorbate. Four configurations are local ground
states (0.13, 0.19, 0.12, and 0.01 eV with respect to each molecules’ ground state
configuration). Only one ground state configuration was not predicted stable in the
low-fidelity calculation. This was due to the early stopping method, stopping
calculations prematurely before convergence.

Data availability
The enumerated configurations, their stability, and energetics are available at our GitHub
repository©l.

Code availability
The enumeration and machine learning code with an example output is available at our
GitHub repository®!.

Received: 13 December 2021; Accepted: 28 March 2022;
Published online: 26 April 2022

References

1. Norskov, J. K, Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the
computational design of solid catalysts. Nat. Chem. 1, 37 (2009).

2. Norskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J.
Electrochem. Soc. 152, J23 (2005).

3. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nerskov, J. K.
Computational high-throughput screening of electrocatalytic materials for
hydrogen evolution. Nat. Mater. 5, 909 (2006).

4. Kulkarni, A., Siahrostami, S., Patel, A. & Norskov, J. K. Understanding
catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118,
2302 (2018).

5. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-
cell cathode. J. Phys. Chem. B 108, 17886 (2004).

6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen
reduction electrocatalysts. Nat. Chem. 1, 552 (2009).

7. Man, L C. et al. Universality in oxygen evolution electrocatalysis on oxide
surfaces. ChemCatChem 3, 1159 (2011).

8. Rossmeis], J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Norskov, J. K. Electrolysis of
water on oxide surfaces. J. Electroanal. Chem. 607, 83 (2007).

9. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table:
bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404 (2001).

10. Skulason, E. et al. A theoretical evaluation of possible transition metal electro-
catalysts for N, reduction. Phys. Chem. Chem. Phys. 14, 1235 (2012).

11. Latimer, A. A. et al. Understanding trends in C-H bond activation in
heterogeneous catalysis. Nat. Mater. 16, 225 (2017).

12. Sutton, J. E., Guo, W., Katsoulakis, M. A. & Vlachos, D. G. Effects of
correlated parameters and uncertainty in electronic-structure-based chemical
kinetic modelling. Nat. Chem. 8, 331 (2016).

13. Sutton, J. E. & Vlachos, D. G. Building large microkinetic models with first-
principles’ accuracy at reduced computational cost. Chem. Eng. Sci. 121, 190
(2015).

14. Edye, L. A, Richards, G. N. & Zheng, G. Clean Energy from Waste and Coal
Ch. 8 (American Chemical Society,1992).

15. Samolada, M. C., Papafotica, A. & Vasalos, I. A. Catalyst evaluation for
catalytic biomass pyrolysis. Energy Fuels 14, 1161 (2000).

16. Yan, Z.-p, Lin, L. & Liu, S. Synthesis of y-valerolactone by hydrogenation of
biomass-derived levulinic acid over Ru/C catalyst. Energy Fuels 23, 3853 (2009).

17. Gilkey, M. J. & Xu, B. Heterogeneous catalytic transfer hydrogenation as an
effective pathway in biomass upgrading. ACS Catal. 6, 1420 (2016).

18. Alamillo, R., Tucker, M., Chia, M., Pagan-Torres, Y. & Dumesic, J. The
selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using
heterogeneous catalysts. Green. Chem. 14, 1413 (2012).

19. Lee, J., Kim, Y. T. & Huber, G. W. Aqueous-phase hydrogenation and
hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts.
Green. Chem. 16, 708 (2014).

20. Laskar, D. D., Tucker, M. P., Chen, X., Helms, G. L. & Yang, B. Noble-metal
catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic
hydrocarbons. Green. Chem. 16, 897 (2014).

21. Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic
reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964
(2002).

8 | (2022)13:2087 | https://doi.org/10.1038/s41467-022-29705-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Jain, A. et al. Commentary: the materials project: a materials

genome approach to accelerating materials innovation. APL Mater. 1, 011002
(2013).

Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput
materials discovery. Comput. Mater. Sci. 58, 218 (2012).

Kirklin, S. et al. The Open Quantum Materials Database (OQMD):
assessing the accuracy of DFT formation energies. Npj Comput. Mater. 1,
15010 (2015).

Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database
for surface reactions. Sci. Data 6, 75 (2019).

Morin, C., Simon, D. & Sautet, P. Intermediates in the hydrogenation of
benzene to cyclohexene on Pt(111) and Pd(111): a comparison from DFT
calculations. Surf. Sci. 600, 1339 (2006).

Peterson, A. A. Global optimization of adsorbate-surface structures while
preserving molecular identity. Top. Catal. 57, 40 (2014).

Chang, C. & Medford, A. J. Application of density functional tight binding
and machine learning to evaluate the stability of biomass intermediates on the
Rh(111) surface. J. Phys. Chem. C (2021).

Boes, J. R., Mamun, O., Winther, K. & Bligaard, T. Graph theory approach to
high-throughput surface adsorption structure generation. J. Phys. Chem. A
123, 2281 (2019).

Deshpande, S., Maxson, T. & Greeley, J. Graph theory approach to determine
configurations of multidentate and high coverage adsorbates for
heterogeneous catalysis. npj Comput. Mater. 6, 79 (2020).

Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of
166 billion organic small molecules in the chemical universe database GDB-
17. . Chem. Inf. Model. 52, 2864 (2012).

Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M.
UFF, a full periodic table force field for molecular mechanics and molecular
dynamics simulations. J. Am. Chem. Soc. 114, 10024 (1992).

Gu, G. H,, Plechac, P. & Vlachos, D. G. Thermochemistry of gas-phase and
surface species via LASSO-assisted subgraph selection. React. Chem. Eng. 3,
454 (2018).

Wang, G.-C,, Li, J., Xu, X.-F,, Li, R-F. & Nakamura, J. The relationship
between adsorption energies of methyl on metals and the metallic electronic
properties: a first-principles DFT study. J. Comput. Chem. 26, 871 (2005).
Pascal, M. et al. Methyl on Cu(111)--structural determination including
influence of co-adsorbed iodine. Surf. Sci. 512, 173 (2002).

Yang, Q. Y., Maynard, K. J., Johnson, A. D. & Ceyer, S. T. The structure and
chemistry of CH; and CH radicals adsorbed on Ni(111). J. Chem. Phys. 102,
7734 (1995).

Garcia-Muelas, R. & Lopez, N. Statistical learning goes beyond the d-band
model providing the thermochemistry of adsorbates on transition metals. Nat.
Commun. 10, 4687 (2019).

Vorotnikov, V. & Vlachos, D. G. Group additivity and modified linear scaling
relations for estimating surface thermochemistry on transition metal surfaces:
application to furanics. J. Phys. Chem. C. 119, 10417 (2015).

Sutton, J. E., Panagiotopoulou, P., Verykios, X. E. & Vlachos, D. G. Combined
DFT, microkinetic, and experimental study of ethanol steam reforming on Pt.
J. Phys. Chem. C. 117, 4691 (2013).

Salciccioli, M., Chen, Y. & Vlachos, D. G. Microkinetic modeling and reduced
rate expressions of ethylene hydrogenation and ethane hydrogenolysis on
platinum. Ind. Eng. Chem. Res. 50, 28 (2011).

Filot, I. A. W,, van Santen, R. A. & Hensen, E. J. M. The optimally performing
Fischer-Tropsch catalyst. Angew. Chem. Int. Ed. 53, 12746 (2014).

Cheng, J. et al. Some understanding of Fischer-Tropsch synthesis from
density functional theory calculations. Top. Catal. 53, 326 (2010).
Schumann, J. et al. Selectivity of synthesis gas conversion to C24 oxygenates
on fcc(111) transition-metal surfaces. ACS Catal. 8, 3447 (2018).

Pu, T., Tian, H,, Ford, M. E.,, Rangarajan, S. & Wachs, I. E. Overview of
selective oxidation of ethylene to ethylene oxide by ag catalysts. ACS Catal. 9,
10727 (2019).

Dellamorte, J. C., Lauterbach, J. & Barteau, M. A. Rhenium promotion of Ag
and Cu-Ag bimetallic catalysts for ethylene epoxidation. Catal. Today 120,
182 (2007).

Mato, M., Franchino, A., Garcia-Morales, C. & Echavarren, A. M. Gold-
catalyzed synthesis of small rings. Chem. Rev. 121, 8613 (2021).

Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic
reactions. Chem. Soc. Rev. 37, 2096 (2008).

Gu, G. H,, Mullen, C. A,, Boateng, A. A. & Vlachos, D. G. Mechanism of
dehydration of phenols on noble metals via first-principles microkinetic
modeling. ACS Catal. 6, 3047 (2016).

Xu, Z. & Kitchin, J. R. Probing the coverage dependence of site and adsorbate
configurational correlations on (111) surfaces of late transition metals. J. Phys.
Chem. C. 118, 25597 (2014).

Zhang, J., Glezakou, V.-A., Rousseau, R. & Nguyen, M.-T. NWPEsSe: an
adaptive-learning global optimization algorithm for nanosized cluster systems.
J. Chem. Theory Comput. 16, 3947 (2020).

51. Janet, J. P., Ramesh, S., Duan, C. & Kulik, H. J. Accurate multiobjective design
in a space of millions of transition metal complexes with neural-network-
driven efficient global optimization. ACS Cent. Sci. 6, 513 (2020).

52. Bisbo, M. K. & Hammer, B. Efficient global structure optimization with a
machine-learned surrogate model. Phys. Rev. Lett. 124, 086102 (2020).

53. Kresse, G. & Furthmiiller, J. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865 (1996).

55. Vorotnikov, V., Mpourmpakis, G. & Vlachos, D. G. DFT study of furfural
conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd(111). ACS
Catal. 2, 2496 (2012).

56. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

57. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone
integration in metals. Phys. Rev. B 40, 3616 (1989).

58. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations.
Phys. Rev. B 13, 5188 (1976).

59. Blochl, P. E,, Jepsen, O. & Andersen, O. K. Improved tetrahedron method for
Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

60. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab
initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

61. Gu, G, Lee, M,, Jung, Y., & Vlachos D. G. Automated Exploitation of the Big
Configuration Space of Large Adsorbates on Transition Metals Reveals
Chemistry Feasibility, AdsorptionConfiguration_MS2021, https://doi.org/10.
5281/zenodo.6343921, 2022.

Acknowledgements

This work was supported by the National Research Foundation of Korea, the Ministry of
Science and ICT under award numbers 2021R1C1C2094407 (G.G.) and
2019M3D3A1A01069099 (Y.].), and as part of the Catalysis Center for Energy Innova-
tion, an Energy Frontier Research Center funded by the US Department of Energy, Office
of Science, Office of Basic Energy Sciences under award number DE-SC0001004 (D.G.V.
and M.L). We acknowledge the Korea Institute of Science and Technology Information
(KISTI) for the computational resources provided for this research.

Author contributions

G.G. conceived this project and developed the enumeration algorithm, and the ML
model, and analyzed the configuration space. G.G. and M.L. performed DFT calculations.
G.G,, Y.J,, and D.G.V. discussed the results and assisted with the manuscript preparation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29705-7.

Correspondence and requests for materials should be addressed to Geun Ho Gu ,
Yousung Jung or Dionisios G. Vlachos.

Peer review information Nature Communications thanks Rodrigo Garcia-Muelas,
Sergey Levchenko, and the other, anonymous, reviewer for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

| (2022)13:2087 | https://doi.org/10.1038/s41467-022-29705-7 | www.nature.com/naturecommunications 9


https://doi.org/10.5281/zenodo.6343921,
https://doi.org/10.5281/zenodo.6343921,
https://doi.org/10.1038/s41467-022-29705-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility
	Results
	Skeleton enumeration
	Force field screening
	Transformation to an adsorbate
	Multi-fidelity DFT screening
	ML-based stability prediction
	Enumerated data distribution
	Predicting selective catalysts

	Discussion
	Methods
	Force field optimization
	DFT calculations

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




