1 EFFECTS OF ARYL HYDROCARBON RECEPTOR LIGAND TCDD ON HUMAN

2 TROPHOBLAST CELL DEVELOPMENT

4 5 6	Vinay Shukla ^{a,b,1,2} , Khursheed Iqbal ^{a,b,3} , Hiroaki Okae ^c , Takahiro Arima ^d , and Michael J. Soares ^{a,b,e,f,1}
7 8 9	^a Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
10 11 12	^b Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
13 14 15	^c Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
16 17 18	^d Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
19 20 21	^e Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108
22 23 24	^f Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
25	¹ Correspondence: <u>vshukla@som.umaryland.edu</u> or <u>msoares@kumc.edu</u>
26 27 28	² Current address: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
29 30 31	³ Current address: Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
32 33	The authors declare they have no actual or potential competing financial interests.
34 35 36 27	Author contributions: V.S. and M.J.S. designed research; V.S. performed research; V.S., K.I., H.O., and T.A. contributed new reagents/analytic tools; V.S., K.I., and M.J.S. analyzed data; V.S. and M.J.S. prepared the manuscript; All authors contributed to editing the manuscript.
37 38 20	Running title: AHR activation and trophoblast cell development
39 40 41	Key Words: Placenta, AHR, TCDD, trophoblast cells

42 ABSTRACT

43 **BACKGROUND:** The primary interface between mother and fetus, the placenta, serves two critical functions: extraction of nutrients from the maternal compartment and 44 45 facilitation of nutrient delivery to the developing fetus. This delivery system also serves 46 as a barrier to environmental exposures. The aryl hydrocarbon receptor (AHR) is an important component of the barrier. AHR signaling is activated by environmental 47 48 pollutants and toxicants that can potentially affect cellular and molecular processes, 49 including those controlling trophoblast cell development and function. 50 **OBJECTIVES:** In this study, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-51 dioxin (**TCDD**), an effective AHR ligand, exposure on human trophoblast cells. 52 **METHODS:** Human trophoblast stem (**TS**) cells were used as in vitro model system for 53 investigating the downstream consequences of AHR activation. The actions TCDD were 54 investigated in human TS cells maintained in the stem state or in differentiating TS cells. 55 **RESULTS:** TCDD exposure stimulated the expression of *CYP1A1* and *CYP1B1* in human 56 TS cells. TCDD was effective in stimulating CYP1A1 and CYP1B1 expression and 57 altering gene expression profiles in human TS cells maintained in the stem cell state or induced to differentiate into extravillous trophoblast cells (EVT) or syncytiotrophoblast 58 59 (ST). These actions were dependent upon the presence of AHR. TCDD exposure did not 60 adversely affect maintenance of the TS cell stem state or the ability of TS cells to differentiate into EVT cells or ST. However, TCDD exposure did promote the 61 62 biosynthesis of 2 methoxy estradiol (2ME), a biologically active catechol estrogen, with 63 the potential to modify the maternal-fetal interface.

- 64 **DISCUSSION:** Human trophoblast cell responses to TCDD were dependent upon AHR
- 65 signaling and possessed the potential to shape development and function of the human
- 66 placentation site.

67 INTRODUCTION

68 The placenta is a specialized organ that enables a safe and supportive environment for the 69 fetus to develop within the female reproductive tract. Functional properties of the placenta are 70 attributed to specialized lineages of trophoblast cells (Soares et al. 2018; Knofler et al. 2019). 71 Disruptions in trophoblast cell differentiation and placental morphogenesis affect fetal 72 development and contribute to the origins of adult disease (Burton et al. 2016). There is a 73 myriad of environmental exposures that could impact placentation and embryonic development 74 (Mattison 2010; Marsit 2016; Vrooman and Bartolomei 2016). An environmental exposure 75 may lead to placental dysmorphogenesis and dysfunction and/or may exacerbate placental 76 dysfunction in pregnancy-associated diseases. Timing of environmental exposures is likely 77 critical in determining their effects on placentation and postnatal health (Barouki et al. 2012). 78 The impact of environmental exposures on placental development has received limited 79 experimental attention. 80

81 Some environmental toxicants affect cellular function through physical interactions with the 82 aryl hydrocarbon receptor (AHR) (Beisclag et al. 2008; McIntosh et al. 2010; Avilla et al. 83 **2020**). These compounds are effectively ligands for AHR and include halogenated aromatic 84 hydrocarbons (e.g. polychlorinated biphenyls, polychlorinated dibenzodioxins, and 85 dibenzofurans), polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene and benzanthracene), 86 indoles, flavones, benzoflavones, imidazoles, pyridines, lipids, and lipid metabolites (Birnbaum 87 **1994; DeGroot et al. 2012; Murray and Perdue 2020**). AHR is a ligand-activated transcription 88 factor and member of the PER-ARNT-SIM subgroup of the basic helix-loop-helix superfamily 89 of transcription factors (Vazquez-Rivera et al. 2021). Upon ligand binding, AHR translocates to

90	the nucleus and heterodimerizes with AHR nuclear translocator (ARNT) (Beisclag et al. 2008;
91	McIntosh et al. 2010). This heterodimer binds to aryl hydrocarbon response elements (AHREs)
92	located within regulatory regions of target genes, including those encoding proteins that are
93	important in biotransformation, drug metabolism, and detoxification of environmental pollutants
94	(Beisclag et al. 2008; McIntosh et al. 2010; Avilla et al. 2020). Cytochrome P450 family 1
95	subfamily A member 1 (CYP1A1) is a prototypical transcriptionally activated gene induced by
96	AHR signaling (Whitlock 1999; Ma 2001). AHR has been implicated as a regulator of a wide
97	range of biological processes critical for embryonic development and homeostasis (Zablon et al.
98	2021).
99	
100	The barrier for progress in understanding the impact of environmental exposures on placental
101	development is the implementation of appropriate experimental models to test relevant
102	hypotheses. In vitro approaches are powerful. There are wide range of immortalized and
103	transformed cell models that have been used with the goal of elucidating trophoblast cell
104	responses to AHR ligands (Zhang et al. 1995, 1997, 1998; Stejskalova et al. 2011, 2013;
105	Tsang et al. 2012; Fadiel et al. 2013; Le Vee et al. 2014; Wu et al. 2016; Dral et al. 2019).
106	Unfortunately, deciphering trophoblast cell biology using immortalized and transformed cell
107	models is inherently confounding with questionable relevance (Lee et al. 2016). The isolation
108	and culture of trophoblast stem (TS) cells from several species, including rodents and primates,
109	represented a major advance for investigating trophoblast cell lineage development (Tanaka et
110	al. 1998; Asanoma et al. 2011; Okae et al. 2018; Matsumoto et al. 2020; Schmidt et al.
111	2020).
112	

113	In this proposal, we investigated an environmental exposure, 2,3,7,8-tetrachlorodibenzo-p-
114	dioxin (TCDD), that is a known activator of AHR signaling, and its impact on trophoblast cell
115	development using human TS cells. TCDD exposure modulated the developmental fates of
116	human TS cells.
117	
118	METHODS
119	Chemicals
120	2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, D-404S) was obtained from AccuStandard
121	and solubilized in dimethyl sulfoxide (DMSO , D8418, Sigma-Aldrich). 17 β estradiol was
122	purchased from Sigma-Aldrich (3301) and solubilized in ethanol.
123	
124	Human TS Cell Culture
125	Cytotrophoblast-derived human TS cell lines (CT27, 46, X,X; CT29, 46, X,Y) were
126	maintained in the stem state or differentiated into extravillous trophoblast (EVT) cells or
127	syncytiotrophoblast (ST), as described previously (Okae et al. 2018). Human TS cells were
128	routinely cultured in 100 mm tissue culture dishes coated with 5 μ g/mL of mouse collagen IV
129	(35623, Discovery Labware) or human collagen IV (5022, Advanced Biomatrix). Complete TS
130	Cell Medium was used to maintain cells in the stem state and consisted of Basal TS Cell Medium
131	[DMEM/F12 (11320033, Thermo Fisher), 100 µm 2-mercaptoethanol, 0.2% (vol/vol) fetal
132	bovine serum (FBS), 50 µM penicillin, 50 U/mL streptomycin, 0.3% bovine serum albumin
133	(BSA, BP9704100, Thermo Fisher), 1% insulin-transferrin-selenium-ethanolamine solution
134	(vol/vol, Thermo-Fisher)] with the addition of 200 μ M L-ascorbic acid (A8960, Sigma-Aldrich),
135	50 ng/mL of epidermal growth factor (EGF, E9644, Sigma-Aldrich), 2 μ M CHIR99021 (04-

136	0004, Reprocell), 0.5 μM A83-01 (04-0014, Reprocell), 1 μM SB431542 (04-0010, Reprocell),
137	0.8 mM valproic acid (P4543, Sigma-Aldrich), and 5 μ M Y27632 (04-0012-02, Reprocell).
138	
139	EVT cell differentiation. To promote EVT cell differentiation, human TS cells were cultured
140	in 6-well plates pre-coated with 1 μ g/mL of collagen IV at a density of 80,000 cells per well.
141	Cells were cultured in EVT Cell Differentiation Medium, which consists of the Basal TS Cell
142	Medium with the addition of 100 ng/mL of neuregulin 1 (NRG1, 5218SC, Cell Signaling), 7.5
143	μM A83-01, 2.5 μM Y27632, 4% KnockOut Serum Replacement (KSR, 10828028, Thermo
144	Fisher), and 2% Matrigel (CB-40234, Thermo Fisher) (Okae et al. 2018). On day 3 of

145 differentiation, the medium was replaced with EVT Differentiation Medium excluding NRG1

and with a reduced Matrigel concentration of 0.5%. On culture day 6 of EVT cell differentiation,

147 the medium was replaced with EVT Differentiation Medium excluding NRG1 and KSR, and

148 with a Matrigel concentration of 0.5%. Cells were analyzed on day 8 of EVT cell differentiation.

149

150 *ST differentiation*. To promote ST differentiation, TS cells were cultured in 6-well plates at a 151 density of 300,000 cells per well using ST-Three Dimensional (**ST3D**) Medium, which consists of Basal 152 TS Cell Medium with a decreased concentration of BSA (0.15%) and the addition of 200 μ M L-ascorbic 153 acid, 5% KSR, 2.5 μ M Y27632), 2 μ M forskolin (F6886, Sigma-Aldrich), and 50 ng/mL of EGF (**Okae** 154 **et al. 2018**). On day 3 of cell differentiation, 3 mL of fresh ST3D Medium was added to the wells. Cells 155 were analyzed on day 6 of ST differentiation.

156

157 Flow cytometry assay for cell death measurement

158	Cells (2×10^5 cells/ml) were cultured in 6-well plates and expose with TCDD (10 nM and 100
159	nM) for 24 h. Cells were trypsinized, washed with PBS and probed with FITC-conjugated
160	Annexin-V and PI for 15 min. The staining profiles were determined flow cytometry.
161	
162	Cell cycle analysis
163	Cells (2 \times 10 ⁵ cells/ml) were cultured in 6-well plates and expose with TCDD (10 nM and 100
164	nM) for 24 h. Cells were trypsinized, washed with PBS, fixed in 70% ice-cold ethanol at 4 $^\circ$ C
165	overnight, washed with PBS again, and stained with 200 μl of 50 mg/l propidium iodide at 37 $^\circ C$
166	for 20 min. Cell cycle distribution was determined by measuring the cellular DNA content with
167	the use of flow cytometry.
168	
169	Immunofluorescence
170	Human TS cells in the stem state or differentiated EVT cells were fixed with 4% paraformaldehyde
171	(Sigma-Aldrich) for 20 min at room temperature. Immunofluorescence analysis was performed using a
172	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher).
172 173	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse
172 173 174	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo
172 173 174 175	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were
172 173 174 175 176	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI , Molecular Probes). Images were
172 173 174 175 176 177	 primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI, Molecular Probes). Images were captured on a Nikon 90i upright microscope with a Roper Photometrics CoolSNAP-ES monochrome
172 173 174 175 176 177 178	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI , Molecular Probes). Images were captured on a Nikon 90i upright microscope with a Roper Photometrics CoolSNAP-ES monochrome camera.
172 173 174 175 176 177 178 179	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI , Molecular Probes). Images were captured on a Nikon 90i upright microscope with a Roper Photometrics CoolSNAP-ES monochrome camera.
172 173 174 175 176 177 178 179 180	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI , Molecular Probes). Images were captured on a Nikon 90i upright microscope with a Roper Photometrics CoolSNAP-ES monochrome camera.
172 173 174 175 176 177 178 179 180 181	primary antibody against CYP1A1 (1:500, A3001; XenoTech) or AHR (1:500, MA1-514, Thermo Fisher). Alexa Fluor 488 goat anti-mouse IgG (1:800, A32723 Thermo Fisher), Alexa Fluor 568 goat anti-mouse IgG (1:800, A11031, Thermo Fisher), Alexa Fluor 568 goat anti-rabbit IgG, (1:800, A10042, Thermo Fisher) were used to detect locations of the primary antibody-antigen complexes within cells. Nuclei were visualized by staining with 4'6'-diamidino-2-phenylindole (DAPI , Molecular Probes). Images were captured on a Nikon 90i upright microscope with a Roper Photometrics CoolSNAP-ES monochrome camera. Short Hairpin RNA (shRNA) Constructs and Lentivirus Production AHR shRNAs were subcloned into the pLKO.1 vector at AgeI and EcoRI restriction sites.

183	were obtained from Addgene and included pMDLg/pRRE (plasmid 12251), pRSVRev (plasmid
184	12253), and pMD2.G (plasmid 12259). Lentiviral particles were produced following transient
185	transfection of the shRNA-pLKO.1 vector and packaging plasmids into Lenti-X cells (632180,
186	Takara Bio USA) using Attractene (301005, Qiagen) in Opti-MEM I (51985-034, Thermo
187	Fisher). Cells were maintained in DMEM culture medium (11995-065, Thermo Fisher)
188	supplemented with 10% FBS until 24 h prior to supernatant collection, at which time the cells
189	were cultured in Basal TS Cell Medium supplemented with 200 μ M L-ascorbic acid and 50
190	ng/mL of EGF.
191	
192	Lentiviral Transduction
193	Human TS cells were plated at 80,000 cells per well in 6-well tissue culture plates coated
194	with 5 μ g/mL collagen IV and incubated for 24 h. Immediately prior to transduction, medium
195	was changed, and cells were incubated with 2.5 μ g/mL polybrene for 30 min at 37°C.
196	Immediately following polybrene incubation, TS cells were transduced with 500 μ L of lentiviral
197	supernatant and then incubated for 24 h. Medium was changed at 24 h post-transduction and
198	selected with puromycin dihydrochloride (5 µg/mL, A11138-03, Thermo Fisher) for two days.
199	Surviving cells were cultured for one to three days in Complete Human TS Culture Medium
200	before passaging and initiating EVT cell or ST differentiation.
201	
202	RNA Isolation, cDNA Synthesis, and Reverse Transcriptase-quantitative Polymerase Chain
203	Reaction (RT-qPCR)
204	Total RNA was isolated from cells and tissues with TRIzol reagent (15596018, Thermo
205	Fisher). cDNA was synthesized from 1 μ g of total RNA using a High-Capacity cDNA Reverse

206	Transcription kit (4368813; Thermo Fisher) and diluted 10 times with water. RT-qPCR was
207	performed using a reaction mixture containing PowerSYBR Green PCR Master Mix (4367659;
208	Thermo Fisher) and primers (250 nM each). PCR primer sequences are presented in Table S2.
209	Amplification and fluorescence detection were carried out using a QuantStudio 7 Flex Real-Time
210	PCR System (Thermo Fisher). An initial step (95 °C, 10 min) preceded by 40 cycles of a two-
211	step PCR at: 92 °C, for 15 s and 60 °C for 1 min, followed by a dissociation step (95 °C for 15 s,
212	60 °C for 15 s, and 95 °C for 15 s). The comparative cycle threshold method was used for
213	relative quantification of mRNA normalized to a housekeeping transcript, glyceraldehyde-3-
214	phosphate dehydrogenase (GAPDH).
215	
216	RNA Sequencing (RNA-seq) Analysis
217	Transcript profiles were generated from human TS cells cultured in various differentiation
218	states under control conditions or in the presence of AHR ligands (n=3/condition).
219	Complementary DNA libraries from total RNA samples were prepared with Illumina TruSeq
220	RNA preparation kits (RS-122-2101, Illumina) according to the manufacturer's instructions.
221	RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies).
222	Barcoded cDNA libraries were multiplexed onto a TruSeq paired-end flow cell and sequenced
223	(100-bp paired-end reads) with a TruSeq 200-cycle SBS kit (Illumina). Libraries were sequenced
224	on Illumina HiSeq 2000 sequencer or Illumina NovaSeq 6000 at the University of Kansas
225	Medical Center (KUMC) Genome Sequencing Facility. Reads from *.fastq files were mapped to
226	the human reference genome (GRCh37) using CLC Genomics Workbench 12.0 (Qiagen).
227	Transcript abundance was expressed as reads per kilobase of transcript per million mapped reads
228	(RPKM), and a false discovery rate of 0.05 was used as a cutoff for significant differential

229	expression. Statistical significance was calculated by empirical analysis of digital gene
230	expression followed by Bonferroni's correction. Functional patterns of transcript expression
231	were further analyzed using Ingenuity Pathway Analysis (Qiagen).
232	
233	Measurement of 2-Methoxyestradiol (2ME)
234	Conditioned medium from TS cells maintained in the stem state and following differentiation
235	were collected and 2ME measured using an enzyme-linked immunosorbent assay (ELISA,
236	582261, Cayman Chemical).
237	
238	Western Blot Analysis
239	Cell lysates were prepared by sonication in radioimmunoprecipitation assay lysis buffer (sc-
240	24948A, Santa Cruz Biotech) supplemented with Halt protease and a phosphatase inhibitor
241	mixture (78443, Thermo Fisher). Protein concentrations were measured using the DC Protein
242	Assay (5000113-115, Bio-Rad). Proteins (20 µg/lane) were separated by sodium dodecyl sulfate
243	polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes
244	(10600023, GE Healthcare). After transfer, membranes were blocked with 5% non-fat milk in
245	Tris buffered saline with 0.1% Tween 20 (TBST) and probed with primary antibodies to AHR
246	(1:1000 dilution, MA1-514, Thermo Fisher) or GAPDH (1:1000 dilution, ab9485, Abcam)
247	overnight at 4°C. Membranes were washed three times for five min with TBST and then
248	incubated with secondary antibodies (goat anti-rabbit IgG HRP, A0545; Sigma-Aldrich and goat
249	anti-mouse IgG HRP, 7076; Cell Signaling) for 1 h at room temperature. Immunoreactive
250	proteins were visualized by enhanced chemiluminescence (Amersham).
251	

252 Statistical Analysis

253 Statistical analyses were performed with GraphPad Prism 9 software. Welch's *t* tests,

254 Brown–Forsythe and Welch analysis of variance (ANOVA) were applied as appropriate.

255 Statistical significance was determined as P<0.05.

256

257 **RESULTS**

258 Examination of the effects of TCDD exposure on human trophoblast cells

259 We examined the effects of TCDD in human TS cells at three developmental states: i)

stem cell state, ii) EVT cell differentiation state, and iii) ST differentiation state.

261

262 Stem cell state. Human TS cells can expand and exhibit a signature transcript profile 263 when maintained in a condition to promote the stem cell state (Okae et al. 2018; 264 Varberg et al. 2023). CYP1A1 and CYP1B1 increased dramatically in response to TCDD 265 exposure (Figure 1A-C). Exposure of TS cells maintained in the stem state to TCDD (10 nM) did not adversely affect cell viability or cell cycle (Figure S1). Analysis of RNA-seq of TCDD 266 267 treated versus control cells resulted in the identification of 668 differentially expressed genes 268 (**DEGs**), including 484 genes upregulated and 184 genes downregulated by exposure to TCDD 269 (10 nM) (Figure 1D and Dataset 1). This differential gene expression pattern was validated 270 by RT-qPCR (Figure 1E and F). Functional pathways affected by TCDD exposure, 271 included pathways associated with protein translation and cell-extracellular matrix 272 adhesion (Figure S2). We also examined the consequences of human TS cell TCDD 273 exposure (10 or 25 nM) during the stem state (24 h) on subsequent EVT cell and ST

differentiation. TCDD exposure during the stem state did not adversely affect EVT cell or
ST differentiation (Figure S3).

276

277	EVT cell differentiation state. TCDD exposure did not adversely affect the
278	morphology of differentiated EVT cells (Figure 2A); however, TCDD exposure did
279	increase CYP1A1 and CYP1B1 transcript levels and CYP1A1 protein expression (Figure
280	2B and C). RNA-seq analysis of control and TCDD exposed cells identified 336 DEGs,
281	including 173 upregulated transcripts and 163 downregulated transcripts in TCDD treated
282	cells (Dataset 2, Figure 2D). RT-qPCR validation of a subset of these transcripts is
283	shown (Figure 2E and F). Functional pathways affected by TCDD exposure, included
284	pathways associated with protein translation, cell-cell interactions, and cell death (Figure
285	S4).

286

287 ST differentiation state. TCDD exposure did not adversely affect the morphology of 288 differentiated ST (Figure 3A); however, TCDD exposure during ST differentiation did 289 increase the expression of CYP1A1 and CYP1B1 (Figure 3B). RNA-seq analysis of 290 control and TCDD exposed cells identified 353 DEGs, including 154 upregulated genes 291 and 199 downregulated genes in TCDD treated cells (Dataset 3, Figure 3C). RT-qPCR 292 validation of a subset of these transcripts is shown (**Figure 3D**). Functional pathways 293 affected by TCDD exposure, included pathways associated with estrogen biosynthesis 294 and AHR and hypoxia signaling (Figure S5).

295

296	Cells in each trophoblast cell differentiation state exhibited similar TCDD induced
297	activation of CYP1A1 and CYP1B1 (Figures 1-3). However, based on the total number
298	of DEGs, TS cells in the stem state were maximally responsive to TCDD (668 DEGs),
299	whereas EVT cells were the least responsive to TCDD (336 DEGs). ST exhibited an
300	intermediate response to TCDD (353 DEGs). These observations indicate that TS cells in
301	the stem state may be more vulnerable to TCDD exposure than differentiated trophoblast
302	cells.
303	
304	Role of AHR in TCDD induction of CYP1A1 and CYP1B1
305	
306	We next tested whether TCDD effects on CYP1A1 and CYP1B1 expression in human TS
307	cells were dependent upon AHR using a loss-of-function approach. AHR expression was
308	silenced in human TS cells using stable lentiviral-mediated delivery of control and AHR-targeted
309	shRNAs. Disruption of AHR expression was verified by RT-qPCR, western blotting, and
310	immunofluorescence (Figure 4A-C). AHR knockdown TS cells maintained in the stem state did
311	not effectively respond to TCDD with an induction of CYP1A1 and CYP1B1 expression (Figure
312	4D). The results demonstrated that TCDD induction of <i>CYP1A1</i> and <i>CYP1B1</i> gene expression is
313	AHR dependent.
314	
315	TCDD driven 2ME biosynthesis in human TS cells
316	In the above experimentation, we observed significant effects of TCDD exposure on gene
317	expression but not on the maintenance of the human TS cell stem state or in the capacity for
318	human TS cells to differentiate into EVT cells or ST. CYP1A1 expression was especially

319	responsive to TCDD and has the capacity to transform endogenous and exogenous compounds,
320	including 17β estradiol, into biologically active molecules such as 2ME (Thomas and Potter
321	2013). Consequently, we examined the effects of TCDD on the capacity of human TS cells in the
322	presence of 17β estradiol to synthesize 2ME. TCDD exposure significantly stimulated 2ME
323	biosynthesis in human TS cells maintained in the stem cell state (Figure 5A) and TS cells
324	induced to differentiate into EVT cells or ST (Figure 5B).
325	
326	A pathway showing the involvement of AHR, CYP1A1, and 2ME in xenobiotic action at the
327	placentation site is shown (Figure 5C).
328	
329	
330	DISCUSSION
331	The placenta serves as the interface between maternal and fetal compartments. Trophoblast
332	cells are specialized cells of the placenta with the capacity to respond to internal and external
333	signals and can act to modify maternal and fetal environments. In this report, we discovered that
334	TCDD activates AHR signaling in human trophoblast cells and evokes a robust transcriptional
335	response, which includes stimulating CYP1A1 expression. Human trophoblast cells have
336	similarly been shown to respond to AHR ligands with an increase in CYP1A1 gene
337	expression (Stejskalova et al. 2011; Wakx et al. 2018). These TCDD activated changes in
338	cell behavior do not adversely affect the ability of human TS cells to self-renew or to
339	differentiate into either EVT cells or ST. However, they can affect the availability of biologically
340	active ligands at the maternal-fetal interface.
341	

342	TCDD does not adversely affect the development of rat or human trophoblast cells (Iqbal et
343	al. 2021; present study). Rat trophoblast cells lack the requisite cellular machinery needed to
344	respond to TCDD, while human trophoblast cells are responsive to TCDD, but without negative
345	consequences on TS cell self-renewal, maintenance of the TS cell stem state or the
346	differentiation of TS cells into EVT cells and ST. This is an adaptive characteristic of
347	placentation in the rat and human. The environment is replete with compounds possessing the
348	capacity to activate AHR signaling (Birnbaum 1994; DeGroot et al. 2012; Murray and
349	Perdue 2020). Thus, an adverse effect of AHR signaling on placental morphogenesis would be
350	problematic. Retention of the capacity for placental morphogenesis and establishment of
351	placental structure and function to combat the adverse effects of an environmental toxicant
352	represents a strategy for maximizing survival of fetus.
353	
354	The relevance of species differences in trophoblast cell engagement with its environment is
355	unknown. At one level, survival of a species would appear to be enhanced by the ability to

actively adapt to the environment, especially through the upregulation of an enzyme that can
transform a potentially dangerous compound into a compound that can be made less threatening
or extricated from the body. This implies that the actions of environmentally activated enzymes

359 possessing biotransformational properties are unilateral in their efforts. This is not the case for

360 AHR and its downstream targets, especially CYP1A1. Endogenous AHR ligands are present in

the cellular milieu (Nguyen and Bradfield, 2008) and CYP1A1 can act on endogenous

362 compounds (Stejskalova and Pavek, 2011; Bock 2014). Among the endogenous compounds

that CYP1A1 can act on is the steroid hormone, 17β estradiol (**Thomas and Potter 2013**).

364 Biosynthesis of estrogens represents a key species difference in the evolution of the placenta

365	(Soares et al. 2018). Trophoblast cells of the human placenta possess aromatase (cytochrome						
366	P450 family 19 subfamily A member 1, CYP19A1), the enzyme responsible for conversion of						
367	androgens to estrogens (Albrecht and Pepe 1990; Simpson et al. 1997), whereas this key						
368	enzyme in estrogen biosynthesis is not present in placentas of the rat and mouse (Kamat et al.						
369	2002). Interestingly, estrogen action and AHR signaling have been linked (Tarnow et al. 2019).						
370	Thus, species differences in trophoblast cell responses to environmental signals capable of						
371	activating AHR signaling may be linked to species differences in placental capacity for estroge						
372	biosynthesis. Investigating the relationship of AHR signaling and estrogen biosynthesis in						
373	placentas of other species could be informative.						
374							
375	The most prominent effect of TCDD on human trophoblast cells was on the expression of						
376	CYP1A1. CYP1A1 does little to affect cell function unless there is a substrate for it to act on.						
377	As indicated above, 17β estradiol is a notable CYP1A1 substrate produced within the human						
378	placenta. Estrogens are prominent activators of two nuclear estrogen receptors (Deroo and						
379	Korach 2006), which are critical for reproductive function, including the establishment and						
380	maintenance of pregnancy (Deroo and Korach 2006; Hewitt et al. 2016). CYP1A1 can						
381	hydroxylate estradiol to 2-hydroxyestradiol and 4-hydroxyestradiol (catechol estrogens)						
382	(Thomas and Potter 2013; Kumar et al. 2016). These modifications of estradiol decrease its						
383	availability for signaling through nuclear estrogen receptors and generate biologically active						
384	compounds with different properties. Catechol-O-methyltransferase (COMT) can modify 2-						
385	hydroxyestradiol to 2ME (Thomas and Potter 2013; Kumar et al. 2016). Human trophoblast						
386	cells exposed to TCDD exhibit an enhanced capacity to convert estradiol to 2ME (present						
387	study). 2ME is a compound with biological functions implicated in regulatory processes						

388	associated with angiogenesis, cellular responses to hypoxia, and preeclampsia (Mabjeesh et al.					
389	2003; Kanasaki et al. 2008; Lee et al. 2010; Perez-Sepulveda et al. 2013; Pinto et al. 2014).					
390						
391	Collectively, these findings indicate that TCDD, a prototypical AHR ligand, has the capacity					
392	to influence the behavior of trophoblast cells within the human maternal-fetal interface					
393	and potentially pregnancy outcomes.					
394						
395	ACKNOWLEDGMENTS					
396	We thank Stacy Oxley, Leslie Tracy, and Brandi Miller for their assistance. Research was					
397	supported by KUMC BRTP and K-INBRE P20 GM103418 (VS), National Institutes of Health:					
398	ES028957 (KI) and HD020676, ES029280, HD105734 and the Sosland Foundation.					
399						
400	DATA SHARING					
401	The datasets generated and analyzed for this study have been deposited in the Gene					
402	Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo/ (accession no.					
403	GSE246513).					
404						
405	REFERENCES					
406 407	Albrecht ED, Pepe GJ. 1990. Placental steroid hormone biosynthesis in primate pregnancy.					
408 400	Endocr Rev 11(1):124-150.					
409 410	Asanoma K, Rumi MA, Kent LN, Chakraborty D, Renaud SJ, Wake N, Lee DS, Kubota K,					
411 412	Soares MJ. 2011. FGF4-dependent stem cells derived from rat blastocysts differentiate along the trophoblast lineage. Dev Biol 351(1):110, 119					
413	uophoolast micage. Dev Diol 331(1).110-117.					

- 414 Avilla MN, Malecki KM, Hahn ME, Wilson RH, Bradfield CA. 2020. The Ah receptor:
- Adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol 33(4):860-879.

417	
418	Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. 2012. Developmental origins of
419	non-communicable disease: implications for research and public health. Environ Health 11:42.
420	
421	Beischlag IV, Luis Morales J, Hollingshead BD, Perdew GH. 2008. The aryl hydrocarbon
422	receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18(3):207-
423	250.
424	
425	Bock KW. 2014. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme
426	system. Biochem Pharmacol 90:1-6.
427	
428	Burton GJ, Fowden AL, Thornburg KL. 2016. Placental origins of chronic disease. Physiol Rev
429	96(4):1509-1565.
430	
431	Casado FL, Singh KP, Gasiewicz TA. 2010. The aryl hydrocarbon receptor: regulation of
432	nematopolesis and involvement in the progression of blood diseases. Blood Cells Mol Dis
433	44(4):199-206.
434 425	Dance DI Konsch KS 2006 Estrogen meanters and human disease. I Clin Invest 116:561 570
435	Deroo BJ, Korach KS. 2000. Estrogen receptors and numan disease. J Chin invest 110.501-570.
430	Druktainia I. Madrana T. Ahlardannay F.A. Kitzman IM. Shiyariak KT. 2005. Banzalalnyrana
457	but not 2.2.7.8 TCDD, induces C2/M cell evals errort, p21CID1 and p52 phoenhorelation in
420	but not 2,5,7,8-1CDD, induces 02/M cell cycle affest, p21CIP1 and p35 phosphorylation in buman aboricoastrinoma IEC 2 calls: a distinct signaling notbuyay. Placente 26:S87 S05
439	numan chonocarchionna JEO-3 cens. a distinct signaning paulway. Placenta 20.387-393.
440	Drwal F. Rak A. Gregoraszczuk FI 2019. Differential effects of ambient PAH mixtures on
771 112	cellular and steroidogenic properties of placental IEG-3 and BeWo cells. Reprod Toxicol 86:14-
443	22
444	
445	Fadiel A. Epperson B. Shaw MI. Hamza A. Petito I. Naftolin F. 2013. Bioinformatic analysis of
446	benzo- α -pyrene-induced damage to the human placental insulin-like growth factor-1 gene
447	Reprod Sci 20(8):917-928
448	
449	Guvda HJ, Mathieu L, Lai W, Manchester D, Wang SL, Ogilvie S, Shiverick KT, 1990.
450	Benzo(a)pyrene inhibits epidermal growth factor binding and receptor autophosphorylation in
451	human placental cell cultures. Mol Pharmacology 37(2):137-143.
452	
453	Hewitt SC, Winuthayanon W, Korach KS. 2016. What's new in estrogen receptor action in the
454	female reproductive tract. J Mol Endocrinol 56:R55-R71.
455	1
456	Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. 2021.
457	Evaluation of placentation and the role of the aryl hydrocarbon receptor pathway in a rat model
458	of dioxin exposure. Environ Health Perspect 129(11):117001.
459	
460	Kamat A, Hinshelwood MM, Murry BA, Mendelson CR. 2002. Mechanisms in tissue-specific
461	regulation of estrogen biosynthesis in humans. Trends Endocrinol Metab 13(3):122-128.
462	

463 Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, Parry S, Augustin HG, Gattone VH, Folkman J, Strauss JF, Kalluri R. 2008. Deficiency in catechol-O-methyltransferase 464 465 and 2-methoxyestradiol is associated with pre-eclampsia. Nature 453:1117-1121. 466 467 Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. 2019. Human placenta and 468 trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 469 76(18):3479-3496. 470 471 Kumar BS, Raghuvanshi DS, Hasanain M, Alam S, Sardar J, Mitra K, Khan F, Negi AS. 2016. 472 Recent advances in chemistry and pharmacology of 2-methoxyestradiol: an anticancer 473 investigational drug. Steroids 110:9-34. 474 475 Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, Rossant J, Hemberger M, 476 Moffett A. 2016. What is trophoblast? A combination of criteria define human first-trimester 477 trophoblast. Stem Cell Reports 6(2):257-272. 478 479 Lee SB, Wong AP, Kansasaki K, Xu Y, Shenoy VK, McElrath TF, Whitesides GM, Kalluri R. 480 2010. Preeclampsia: 2-methoxyestradiol induces cytotrophoblast invasion and vascular 481 development specifically under hypoxic conditions. Am J Pathol 176:710-720. 482 483 Le Vee M, Kolasa E, Jouan E, Collet N, Fardel O. 2014. Differentiation of human placental 484 BeWo cells by the environmental contaminant benzo(a)pyrene. Chem Biol Interact 210:1-11. 485 486 Liu G, Jia J, Zhong J, Yang Y, Bao Y, Zhu Q. 2022. TCDD-induced IL-24 secretion in human 487 chorionic stromal cells inhibits placental trophoblast cell migration and invasion. Reprod Toxicol 488 108:10-17. 489 490 Ma Q. 2001. Induction of CYP1A1. The AhR/DRE paradigm: transcription, receptor regulation, 491 and expanding biological roles. Curr Drug Metab 2(2):149-164. 492 493 Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, 494 Zhong H, Simons JW, Giannakakou P. 2003. 2ME2 inhibits tumor growth and angiogenesis by 495 disrupting microtubules and dysregulating HIF. Cancer Cell 3:363-375. 496 497 Marsit CJ. 2016. Placental epigenetics in children's environmental health. Semin Reprod Med 498 34(1):36-41. 499 500 Matsumoto S, Porter CJ, Ogasawara N, Iwatani C, Tsuchiya H, Seita Y, Chang YW, Okamoto I, 501 Saitou M, Ema M, Perkins TJ, Stanford WL, Tanaka S. 2020. Establishment of macaque 502 trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Sci Rep 10(1):6827. 503 504 Mattison DR. 2010. Environmental exposures and development. Curr Opin Pediatr 22(2):208-505 218. 506 507 McIntosh BE, Hogenesch JB, Bradfield CA. 2010. Mammalian Per-Arnt-Sim proteins in 508 environmental adaptation. Annu Rev Physiol 72(1):625-645.

509								
510	Murray IA, Perdew GH. 2020. How Ah receptor ligand specificity became important in							
511	understanding its physiological function. Int J Mol Sci 21(24):9614.							
512								
513	Nguyen LP, Bradfield CA, 2008. The search for endogenous activators of the arvl hydrocarbon							
514	receptor. Chem Res Toxicol 21(1):102-116.							
515								
516	Okae H. Toh H. Sato T. Hiura H. Takahashi S. Shirane K. Kabayama Y. Suyama M. Sasaki H.							
517	Arima T 2018 Derivation of human trophoblast stem cells Cell Stem Cell 22(1):50-63 e6							
518								
519	Perez-Sepulveda A Espana-Perrot PP Norwitz FR Illanes SE 2013 Metabolic nathways							
520	involved in 2-methoxyestradiol synthesis and their role in preeclampsia. Reprod Sci 20:1020-							
520	1020							
521	102).							
522	Dinto MD Madina DA Owan CI 2014 2 Mathewastradial and disorders of famale							
525	range ductive tissues. How Cone 5:274.282							
524	reproductive tissues. Horni Calic 5.274-265.							
525	Schmidt IV Veding IT Block IN Wienz GI Veenig MD Meyer MG Dusck DM Vroner							
520	Schnlidt JK, Kedlig LT, Block LN, Wiepz GJ, Koenig MK, Meyer MG, Dusek DM, Kioher KM. Darta aliat ML Kallia AD. Maan KD. Calas TC, 2020. Diaganta dariyad maaagua							
527	Kivi, Bentogilat MJ, Kalilo AK, Meali KD, Golos TG. 2020. Placenta-derived inacaque							
528	trophobiast stem cens: differentiation to syncytotrophobiasts and extravillous trophobiasts							
529	reveals phenotypic reprogramming. Sci Rep 10(1):19159.							
530								
531	Shukla V, Soares MJ. 2022. Modeling trophoblast cell-guided uterine spiral artery							
532	transformation in the rat. Int J Mol Sci 23(6):2947.							
533								
534	Simpson ER, Zhao Y, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM, Graham-							
535	Lorence S, Sun T, Fisher CR, Qin K, Mendelson CR. 1997. Aromatase expression in health and							
536	disease. Recent Prog Horm Res 52:185-213.							
537								
538	Soares MJ, Varberg KM, Iqbal K. 2018. Hemochorial placentation: development, function, and							
539	adaptations. Biol Reprod 99(1):196-211.							
540								
541	Stejskalova L, Pavek P. 2011. The function of cytochrome P450 1A1 enzyme (CYP1A1) and							
542	aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharmaceut Biotechnol 12:715-730.							
543								
544	Stejskalova L, Rulcova A, Vrzal R, Dvorak Z, Pavek P. 2013. Dexamethasone accelerates							
545	degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental							
546	JEG-3 cell line. Toxicol Lett 223(2):183-191.							
547								
548	Stejskalova L, Vecerova L, Peréz LM, Vrzal R, Dvorak Z, Nachtigal P, Pavek P. 2011. Aryl							
549	hydrocarbon receptor and aryl hydrocarbon nuclear translocator expression in human and rat							
550	placentas and transcription activity in human trophoblast cultures. Toxicol Sci 123(1):26-36.							
551								
552	Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. 1998. Promotion of trophoblast							
553	stem cell proliferation by FGF4. Science 282(5396):2072-2075.							
554								

555 Tarnow P, Tralau T, Luch A. 2019. Chemical activation of estrogen and arvl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin 556 557 Drug Metab Toxicol 15(3):219-229. 558 559 Thomas MP, Potter BVL. 2013. The structural biology of oestrogen metabolism. J Steroid 560 Biochem Mol Biol 137:27-49. 561 562 Tsang H, Cheung TY, Kodithuwakku SP, Chai J, Yeung WS, Wong CK, Lee KF. 2012. 2,3,7,8-563 Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial 564 cells through the down-regulation of the Wnt-signaling pathway. Reprod Toxicol 33(1):60-66. 565 566 Varberg KM, Dominguez EM, Koseva B, Varberg JM, McNally RP, Moreno-Irusta A, Wesley 567 ER, Iqbal K, Cheung WA, Schwendinger-Schreck C, Smail C, Okae H, Arima T, Lydic M, 568 Holoch K, Marsh C, Soares MJ, Grundberg E. 2023. Extravillous trophoblast cell lineage 569 development is associated with active remodeling of the chromatin landscape. Nat Commun 570 14(1):4826. 571 Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. 2021. The 572 573 aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 9:1-11. 574 575 Vrooman LA, Xin F, Bartolomei MS. 2016. Morphologic and molecular changes in the placenta: 576 what we can learn from environmental exposures. Fertil Steril 106(4):930-940. 577 578 Wakx A, Nedder M, Tomkiewicz-Raulet C, Dalmasso J, Chissey A, Boland S, Vibert F, 579 Degrelle SA, Fournier T, Coumoul X, Gil S, Ferecatu I. 2018. Expression, localization, and 580 activity of the aryl hydrocarbon receptor in the human placenta. Int J Mol Sci 19(12):3762. 581 582 Wesselink A, Warner M, Samuels S, Parigi A, Brambilla P, Mocarelli P, Eskenazi B. 2014. 583 Maternal dioxin exposure and pregnancy outcomes over 30 years of follow-up in Seveso. 584 Environ Int 63:143-148. 585 586 Whitlock JP Jr. 1999. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39:103-125. 587 588 589 Wright EJ, De Castro KP, Joshi AD, Elferink CJ. 2017. Canonical and non-canonical aryl 590 hydrocarbon receptor signaling pathways. Curr Opin Toxicol 2:87-92. 591 592 Ye Y, Jiang S, Du T, Ding M, Hou M, Mi C, Liang T, Zhong H, Xie J, Xu W, Zhang H. 2021. 593 Environmental pollutant benzo[a]pyrene upregulated long non-coding RNA Hz07 inhibits 594 trophoblast cell migration by inactivating PI3K/AKT/MMP2 signaling pathway in recurrent 595 pregnancy loss. Reprod Sci 28(11):3085-3093. 596 Zablon HA, Ko CI, Puga A. 2021. Converging roles of the aryl hydrocarbon receptor in early 597 598 embryonic development, maintenance of stemness, and tissue repair. Toxicol Sci 182(1):1-9. 599

- 600 Zhang L, Connor EE, Chegini N, Shiverick KT. 1995. Modulation by benzo[a]pyrene of
- 601 epidermal growth factor receptors, cell proliferation, and secretion of human chorionic
- 602 gonadotropin in human placental cell lines. Biochem Pharmacol 50(8):1171-1180.
- 603 604 Zhang L, Shiverick KT. 1997. Benzo(a)pyrene, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin,
- 605 alters cell proliferation and c-myc and growth factor expression in human placental
- 606 choriocarcinoma JEG-3 cells. Biochem Biophys Res Commun 231(1):117-120.
- 607

608 Zhang L, Shiverick KT. 1998. Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 609 benzo(a)pyrene on proliferation and growth factor gene expression in human choriocarcinoma

- 610 BeWo cells. Placenta 19:177-191.
- 611
- 612 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK.
- 613 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
- 614 Nat Commun 10(1):1523.
- 615

616 617 **FIGURE LEGENDS**

618

619 Figure 1. Effects of TCDD on human TS cells in the stem state. (A, B) CYP1A1 and CYP1B1 620 transcript levels in human TS cells exposed to Control conditions or TCDD (1-100 nM) for 24 h. 621 (C) Immunocytochemistry of CYP1A1 protein expression in human TS cells exposed to Control 622 conditions or TCDD (10 nM) for 24 h (Scale bar: 300 µm). DAPI identifies cell nuclei (blue). 623 (D) Heatmap showing select transcripts from RNA-seq analysis of human TS cells exposed to 624 Control conditions or TCDD (10 nM) 24 h. (E, F) RT-qPCR validation of selected up regulated 625 and down-regulated transcripts in human TS cells exposed to Control or TCDD (10 nM). n=3. 626 Graphs represent mean values \pm standard error of the mean (SEM), unpaired t test, *P < 0.05,

- 627 **P < 0.01, and ***P < 0.001.
- 628 629

630 Figure 2. Effect of TCDD in EVT cells. (A) Phase-contrast images depicting cell 631 morphology of EVT cells differentiated from human TS cells in presence of vehicle or 632 TCDD (10 nM) (Scale bar = $500 \mu m$). (B) Expression of CYP1A1 and CYP1B1 following 633 exposure to vehicle or TCDD (10 nM) during EVT cell differentiation. (C) 634 Immunofluorescence of CYP1A1 expression (red) in EVT cells treated with vehicle and TCDD 635 (10 nM) (Scale bar: 300 µm). DAPI marks cell nuclei (blue). (D) Heatmap showing select 636 transcripts from RNA-seq analysis of EVT cells exposed to vehicle versus TCDD (10 nM). (E, 637 F) RT-qPCR validation of selected up-regulated and down-regulated transcripts in vehicle versus 638 TCDD treated cells. n = 3. Graphs represent mean values \pm SEM, unpaired t test, *P < 0.05, **P639 < 0.01, and ***P < 0.001. 640 641 642 Figure 3. Effect of TCDD in syncytiotrophoblast differentiation. (A) Phase-contrast images

- 643 depicting three-dimensional (**3D**) syncytiotrophoblast development in presence of vehicle
- 644 or TCDD (10 nM) (Scale bar = 300μ m). (B) Expression of CYP1A1 and CYP1B1
- 645 following exposure to vehicle or TCDD (10 nM) during 2D and 3D syncytiotrophoblast

646	differentiation.	(C) Heatmap	showing select	transcripts from	RNA-seq analysis of 3D	
-----	------------------	-------------	----------------	------------------	------------------------	--

647 syncytiotrophoblast exposed to vehicle versus TCDD (10 nM). (D) RT-qPCR validation of

selected up-regulated transcripts in cells treated with vehicle versus TCDD, n=3. Graphs

649 represent mean values \pm SEM, unpaired t test, *P < 0.05, **P < 0.01, and ***P < 0.001.

650 651

652 Figure 4. AHR dependent activation of CYP1A1 in human TS cells. RT-qPCR (A) and western 653 blot (B) assessment of lentiviral vector-mediated AHR silencing efficiency in human TS cells 654 expressing control or AHR shRNAs. (C) Immunocytochemistry of AHR protein expression 655 (green) in control shRNA or AHR shRNA silenced cells (Scale bar: 300µm). DAPI marks cell 656 nuclei (blue). (D) CYP1A1 and CYP1B1 transcript level measurements in control shRNA or 657 AHR shRNA silenced cells in presence of TCDD (10 nM) for 24 h. n=3. Graphs represent mean 658 values \pm SEM, one-way ANOVA analysis, Tukey's post hoc test. *P < 0.05, **P < 0.01, 659 ***P < 0.001, ****P < 0.0001.

660

Figure 5. Effects of TCDD on 2-methoxyestradiol production by human TS cells. 2-

methoxyestradiol concentration (pmole/mL) measured in TS cells maintained in the stem state
(A) or induced to differentiate into EVT cells or ST (B). Cells were exposed to vehicle +
estradiol (E2; 10 nM) or TCDD (10 nM) + E2 (10 nM) for 48 h before harvesting conditioned
medium for 2-methoxyestradiol measurement. n=3. Graphs represent mean values ± SEM,

666 unpaired t test, *P < 0.05, and **P < 0.01 (C) Schematic of a TCDD-mediated pathway affecting 667 placentation.

668 669

670 SUPPLEMENTARY FIGURES

671

Figure S1. Effects of TCDD on human cell cycle and cell death. (A) Human TS cells were
stained with annexin-V (AV) and propidium iodide (PI) and subjected to flow cytometry to
determine cell death. Human TS cells were treated with vehicle or TCDD (10 and 100 nM). (B)
Human TS cells were stained with PI and subjected to flow cytometry to determine DNA content
and stage of the cell cycle.

677

Figure S2. Pathway analysis of RNA-sequencing datasets of human TS cells maintained in thestem state exposed to vehicle or TCDD (10 nM).

680

Figure S3. Effects of TCDD exposure in the stem state on the capacity of human TS cells to differentiate. Human TS cells were treated in the stem state with TCDD (10 nM) for 24 h and then induced to differentiate into EVT cells or ST. (A) Morphology of human TS cells induced to differentiated into EVT cells. (B) RT-qPCR measurement of *HLA-G* and *MMP2* levels, transcripts associated with EVT cell differentiation. (C) Morphology of human TS cells induced

to differentiated into ST. (D) RT-qPCR measurement of *CGB5* and *SDC1* levels, transcripts

687 associated with ST differentiation.688

Figure S4. Pathway analysis of RNA-sequencing datasets of human TS cells induced to

- 690 differentiate into EVT cells exposed to vehicle or TCDD (10 nM).
- 691

- 692 Figure S5. Pathway analysis of RNA-sequencing datasets of human TS cells induced to
- 693 differentiate into ST exposed to vehicle or TCDD (10 nM).

694

695

696

1.5

1

0.5

-0.5

-1 -1.5

Control

shRNA

AHR

shRNA2

AHR

shRNA3

AHR

(100 kDa)

GAPDH

(36 kDa)

ns

