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Prior event rate ratio adjustment for
hidden confounding in observational
studies of treatment effectiveness: a
pairwise Cox likelihood approach
Nan Xuan Lina,b and William Edward Henleyb*†

Observational studies provide a rich source of information for assessing effectiveness of treatment interventions in
many situations where it is not ethical or practical to perform randomized controlled trials. However, such stud-
ies are prone to bias from hidden (unmeasured) confounding. A promising approach to identifying and reducing
the impact of unmeasured confounding is prior event rate ratio (PERR) adjustment, a quasi-experimental ana-
lytic method proposed in the context of electronic medical record database studies. In this paper, we present a
statistical framework for using a pairwise approach to PERR adjustment that removes bias inherent in the origi-
nal PERR method. A flexible pairwise Cox likelihood function is derived and used to demonstrate the consistency
of the simple and convenient alternative PERR (PERR-ALT) estimator. We show how to estimate standard errors
and confidence intervals for treatment effect estimates based on the observed information and provide R code
to illustrate how to implement the method. Assumptions required for the pairwise approach (as well as PERR)
are clarified, and the consequences of model misspecification are explored. Our results confirm the need for
researchers to consider carefully the suitability of the method in the context of each problem. Extensions of the
pairwise likelihood to more complex designs involving time-varying covariates or more than two periods are
considered. We illustrate the application of the method using data from a longitudinal cohort study of enzyme
replacement therapy for lysosomal storage disorders. © 2016 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

Observational studies, based on routinely collected patient data or data from population-based cohorts,
offer a rich source of information for evaluating real-world effectiveness of medical treatments [1]. With
the anticipated growth in implementation of electronic health record systems, there is increasing scope
for using large observational datasets to inform the design of randomized trials and to address clinical
questions for which trials are unlikely to be conducted because of ethical or logistical considerations.
However, a major challenge in adopting this approach is the need to remove bias introduced due to
confounding by indication or other biases due to the effect of unmeasured covariates [2]. Analyses that
fail to account for relevant confounders may have important negative consequences for health policy and
patient safety.

Tannen et al. [3] introduced prior event rate ratio (PERR) adjustment, a new quasi-experimental
analytic approach to identifying and reducing hidden (unmeasured) confounding in the analysis of
time-to-event data from clinical database studies.
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The PERR approach replicates a randomized trial by identifying a group of individuals from a clin-
ical database using the same inclusion and exclusion criteria, a similar study time frame and a similar
treatment regimen as the trial. The exposed group is the individuals who received treatment within the
recruitment interval of the trial. The unexposed group are individuals not receiving the treatment within
the recruitment window. Previous studies using the PERR method have generally matched unexposed
patients to exposed patients on an index date (often, the date that the exposed patients first received treat-
ment). The method relies on a before-and-after design and assumes that the hazard ratio of the exposed
to unexposed for a specific outcome before the start of the trial reflects the combined effect of all con-
founders independent of any influence of treatment. Let HRs be the unadjusted hazard ratio of treated
versus control during the study from a Cox regression model, and HRp be the corresponding unadjusted
hazard ratio of treated versus control in the prior period. To account for unmeasured confounding, the
PERR-adjusted hazard ratio is given by HRPERR = HRs∕HRp. The schematic of this method is displayed
in Figure 1.

Two studies by Tannen and colleagues reported good concordance between PERR results and those
from published RCTs. First, observational data from the clinical practice research datalink were used
to replicate the Scandinavian Simvastatin Survival Study of statin treatment for hypercholesterolemic
subjects with coronary heart disease [4]; second, data from the same source were used to replicate two
randomized trials of angiotensin-converting enzyme inhibitors in patients without congestive heart failure
at high risk for cardiovascular disease [5]. Tannen et al. [5] conducted a broader validation study in which
the PERR adjusted HRs were not significantly different from the trial HRs in five out of eight comparisons
of cardiovascular outcomes where unadjusted HRs were inconsistent with the trial results (suggesting
the presence of unmeasured confounding). However, Yu et al. [6] noted that the original PERR method
frequently led to attenuated treatment estimates in simulation experiments and introduced an alternative,
referred to as PERR-ALT, based on a paired Cox model. This approach gave unbiased estimates in sim-
ulation studies where the unmeasured confounder effect did not vary temporally. More generally, both
PERR methods performed well in reducing bias when the treatment effect was large compared with any
confounder-treatment interaction. The original PERR estimator was more computationally stable than
PERR-ALT when the event rate was low and the sample size was limited.

Given the promising results in these early studies, the PERR method is gaining acceptance as a useful
approach for addressing hidden confounding when comparing or evaluating treatments in observational
studies [2]. For example, PERR adjustment has been used to assess the incidence of Campylobacter
and Salmonella infection in patients-prescribed proton pump inhibitors compared with controls, using
electronic health records from the secure anonymized information linkage databank [7]. Tannen et al. [8]
proposed a strategy for performing comparative effectiveness research using the THIN database in which
PERR adjustment is used to remove bias because of unmeasured confounding.

The aim of this paper is to set out a detailed statistical framework for using a pairwise approach to
PERR adjustment and to address some of the methodological challenges. Yu et al. [6] present a sim-
ple and convenient formula for PERR-ALT adjustment. We extend their approach by deriving a flexible
pairwise Cox likelihood function and using this to show that the PERR-ALT method is consistent, under
relevant assumptions. The pairwise likelihood can be used to obtain consistent estimates of treatment
effects, other measured covariates, and period effects. We also consider ways in which the likelihood
can be extended to relax the assumptions of the original PERR method. We address the issue of estimat-
ing standard errors and confidence intervals for the treatment effect estimates. Previous work has used a

Figure 1. Schematic for the prior event rate ratio adjustment method.
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bootstrapping technique to estimate confidence intervals for the PERR-ALT method because of difficul-
ties in estimating the covariance between HRs and HRp [8]. We provide a direct approach based on the
observed information matrix.

The paper is organized as follows. The definitions of prior and study event times, the hazard models,
and assumptions required for using the pairwise Cox method (as well as PERR and PERR-ALT ) in the
analysis of observational data are clarified in Section 2. In Section 3, we consider the nature of the bias in
the original PERR method using asymptotic bias formulae. In Section 4, we propose a statistical test for
detecting hidden confounding using prior event data. The pairwise Cox likelihood function is derived in
Section 5 and formulae given for estimating standard errors. We also consider how the method could be
applied in the context of crossover trials. Section 6 discusses situations in which the PERR method will
be prone to bias. Extensions of the pairwise likelihood that permit more flexible modeling are considered
in Section 7. The method is applied to data from a longitudinal cohort study of enzyme replacement
therapy for lysosomal storage disorders in Section 8.

2. Definitions, assumptions, and hazard model

We start by introducing some notation and setting out a general framework for quasi-experimental ana-
lytic studies using a pairwise Cox approach. Here, random variables are denoted by upper case letters,
and their values are denoted by lower case letters.

In what follows, we assume that there are two types of events of interest: the study event and the prior
event. Usually, the study event is defined so that some individuals receive a treatment or exposure during
or before the time of the study event (the exposed group) and some do not (the unexposed group). The
prior event refers to an earlier event when no individuals are treated. However, these requirements are not
compulsory. As illustrated later in an example related to treatment for diabetic retinopathy, there could be
no order between the prior and study events, and patients can be treated during or before the time of the
prior event. We note that the approach can easily be generalized to more than two events as considered
in Section 7.2.

Designing studies based on the pairwise Cox likelihood method requires the user to define the events
and time origins carefully to reflect the requirements of the research problem. First, the prior and study
events need to be defined. Usually, the prior and study events should be of the same nature so that the
unknown confounders will have the same effects on the hazards of prior and study events. For example,
this may be a reasonable assumption in a study investigating the protective effects of estrogen replacement
therapy on risk of myocardial infarction (MI) in post-menopausal women where previous MI is used as
the prior event [8].

In order to define the event times used in the statistical analysis, the time origins when individuals first
become at risk for the prior and study events need to be defined in the context of the research problem.
This fixes the prior and study periods that provide the framework for the pairwise design. We define T∗

p
for the variable of prior event time measured from the prior start point to a prior event and T+

p to be the
corresponding variable for the prior censoring time. The prior start point is defined as the time origin
when the individual is considered to be at risk of experiencing a prior event. The variable for the observed
prior time is Tp = min

(
T∗

p ,T
+
p

)
with the variable for the prior censoring indicator Δp = I

(
T∗

p ⩽ T+
p

)
,

where I
(

T∗
p ⩽ T+

p

)
is an indicator function such that Δp = I

(
T∗

p ⩽ T+
p

)
= 1 if T∗

p ⩽ T+
p and 0 otherwise.

We call the time span that the individual is at the risk of a prior event (or being observed for a prior event)
the prior period, which is measured from the prior start point to the observed time Tp. The definition
of prior period means that an individual is at risk of a prior event (or being observed for a prior event)
until the prior event is observed

(
Tp = T∗

p

)
or right censored

(
Tp = T+

p

)
. Similar definitions apply to

the study start point, study period, and the variables
(
T∗

s ,T
+
s ,Ts,Δs

)
for the study event, censoring and

observed times, and censoring indicator, respectively. Note that it is generally not appropriate when using
the pairwise and PERR methods to measure Ts from the time of receiving treatment as this is often not
the time when an individual starts to be under the risk of a study event (see later).

To illustrate the process of model formulation, we consider the example of assessing the effectiveness
of influenza vaccination in older adults in the UK using electronic medical record data. Influenza is a
major cause of illness and death amongst the elderly, and reliable estimates of vaccine effectiveness are
important for informed vaccine policies and programs [9]. To apply the pairwise Cox method, we first
need to define the prior and study events: If the focus is on more serious outcomes, then one possible
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event would be hospitalization for an influenza-related illness. We make the simplifying assumption that
individuals are at risk of influenza during the winter season (from October 1 to March 31 each year) but
not during the summer season (from April 1 to September 30 each year). Suppose data are available from
the 2013/2014 and 2014/2015 influenza seasons. The prior and study time origins are October 1, 2013
and October 1, 2014, respectively (Figure 2).

Let X = (X1,… ,Xq)tr be q-measured covariates in the study period, where tr is the notation of transpose
and C be the column vector for hidden covariates (or confounders). Conditional on X and C, (Tp,Ts) and(

T+
p ,T

+
s

)
are assumed to be independent. The independent censoring assumption is sensible and has

been widely used in multiple events models such as Prentice, Williams, and Peterson [10] and Wei, Lin,
and Weissfeld [11] (hereafter, referred to as PWP and WLW). For example, in the influenza vaccination
study, if patients are not infected with flu from October 2013 to April 2015, the prior and study events
are right censored with T+

p = T+
s = 6 months (i.e., the length of flu season). In this case, the censoring is

similar to administrative censoring.
In the presence of death, if death is related to the prior or study events, a competing risk model will

be needed [12]. In this paper, we focus on the case where death is not related to the prior or study events
and can be regarded as right censoring. If the individual died after the prior event and before the study
period, Tsi = 0 and Δsi = 0. We will show that this kind of data has no contribution to the pairwise Cox
likelihood.

Let
(

Tpi,T
∗
pi,T

+
pi,Δpi,Tsi,T

∗
si,T

+
si ,Δsi,Xi,Ci

)
be n-independent replicates of

(
Tp,T

∗
p ,T

+
p ,Δp, Ts,

T∗
s ,T

+
s ,Δs,X,C

)
. It is assumed that the hazard of a prior event at T∗

pi = t is as follows:

hpi(t) = I
(
t ⩽ Tpi

)
h0p(t) exp(𝛽Ci), (1)

where h0p(t) is the unspecified baseline hazard for the prior event, 𝛽 is the vector of coefficients for Ci,
and I(t ⩽ Tpi) indicates whether t is within the prior period, that is, whether the individual is at the risk of
a prior event (or being observed for a prior event) until the prior event is observed or a censorship occurs.

Similarly, we assumed the hazard of a study event at T∗
si = t is as follows:

hsi(t) = I
(
t ⩽ Tsi

)
h0s(t) exp

(
𝜃Xi + 𝛽Ci

)
, (2)

where h0s(t) is the unspecified baseline hazard for the study event, 𝜃 = (𝜃1,… , 𝜃q) is the vector of
coefficients for Xi, and I(t ⩽ Tsi) is the indicator for the study period.

In (1) and (2), 𝛽Ci is assumed to be time invariant. In practice, the prior and study events need to be
carefully defined to satisfy this assumption. As we said, usually the prior and study events should be of
the same nature. As a consequence, the pairwise Cox likelihood approach is only applicable to problems
where the prior and study events are non-terminal events. In particular, the method cannot be applied
when death is an outcome of interest.

We maintain that a careful clarification of research purpose is needed before one can choose a statistical
model. Like the PWP and WLW models, the basic models (1)–(2) allow for the different events (prior
and study) to have different baseline hazards (h0p and h0s). The WLW model usually operates with a
common time origin, while the basic models (1)–(2) allow the different event times to have different time
origins. In some cases, the Andersen and Gill model is suitable if the events shared a common baseline
hazard, while in other cases, it is reasonable to assume different baseline hazards for different events. For
example, in the study of influenza vaccination, it is reasonable to allow different baseline hazards, h0p(t)
and h0s(t), for the prior and study events because of the unknown changes in conditions between the two
flu seasons (e.g., due to differences in the circulating strains of influenza).

Figure 2. Timeline for an illustrative study of influenza vaccination effectiveness using the pairwise Cox method.
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The basic models (1)–(2) can be used wherever the PWP, WLW, and the Andersen and Gill (AG)
[13] models are applicable. For example, if the prior and study events are the first and second events,
respectively, then Tpi and Tsi are the times for the first and second events, respectively. In this case, by
adopting a time-varying treatment indicator Xi(t), the basic models (1)–(2) are the same as follows:

• the PWP model, if Tsi is measured from the time point of the prior event;
• the WLW model, if Tsi is measured from the same time origin as Tpi; and
• the Andersen and Gill model, if Tsi is measured from the same time origin of Tpi and we assume

h0 = h0p = h0s.

The definition of events and measurement of times are important when using the PERR/pairwise
method. Returning to the estrogen replacement therapy example, it is not appropriate to define the prior
event as the first MI (no matter whether the patient is treated or not) and the study event as the first
MI after the treatment, and measure Ts from 𝜏i, the treatment time for the ith individual. Consider, for
example, if the treatment has no effect (𝜃 = 0), a first MI after treatment at Tsi = t without a prior
MI can be regarded as both the prior and study events and will consequently have two different hazards
h0p(𝜏i+ t) exp(𝛽ci) ≠ h0s(t) exp(𝛽ci) (the common baseline hazard h0s could not be the same as h0p(𝜏i+ t),
which depends on individual i). For this example, it is more appropriate to define the prior event as the
first MI and the study event as the second MI. The time Ts can be measured from the first MI (like the
PWP model) or from the prior start point (like the AG and WLW models). The pairwise approach can be
easily generalized to the cases where the third, fourth, or more MIs are of interest by using a time-varying
treatment variable.

Another example is an observational study of the effectiveness of laser photocoagulation in delaying
the onset of blindness in patients with diabetic retinopathy. A patient could potentially experience blind-
ness in both eyes; we define the prior and study events to be left and right eye blindness, respectively. In
this example, there is no order between the prior and study events, and the prior and study periods over-
lap. The right eye can be blind before the left eye. The patient starts to be at the risk of blindness for both
eyes from the same time origin. A WLW-type model can be used:

hpi(t) = I
(
t ⩽ Tpi

)
hp0(t) exp

(
𝜃pXip + 𝛽Ci

)
hsi(t) = I

(
t ⩽ Tsi

)
hs0(t) exp

(
𝜃sXis + 𝛽Ci

)
,

where Xip = 1 if the left eye was on treatment and 0 otherwise, Xis = 1 if the right eye was on treatment
and 0 otherwise, and 𝜃p and 𝜃s are the treatment effect on the left and right eyes, respectively. The process

of observing the left eye blindness is stopped (i.e., I(t ⩽ Tpi) = 0) if the left eye is blind
(

t = t∗pi

)
or the

follow-up ends
(

t = t+pi

)
. The likelihood function for this example is given in (16).

For the influenza vaccination example, the basic models (1)–(2) can be extended as follows:

hpi(t) = I
(
t ⩽ Tpi

)
hp0(t) exp

(
𝜃Xip(t) + 𝛽Ci

)
hsi(t) = I

(
t ⩽ Tsi

)
hs0(t) exp

(
𝜃Xis(t) + 𝛽Ci

)
,

where Tpi and Tsi are respectively measured from October of 2013 and 2014 to the times of hospitaliza-
tions for an influenza-related illness or to April of 2014 and 2015 (if the times are censored). The time
origins are defined as the start of the 2013 and 2014 influenza seasons because these are the points at
which patients first become at risk for a prior or study event, respectively. We note that in this exam-
ple, there is a gap in being under risk between the prior and study periods (during the summer period in
2014). In this type of problem, it is not appropriate to define the study time origin at the first event (like
the PWP model) or at the start of the prior period (like the AG and WLW models). The definition of the
time origins in this example requires the indicators of vaccinations Xip(t) and Xis(t) to be time-varying:
Xip(t) = 1 if the individual i was vaccinated at or before the time tpi = t and 0 otherwise; Xis(t) = 1 if the
individual i was vaccinated at or before the time tsi = t and 0 otherwise. If there is a prior event at time
t∗pi, then Tpi = t∗pi. The indicator for the prior period I(t ⩽ Tpi) = 0 for t > t∗pi reflecting the assumption
that there is no risk of flu after a previous hospitalization related to influenza within the same flu season.
This is because an individual contracting influenza develops antibodies to the circulating strain. If there
is no prior event, the prior event time is censored, and the observed prior time Tpi is equal to the length
of the flu season, that is, 6 months. The indicator for the prior period I(t ⩽ Tpi) = 0 for t > 6 reflecting
the assumption that there is no risk of flu after the flu season.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5149–5169
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3. Bias in the prior event rate ratio method

Suppose the true hazards are (1) and (2). The PERR method fits the following models for the prior and
study event times:

I
(
t ⩽ Tpi

)
h∗0p(t) exp

(
𝜃∗pXi

)
, (3)

I
(
t ⩽ Tsi

)
h∗0s(t) exp

(
𝜃∗s Xi

)
, (4)

respectively. The parameters 𝜃∗p = log(HRp) and 𝜃∗s = log(HRs) are the log-hazard ratios without
adjustment for Ci for prior and study events, respectively. The PERR-adjusted log-HR is given by
log(HRPERR) = 𝜃PERR = 𝜃∗s −𝜃∗p . The parameters 𝜃∗p and 𝜃∗s are estimated from the log partial likelihoods:

1
n

n∑
i

Δip

{
𝜃∗pXi − log

n∑
j

I(Tpi ⩽ Tpj) exp
(
𝜃∗pXj

)}
, (5)

1
n

n∑
i

Δis

{
𝜃∗s Xi − log

n∑
j

I(Tsi ⩽ Tsj) exp
(
𝜃∗s Xj

)}
, (6)

respectively.
However, the PERR adjustment cannot entirely remove the bias from the estimate of the treatment

effect, that is, 𝜃PERR ≠ 𝜃. Lin et al. [14] studied the problem of hidden confounding in the Cox regression
model and showed that due to the nonlinearity of the Cox model, the resulting bias is a complicated com-
bination of three sources: (i) bias due to omission of hidden covariates, even if they are not confounders;
(ii) bias due to censoring; and (iii) bias due to the hidden covariates being confounders. Here, we con-
ducted a simple simulation study to illustrate the impact of these three sources of bias on the performance
of the PERR method. We generated 100,000 paired times (tp, ts) for prior and study events from the mod-
els (1) and (2), respectively, with h0p(t) = 𝜃 = 1, h0s(t) = exp(1), X ∼ Bin(1, 0.5) and the log HR of the
hidden covariate, 𝛽, taking 100 sequenced values from −10 to 10. The data were fitted by the models (3)
and (4). Because the sample size is large (n = 100, 000), the bias of the unadjusted estimate �̂�∗s for the
naive Cox model and the bias of the PERR estimate �̂�PERR were approximated by �̂�∗s − 𝜃 and �̂�∗s − �̂�∗p − 𝜃,
respectively.

We present bias curves in Figure 3 showing the relationship between the bias of the PERR estimate
and the value of 𝛽 under three different scenarios to separate out the effect of the three potential sources
of bias: Figure 3(a) shows the bias when there is a hidden balanced covariate C ∼ Bin(1, 0.5) in the
absence of censoring; Figure 3(b) shows the bias when again C ∼ Bin(1, 0.5), but in addition, both tp and

Figure 3. Bias curves for the prior event rate ratio (PERR) estimate 𝜃PERR and the unadjusted estimate 𝜃∗ of the
naive Cox model in the presence of omitted covariates. Graphs are based on simulated dataset with n = 100, 000
and true log-hazard ratio of treatment 𝜃 = 1. An exponential baseline hazard was used with a rate parameter of

h0(t) = 1. The censoring mechanism was uniform.
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ts are 50% censored; Figure 3(c) shows the bias when again tp and ts are 50% censored, but C is now a
hidden confounder with distribution Bin(1, 0.3+ 0.4X) (i.e., the omitted covariate has the same marginal
distribution as Figure 3(a) and (b), but the conditional distribution depends on X).

The three figures show that PERR adjustment is biased even if the hidden covariate C is not a con-
founder. In Figure 3(a) and (b), it is hard to see the difference between the PERR method and the naive
unadjusted Cox model because the bias curves for 𝜃∗s and 𝜃PERR overlap closely for all values of 𝛽: PERR
adjustment fails to remove any of the bias attributable to censoring or to hidden covariates that are bal-
anced across treatment groups. The figures show that the bias of PERR adjustment increases with the
absolute value of the log-hazard ratio 𝛽 of the hidden covariate. The direction of the bias is always the
same: Treatment effect estimates are attenuated. The PERR adjustment is only successful in removing
the bias attributable to confounding, as shown in Figure 3(c). The unadjusted Cox model fails to remove
the hidden confounding bias, and the direction of the bias depends on the sign of 𝛽 and the distribution
of C conditional on X.

Although the models (3) and (4) are misspecified, the maximal likelihood estimates �̂�∗p and �̂�∗s converge

to well-defined constants as n → ∞ [15]. The limiting values of �̂�∗p and �̂�∗s are sometimes called the
‘least false’ value [16]. For simplicity of notation, we use the same 𝜃∗p and 𝜃∗s to denote these limits. By
calculating the limits of the score functions of the likelihood (5) and (6) as n → ∞ under the true models
(1) and (2) and following the result of Lin et al. [14], it can be shown that the limits 𝜃∗p and 𝜃∗s are the
solutions of the equations:

0 = Up

(
𝜃∗p

)
= E

⎛⎜⎜⎜⎝Δp

⎡⎢⎢⎢⎣X −
Exc

{
S+

p (Tp|X)e𝜃∗p Xe−H0p(Tp)e𝛽C
X
}

Exc

{
S+

p (Tp|X)e𝜃∗p Xe−H0p(Tp)e𝛽C
} ⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
0 = Us

(
𝜃∗s
)
= E

(
Δs

[
X −

Exc

{
S+

s (Ts|X)e𝜃∗s Xe−H0s(Ts)e𝜃X+𝛽C
X
}

Exc

{
S+

s (Ts|X)e𝜃∗s Xe−H0s(Ts)e𝜃X+𝛽C
} ]) ,

(7)

where H0p(Tp) = ∫ Tp

0 h0p(t)dt, H0s(Ts) = ∫ Ts

0 h0s(t)dt, Exc is the expectation with respect to X and C, and
S+

p (Tp|X) and S+
s (Ts|X) are the survival functions of the prior and study censoring times conditional on

X, respectively.
The first-order Taylor series approximation for the bias of PERR adjustment is as follows:

𝜃PERR − 𝜃 ≈ I−1
s (𝜃)Us(𝜃) − I−1

p (0)Up(0),

where Is

(
𝜃∗s
)
= −𝜕Us

(
𝜃∗s
)
∕𝜕𝜃∗s and Ip

(
𝜃∗p

)
= −𝜕Up

(
𝜃∗p

)
∕𝜕𝜃∗p .

4. Use of prior event data to detect unmeasured confounding

A hypothesis test for detecting unmeasured confounding can be developed based on the first equation in
(7). Suppose C⊥X so that C is an unmeasured balanced covariate but not a confounder, the first equation
in (7) reduces to the following:

E(ΔpX) = E

⎛⎜⎜⎜⎝Δp

⎡⎢⎢⎢⎣
Ex

{
S+

p (Tp|X)e𝜃∗p XX
}

Ex

{
S+

p (Tp|X)e𝜃∗p X
} ⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠ . (8)

Under the independent censoring assumption T∗
p⊥T+

p |(X,C) [11], the survival function for the prior cen-
soring time can be written as S+

p (t|X,C). Because X is the set of covariates associated with the study
period, S+

p (t|X,C) = S+
p (t|C). With C⊥X, it follows:

S+
p (t|X) = ∫ S+

p (t|X, c)f (c|X)dc = ∫ S+
p (t|c)f (c)dc = S+

p (t). (9)
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Therefore, (8) is further simplified to the following:

E(X) =
E
(

e𝜃
∗
p XX

)
E
(
e𝜃

∗
p X) ,

which has the solution 𝜃∗p = 0.
This provides the basis for the following procedure to test for the presence of an unmeasured

confounder using the prior event data:

(1) Suppose the null hypothesis is

H0 ∶ C⊥X so that C is an unmeasured balanced covariate but not a confounder.

(2) To assess (9), fit the model (3) to the data tp and x but with the censoring indicators reversed (i.e., by
considering events as ‘censored’ observations and censored observations as ‘events’). If the p-value
for the estimate �̂�∗p is greater than 0.05, it indicates that (9) is deemed valid.

(3) Fit the model (3) to tp and x again but without reversing the censoring indicators. Under the null
hypothesis H0 and with (9), the distribution of the Wald test statistic for �̂�∗p can be approximated by
the standard normal distribution N(0, 1).

(4) Calculate the p-value. Reject H0, if the p-value is less than 0.05.

Note that even if H0 is not rejected, the pairwise method is still recommended because the unadjusted
estimate �̂�∗s may still incorporate bias because of hidden balanced covariates and censoring, as illustrated
in Figure 3(a) and (b).

5. Pairwise Cox likelihood

For the hazards (1) and (2), we first write the baseline hazard ratio as follows:

h0s(t)
h0p(t)

= exp{𝛼(t)}.

When evaluating effectiveness of treatments for many common chronic conditions such as cardiovascular
disease, it is likely that h0s(t) > h0p(t) and so exp{𝛼(t)} > 1 for all Tpi = Tsi = t ⩾ 0.

If we assume the baseline hazards h0s(t) and h0p(t) are proportional over time (analogous to the familiar
Cox proportional hazards assumption), the log baseline hazard ratio is then equal to a constant 𝛼(t) = 𝛼.
The parameter 𝛼 can be regarded as a period effect. The hazards (1) and (2) now become

hpi(t) = I(t ⩽ Tpi)h0p(t) exp(𝛽Ci) , (10)

hsi(t) = I(t ⩽ Tsi)h0p(t) exp(𝜃Xi + 𝛽Ci + 𝛼)
= I(t ⩽ Tsi)h0pi(t) exp(𝜃Xi + 𝛼),

(11)

where the hazards (10) and (11) now share the same term h0pi(t) = h0p(t) exp(𝛽Ci), which can be regarded
as an individual-specific baseline hazard. For n individuals, the full likelihood is as follows:

Lfull =
n∏
i

{
h0pi

(
Tpi

)}Δpi e−H0pi(Tpi)
{

h0pi

(
Tsi

)
exp

(
𝜃Xi + 𝛼

)}Δsi e−H0pi(Tsi)e𝜃Xi+𝛼 , (12)

where H0pi(t) = ∫ t
0 h0pi(u)du is the cumulative hazard function. It is clear that we cannot obtain a con-

sistent estimate of 𝜃 using (12), because the number of nuisance parameters h0p1(t),… , h0pn(t) increases
with the sample size n. We face the infinitely many nuisance parameters problem. The nuisance parameter
h0pi(t) needs to be removed.

Suppose that 𝜃 and 𝛼 are given, then as shown in Appendix A, the maximum likelihood estimators
(MLEs) of h0pi(t) and H0pi(t) obtained from Lfull are as follows:
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h0pi(Tpi) =
Δpi

1 + Pie𝜃Xi+𝛼
, H0pi(Tpi) =

Δpi

1 + Pie𝜃Xi+𝛼
+

SiΔsi

Si + e𝜃Xi+𝛼
, (13)

h0pi(Tsi) =
Δsi

Si + e𝜃Xi+𝛼
, H0pi(Tsi) =

Δsi

Si + e𝜃Xi+𝛼
+

PiΔpi

1 + Pie𝜃Xi+𝛼
, (14)

where Pi = I(Tpi ⩽ Tsi) and Si = I(Tsi ⩽ Tpi).
Plug the results (13) and (14) back into (12), and we get the pairwise Cox likelihood:

L(𝜃, 𝛼) =
n∏
i

(
1

1 + Pie𝜃Xi+𝛼

)Δpi
(

e𝜃Xi+𝛼

e𝜃Xi+𝛼 + Si

)Δsi

. (15)

The likelihood (15) is now free of the unknown term h0pi(t) = h0p(t)exp(𝛽Ci).
As shown in web Appendix A, if we present the hazard models (10)–(11) and the likelihood (15) in

the mathematical framework of counting processes using the same techniques in the proofs of Gross
and Huber [17], it can be shown that the estimates �̂� and �̂� from (15) are consistent and asymptotically
normal. The covariance matrix can be estimated by the following:

⎡⎢⎢⎢⎣
n∑

i=1

e�̂�Xi+�̂�

⎧⎪⎨⎪⎩
ΔsiSi(

e�̂�Xi+�̂� + Si

)2
+

ΔpiPi(
1 + Pie�̂�Xi+�̂�

)2

⎫⎪⎬⎪⎭
(

XiX
tr
i Xi

Xtr
i 1

)⎤⎥⎥⎥⎦
−1

,

and the confidence interval can be constructed based on a normal approximation.
We can also show the consistency of the PERR-ALT adjustment in Yu et al. [6]. For the exposed group

(Xi = 1), the hazards are as follows:

hpi(t) = I(t ⩽ Tpi)hp0(t) exp(𝛽Ci)
hsi(t) = I(t ⩽ Tsi)hp0(t) exp(𝜃 + 𝛽Ci + 𝛼).

The pairwise likelihood is then

L(𝜃 + 𝛼) =
∏

i

(
1

1 + Pie𝜃+𝛼

)Δpi
(

e𝜃+𝛼

e𝜃+𝛼 + Si

)Δsi

.

Because (�̂�, �̂�) are consistent for (𝜃, 𝛼), the HR estimate for the exposed group (as denoted by ĤRE in Yu
et al. [6]) ĤRE = exp(𝜃 + 𝛼) is consistent for exp(𝜃 + 𝛼).

For the unexposed group (xi = 0), the hazards are the following:

hpi(t) = I(t ⩽ Tpi)hp0(t) exp(𝛽Ci)
hsi(t) = I(t ⩽ Tsi)hp0(t) exp(𝛽Ci + 𝛼),

and the paired likelihood is as follows:

L(𝛼) =
∏

i

(
1

1 + pie𝛼

)𝛿pi
(

e𝛼

e𝛼 + si

)𝛿si

.

Similarly, it can be shown that that the HR estimate for the unexposed group (as denoted by ĤRuE in Yu
et al. [6]) ĤRuE = exp(𝛼) is consistent for the baseline hazard ratio exp(𝛼).

Therefore, the PERR-ALT estimate ĤRPERR-ALT = ĤRE∕ĤRuE is consistent for the true treatment effect
exp(𝜃).

Note that the proportional baseline hazards assumption, log{h0s(t)∕h0p(t)} = 𝛼(t) = 𝛼, is not compul-
sory for the pairwise Cox method. The pairwise Cox likelihood is flexible. We can, for example, assume
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Figure 4. Simulation study of the bias of the unadjusted, prior event rate ratio (PERR) and pairwise methods in
the case of a time-varying baseline hazard. Graphs are based on simulated dataset of n = 100, 000 paired event
times. A Weibull baseline hazard h0p = 2t was used. The main effect of treatment was 𝜃 = 1, and the period effect

was 𝛼 = −1.

the log-baseline hazard ratio is linearly associated with time and thus specify 𝛼(t) = 𝛼0+𝛼1t. The pairwise
likelihood is then as follows:

L(𝜃, 𝛼0, 𝛼1) =
n∏
i

(
1

1 + pie
𝜃xi+𝛼0+𝛼1tpi

)𝛿pi
(

e𝜃xi+𝛼0+𝛼1tsi

e𝜃xi+𝛼0+𝛼1tsi + si

)𝛿si

.

For the example of diabetic retinopathy, the likelihood function is as follows:

n∏
i

(
e𝜃pXip

e𝜃pXip + Pie𝜃sXis+𝛼

)Δpi
(

e𝜃sXis+𝛼

e𝜃sXis+𝛼 + Sie
𝜃pXip

)Δsi

. (16)

Because there are no biological differences between the left and right eyes, we can assume a common
baseline hazard (h0p(t) = h0s(t)) and a common treatment effect on both eyes (𝜃p = 𝜃s = 𝜃). Therefore,
𝛼 = log(h0s(t)∕h0p) = 0, and the likelihood becomes

n∏
i

(
1

1 + Pie𝜃Xi

)Δpi
(

e𝜃Xi

e𝜃Xi + Si

)Δsi

, (17)

where Xi = Xis − Xip. We note that only patients receiving treatment on one of the eyes (i.e., Xi = 1 or
−1) will contribute information to the likelihood (17).

5.1. Simulations

Figure 4 compares the biases of the unadjusted, PERR, and pairwise methods in the case of a time-varying
baseline hazard. We generated the prior and study event times from a Weibull model with h0p(t) = 2t, 𝜃 =
1, 𝛼 = −1, 𝛽 ∈ (−10, 10),X ∼ B(1, 0.5),C ∼ B(1, 0.3+0.4X), and both the prior and study data were 50%
censored. The simulation results are similar to those in Figure 3(c) and show that the pairwise method is
consistent.

Table I gives some examples of the variances for the unadjusted, PERR, and pairwise estimates under
different censoring proportions for the prior and study periods. We generated tp and ts from (1) and (2),
respectively, with h0p(t) = 𝜃 = 𝛽 = 1, h0s(t) = exp(−0.5), X ∼ Bin(1, 0.5), and C|X ∼ Bin(1, 0.3+0.4X).
We set censoring proportions for the prior and study periods as (10%, 50%, 90%). The average variance
for each of the three methods and each value of the censoring proportion were calculated over 1000
simulation replications. For each replication, we set the number of events as 200 and the sample size as
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Table I. Examples of the variances for the unadjusted, PERR, and pairwise estimates under different censoring
proportions in the prior and study periods.

Proportion of censoring in prior period 10% 10% 10% 50% 50% 50% 90% 90% 90%
Proportion of censoring in study period 10% 50% 90% 10% 50% 90% 10% 50% 90%
Average variance for unadjusted estimate 0.03 0.06 0.53 0.03 0.04 0.24 0.04 0.03 0.02
Average variance for PERR estimate 0.05 0.08 0.59 0.07 0.05 0.23 0.58 0.17 0.05
Average variance for pairwise estimate 0.08 0.14 0.91 0.13 0.07 0.41 0.61 0.38 0.08

Square root of the ratio between average vari-
ances for unadjusted and pairwise estimates

1.53 1.54 1.31 2.13 1.44 1.30 4.16 3.49 1.74

PERR, prior event rate ratio.

200∕{1−min(CPp,CPs)}, where CPp and CPs are the censoring proportions for prior and study periods,
respectively. Table I shows that generally, the variances of the PERR and pairwise estimates are larger
than those for the unadjusted estimates. The square root of the ratio between average variances shows how
much the confidence interval of the pairwise method will be wider than that of the unadjusted method. It
can been seen that the square root of variance ratio will generally increase with CPs − CPp.

5.2. Treatment of ties and left truncation

In the special case where the prior and study times are tied
(

iet∗pi = t∗si

)
, we assume the equality occurs

because the measurement of event times is not accurate enough. The exact likelihood of the tied pair is
hence the sum of the likelihoods in (13) if t∗pi > t∗si and if t∗pi < t∗si. The sum is as follows:

Exact likelihood = Li(𝜃, 𝛼)if t∗pi>t∗si
+ Li(𝜃, 𝛼)if t∗pi<t∗si

= 1
1 + e𝜃Xi+𝛼

+ e𝜃Xi+𝛼

e𝜃Xi+𝛼 + 1
= 1.

Therefore, the tied pairs make no contribution to the full likelihood and should be removed before
using the pairwise Cox method. If the tied pairs are not removed, the partial likelihood in (15) will be
the following:

e𝜃Xi+𝛼(
1 + e𝜃Xi+𝛼

)2
≠ 1, (18)

which is not identical to the exact likelihood, and thus, estimates of 𝜃 and 𝛼 will be biased
Another issue that will be relevant in some studies is that of left truncation. For example, this can arise

when the time at which a patient first becomes at risk of a prior event is unknown. For left truncation,
there are two options. One is to redefine the events with different starting points to avoid the problem.
For example, it may be reasonable to define the prior origin as the date of the patient’s first medical
record after reaching a particular age (or the date of diagnosis), even though the patient may have been
at risk before that time. However, this option is not always feasible and may change the interpretation of
parameters, potentially leading to violation of the assumptions of the hazard models. The other option
is to impose a distributional assumption on the time of left truncation [12]. The difficulty is that it is
necessary to have reliable information on how to specify the distribution. More details can be found in
section 4.5 of the book by Cook and Lawless [12].

5.3. Applications in crossover trials

As Figure 3(a) and (b) shows, the unadjusted Cox model will give biased estimates of treatment effects,
even in randomized trials, if needed covariates are omitted. As it is never possible to capture all component
causes [18], this potential for bias is likely to be present to some degree in all randomized controlled
trials. In particular, it can have practical consequences for effectiveness estimates in smaller trials.

The pairwise Cox method can be applied with the crossover trial design to remove the bias from hidden
covariates. As we have shown, even if there are infinitely many background covariates and it is impossible
to measure all of them, as long as their values and effects are constant in (1) and (2), the relevant terms
will only rescale the individual-specific baseline hazard h0pi(t) and will be eliminated by the pairwise
partial likelihood (15). However, as shown in Table I, there is a trade-off between bias and variance when
using the pairwise method with crossover trials.
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6. Limitations of prior event rate ratio adjustment

As with other methods for addressing hidden confounding, the validity of PERR adjustment based on
the pairwise Cox likelihood relies on assumptions about the underlying causal model linking treatment
(exposure) to outcomes. To assist applied researchers in deciding when the PERR method is likely to
be of use in practice, we now review the key assumptions of the method and consider robustness of the
method to violations of these assumptions:

Assumptions 1
Models (1) and (2) are correctly specified.

If the models are misspecified, for example, if there is an interaction between treatment and the unmea-
sured confounder(s) or the value and effect of the unmeasured confounder are time-varying, the pairwise
method will be biased. Uddin et al. [19] studied the performance of the PERR estimator when the effect
of the unmeasured confounder varies between periods and showed that the PERR method gives biased
estimates of the rate ratio, but the bias is generally smaller than for conventional analyses. Figure 5
shows an example of the biases for the pairwise Cox likelihood method, the original PERR adjustment
method, and the standard Cox regression model for different degrees of confounder-treatment interac-
tion. The paired event times tp and ts were generated from (1) and h0p(t) exp(𝜃Xi +𝛽Ci +𝛼+𝛽1XiCi) with
h0p(t) = 𝜃 = 𝛼 = 𝛽 = 1, X ∼ B(1, 0.5), and C|X ∼ B(1, 0.3 + 0.4X). The sample size was 100,000, and
there was no censorship. The bias was estimated for different values of the interaction effect 𝛽1.

It can be seen that when the true hazard model contains an interaction, the bias curve for the pairwise
Cox method has a similar sigmoid shape to the curves for the Cox model

(
i.e.h∗0s(t)e

𝜃∗s X
)

and the orig-
inal PERR method. When the magnitude of the interaction effect is less than that of the main effect of
treatment, that is, |𝛽1| < 1, the pairwise method reduces the bias compared with the Cox model. How-
ever, the figure illustrates that there may be regions, corresponding to more extreme degrees of model
misspecification, where the Cox model performs no worse than or better than PERR adjustment.

Assumptions 2
Prior event occurrence should not influence likelihood of future treatment/exposure.

Gallagher et al. [20] and Uddin et al. [19] showed that the original PERR is biased when the likelihood
of treatment is affected by the prior event occurrence. We assessed the performance of the pairwise
method under this problem and found that it also gave biased estimates of treatment effects. An example
of this bias is illustrated in Figure 6. The paired times tp and ts were generated from (1) and (2) with
h0p(t) = 𝜃 = 𝛼 = 𝛽 = 1. The sample size was 100, 000. The censoring mechanism was uniform, and
both the prior and study event data were 50% censored. We generated

Figure 5. Simulation study of the bias of the pairwise Cox likelihood method and the original prior event rate ratio
(PERR) adjustment method in the presence of an interaction between hidden confounder and treatment. Graphs
are based on simulated dataset of n = 100, 000 paired event times. An exponential baseline hazard was used with
a rate parameter of 1. The main effect of treatment was 𝜃 = 1, and the period effect was 𝛼 = 1. 𝛽1 denotes the

size of the interaction effect.
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Figure 6. Simulation study of the bias of the pairwise Cox likelihood method and the original prior event rate
ratio (PERR) adjustment method when prior events influence the likelihood of future receipt of treatment. Graphs
are based on simulated dataset of n = 100, 000 paired times tp and ts generated from (1) and (2). An exponential
baseline hazard was used with a rate parameter of 1. The censoring mechanism was uniform, and both the prior
and study event data were 50% censored. The main effect of treatment was 𝜃 = 1, and the period effect was 𝛼 = 1.
C and Xi were generated from (19) so that the treatment variable was associated with the unmeasured confounder

and the prior censoring indicator 𝛿pi.

C ∼ B(1, 0.5) and Xi ∼ B
(
1, expit

(
Ci − Δpi

))
(19)

so that the treatment variable was associated with the unmeasured confounder and the prior censoring
indicator 𝛿pi. Understanding the mechanism underlying the bias and developing possible solutions is an
interesting open question in its own right.

Remarks on the problem of differential case fatality: Gallagher et al. [20] also showed that the original
PERR method is biased in the case of differential case fatality (i.e., where high-risk patients are more
likely to die before reaching exposure).

We conducted a simulation study to further explore the performance of the PERR and pairwise meth-
ods in the presence of differential case fatality (web Appendix B). The underlying bias of the PERR
estimator (as shown in Section 3) was shown to change when case fatality was differential (both increases
or decreases in bias were possible). However, we found that the pairwise method was unbiased in this
situation. The reason is that the pairwise method compares the outcomes of the same patient before and
after study and thus differential case fatality will not introduce bias. In contrast, for the PERR method,
the distribution of the unmeasured confounder is changed when case fatality is differential. For exam-
ple, suppose C ∼ Bin(1, 0.5) at the beginning of the prior period and the groups with c = 0 (low risk)
and c = 1 (high risk) have differential case fatality of 10% and 50%, respectively, then the distribution
of C for the subjects in the PERR analysis becomes Bin

(
1, 0.5×0.5

0.5×0.9+0.5×0.5

)
. As a result, differential case

fatality changes the distribution of the unmeasured confounder and thus changes the bias of PERR. In
fact, the bias of PERR in this case is the same as the bias in the absence of differential case fatality with
C ∼ Bin

(
1, 0.5×0.5

0.5×0.9+0.5×0.5

)
. This change in the bias due to differential case fatality corresponds to the dif-

ference between the PERR biases for the two unmeasured confounding distributions (web Appendix B).
We note that in the extreme case that all the subjects with c = 1 die before exposure and all the subjects
with c = 0 survive to exposure, the PERR method (as well as the unadjusted Cox model) will be unbiased
because all the subjects in the analysis have the same value of c = 0.

7. More general likelihoods

7.1. Time-varying covariates

The pairwise likelihood (15) can be extended to allow flexible modeling in more general situations.
For example, in practice, we may have some covariates measured in the prior period, and their values
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and effects might change over time. Adopting a commonly used model for time-varying covariates, the
hazards can be written as follows:

hpi(t) = I(t ⩽ Tpi)h0p(t) exp
{
𝜃(t)xi(t) + 𝛽ci

}
, (20)

hsi(t) = I(t ⩽ Tsi)h0p(t) exp
{
𝜃(t + 𝜏pi)xi(t + 𝜏pi) + 𝛽ci + 𝛼

}
, (21)

where 𝜏pi is the time span between the starting points of the prior and study periods for the ith individual.
The models (20) and (21) assume that the hazards at time tpi = tsi = t are only affected by the current
value of the covariate and its effect at the time tpi = tsi = t. Unbiased estimates of the model parameters
can be obtained from the following:

L(𝜃(t), 𝛼) =
n∏
i

{
e𝜃(tpi)xi(tpi)

e𝜃(tpi)xi(tpi) + pie
𝜃(tpi+𝜏pi)xi(tpi+𝜏pi)+𝛼

}𝛿pi
{

e𝜃(tsi+𝜏pi)xi(tsi+𝜏pi)+𝛼

e𝜃(tsi+𝜏pi)xi(tsi+𝜏pi)+𝛼 + sie𝜃(tsi)xi(tsi)

}𝛿si

. (22)

The simple hazard models (10) and (11) and the likelihood (15) can be regarded as the special cases
of (20), (21), and (22), respectively, when

𝜃(t)xi(t) =
{

0, for the hazard of prior event
𝜃xi, for the hazard of study event

.

7.1.1. An example with period-specific treatment effects. Suppose the time-varying covariates and effects
take the values

𝜃(t)Xi(t) =
{

𝜃pxpi, for the hazard of prior event
𝜃sxsi, for the hazard of study event

.

Such a model could be used for considering the effects of treatments, such as statins, for which effects
on outcomes or side effects may not become apparent until after an initial period on treatment. The
corresponding hazards are as follows:

hpi(t) = I
(
t ⩽ Tpi

)
h0p(t) exp

(
𝜃pxpi + 𝛽ci

)
, (23)

hsi(t) = I
(
t ⩽ Tsi

)
h0p(t) exp

(
𝜃sxsi + 𝛽ci + 𝛼

)
, (24)

where 𝜃s is the parameter of interest. The likelihood is then

L(𝜃s, 𝜃p, 𝛼) =
n∏
i

{
e𝜃pxpi

e𝜃pxpi + pie𝜃sxsi+𝛼

}𝛿pi
{

e𝜃sxsi+𝛼

e𝜃sxsi+𝛼 + sie
𝜃pxpi

}𝛿si

. (25)

A simulation study was conducted to compare the performance of the likelihood (25) with the unad-
justed hazard model h(tsi) = h∗0s(tsi) exp

(
𝜃∗s xsi

)
. We generated 100,000 paired event times (tpi, tsi)

from (23) and (24) with h0p(t) = 𝜃s = 1, 𝜃p = 𝛼 = −1, 𝛽 = (−10, 10), Xp ∼ Bin(1, 0.5),
Xs ∼ Bin(1, 0.7 − 0.4Xp), and C ∼ Bin(1, 0.3 + 0.4Xs). The censoring mechanism was uniform, and both
the prior and study event data were 50% censored. The biases of the pairwise method were calculated by
�̂�s − 𝜃s, where �̂�s was obtained from (25). The bias of the unadjusted hazard ratio was �̂�∗s − 𝜃s.

The results presented in Figure 7 show that the pairwise method eliminates the bias in the unadjusted
model. The PERR method was not considered here because it is not applicable in this case.

7.2. More than two periods

The likelihood can also be extended to the case of more than two periods. Suppose the hazard of the ith
individual of experiencing the kth event is as follows:

hik(t) = I
(
t ⩽ Tik

)
h0(t) exp

{
𝛽ci + 𝜃

(
t + 𝜏ik

)
xi

(
t + 𝜏ik

)
+ 𝛼k

}
, k = 1, 2,… ,

where h0(t) is the baseline hazard of the first event, 𝜏ik is the time span between the starting points of the
first period and the kth period, and 𝛼k is the log ratio of baseline hazards between the kth and the first
events with 𝛼1 = 0.
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Figure 7. Simulation study of the pairwise method (25) and the unadjusted hazard model h(tsi) =
h∗

0s(tsi) exp
(
𝜃∗s xsi

)
in the presence of time-varying covariates and effects. Graphs are based on a simulated dataset

with n = 100, 000 and log-hazard ratio of treatment 𝜃s = 1 and 𝜃p = −1. An exponential baseline hazard was
used with a rate parameter of h0(t) = 1. The censoring rate is 50% for both prior and study periods.

For a sample of n individuals and the ith individual with mi events, the partial likelihood is as follows:

L =
n∏

i=1

mi∏
k=1

(
e𝜃(tik+𝜏ik)xi(tik+𝜏ik)+𝛼k∑mi

j=1 I(tik ⩽ tij)e𝜃(tik+𝜏ij)xi(tik+𝜏ij)+𝛼j

)𝛿ik

. (26)

In the case of ties, (26) is a Breslow approximation to the exact likelihood, which should work well if the
ratio between the number of ties and mi is small. However, if this condition is not satisfied, for example,
mi = 2, the approximation can be poor as shown in (18). In this situation, the exact likelihood or Efrons
approximation would be suggested.

8. Application: comparative effectiveness of enzyme replacement therapies for
patients with Fabry disease

8.1. Background and model specification

We consider application of the pairwise Cox approach to data from a longitudinal cohort study of enzyme
replacement therapy (ERT) for Fabrys disease. Fabry disease is a rare, inherited metabolic disorder result-
ing from absolute or partial deficiency of the enzyme 𝛼-galactosidase A and the progressive accumulation
of undigested macromolecules in cells throughout the body, particularly in the heart, kidneys, and nerve
tissue [21]. There are two forms of enzyme replacement products approved for use in the USA and
Europe: agalsidase alfa and agalsidase beta. Studying the comparative efficacy and safety of these two
therapies is of current clinical relevance as there is a tendency for the drug of choice to vary between
treatment centers, often for historical reasons [21]. The rarity and severity of this condition have resulted
in a lack of adequately powered randomized trials for making such comparisons, and so researchers have
instead had to rely on observational studies, with the attendant risk of bias from hidden confounding. We
fitted the pairwise Cox model to estimate comparative effectiveness of the two forms of ERT using data
from the National Collaborative Study for Lysosomal Storage Disorders, a longitudinal cohort study col-
lecting both prospective and historical data [22]. Here, the focus is on illustrating usage of the methods
rather than drawing firm conclusions about the treatments involved, and so we refer to the treatments sim-
ply as therapy A and therapy B. Our analyses necessarily involve simplification of the issues that would
be involved in substantive analyses of the source data, and so the results we present should not be used
to draw inferences for clinical practice.

Overall, a total of 211 adults with Fabry disease were being treated with ERT on recruitment to the
National Collaborative Study for Lysosomal Storage Disorders study. For this illustrative example, the
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outcome of interest was estimated glomerular filtration rate (eGFR), a measure of kidney function, and
we analyzed data for the 45 patients with at least two measures of eGFR, both before and after starting
therapy. The data for the 45 patients are provided in web Appendix C and is available to download as a
CSV file. Of these patients, 26 received therapy A, and 19 were on therapy B. Two potential confounding
variables, age and gender, were available for this analysis. The patients on therapy A were younger and
more likely to be female (mean age of starting therapy = 41.0 years; 35% female) than patients on therapy
B (mean age of starting therapy = 48.1 years; 5% female). We were unable to consider other potential
confounding variables, such as genotype and disease severity, because of a lack of consistency in the
way that they were assessed and recorded. The aim of the pairwise Cox analysis was to account for these
unmeasured differences. Given the modest sample size, the analysis can be seen as a pilot study to inform
the design of a more extensive follow-up study.

To facilitate application of the pairwise Cox method, the multiple renal function measures were con-
verted into time-to-event data by defining the prior and study events as the first times when eGFRs were
greater than those in the first visits before treatment and the visits at or following treatment, respectively
(in the absence of measurement error, increases in eGFR correspond to improvements in kidney func-
tion). According to these definitions of the prior and study events, the start of the prior period was the
first visit recorded in the database before treatment, and the corresponding start of the study period was
the visit at or following the time of initiating ERT therapy. The observed prior and study event times,
Tp and Ts, were measured from the start of the prior and study periods to the prior and study events (or
to the times of receiving therapies and the end of study), respectively. The prior and study periods are
terminated at Tp and Ts, respectively. We note that defining the study origin as the visit at or following
the point of starting ERT therapy was a consequence of the definition of a study event. This helped sim-
plify the problem for the purposes of this illustrative example. In practice, it is inappropriate to set the
time of receiving treatment as the study origin, if the time of receiving treatment is not the time when an
individual starts to be under the risk of the defined study event.

Let Ci be an unmeasured confounder, Xi5 be the indicator of gender (0 = male; 1 = female), Xi3
and Xi4 be the ages in years at the beginning of the prior and study periods, respectively, and Xi1 and
Xi2 be the treatment indicators (no treatment: Xi1 = Xi2 = 0; therapy A: Xi1 = 1,Xi2 = 0; therapy B:
Xi1 = 0,Xi2 = 1). The hazard functions of the prior and study events for the ith patient are assumed to be
as follows:

hpi(t) = I
(
t ⩽ Tpi

)
h0p(t)e𝛽Ci+𝜃5Xi5+𝜃3(Xi3+t) , (27)

hsi(t) = I
(
t ⩽ Tsi

)
h0s(t)e𝛽Ci+𝜃5Xi5+𝜃3(Xi4+t)+𝜃1Xi1+𝜃2Xi2 , (28)

= I
(
t ⩽ Tsi

)
h0pie

(𝜃1−𝜃2)Xi1+𝛼+𝜃2+𝜃3(Xi4−Xi3), (29)

where 𝛽, 𝜃5, 𝜃3, 𝜃1, and 𝜃2 are the coefficients and 𝛼 = log
{

h0s(t)∕h0p(t)
}

.
Note that in the hazard models (27)–(29), age is a time-varying covariate measured in both the prior and

study periods and taking the values Xi3 + t and Xi4 + t at the times of prior and study events, respectively.
Because the prior and study events are of the same nature, that is, renal function increases, the coefficient
𝜃5 (or 𝜃3) is assumed to be the same in the hazards (27) and (28). Otherwise, we would need to specify
different 𝜃5 (or 𝜃3), such as using 𝜃5p in (27) and 𝜃5s in (28). As all the patients received one of the two
types of ERT therapy and no one was untreated, Xi2 = 1 − Xi1, and we are unable to estimate 𝜃1 and 𝜃2.
But the difference between therapy A and therapy B, 𝜃1 − 𝜃2, can be estimated.

8.2. Estimates under the pairwise, unadjusted Cox models and prior event rate ratio

The pairwise likelihood is as follows:

L(𝜃1 − 𝜃2, 𝛼 + 𝜃2, 𝜃3) =
n∏
i

{
1

1 + Pie(𝜃1−𝜃2)Xi1+𝛼+𝜃2+𝜃3(Xi4−Xi3)

}Δpi
{

e(𝜃1−𝜃2)Xi1+𝛼+𝜃2+𝜃3(Xi4−Xi3)

e(𝜃1−𝜃2)Xi1+𝛼+𝜃2+𝜃3(Xi4−Xi3) + Si

}Δsi

.

(30)

The likelihood of the Cox model fitted to the study data without adjustment for Ci is as follows:

L(𝜃5, 𝜃3, (𝜃1 − 𝜃2)) =
n∏
i

[
e𝜃5Xi5+𝜃3(Xi4+Tsi)+(𝜃1−𝜃2)Xi1∑

j∶Tsj⩾Tsi
e𝜃5Xj5+𝜃3(Xj4+Tsi)+(𝜃1−𝜃2)Xj1

]Δsi

. (31)
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Table II. Estimates of the hazard ratio for the difference
between ERT therapies using the pairwise Cox method,
the unadjusted Cox model, and the PERR method, for
the example data on patients with Fabry disease.

Model HR e𝜃1−𝜃2 95% CI p-value

Pairwise (30) 1.55 (0.70, 3.14) 0.28
Unadjust (31) 1.25 (0.59, 2.66) 0.57
Unadjust prior (32) 0.93 (0.42, 2.05) 0.86
PERR 1.34 (0.31, 5.74) 0.69

PERR, prior event rate ratio.

The likelihood of the Cox model fitted to the prior data without adjustment for Ci is as follows:

L(𝜃5, 𝜃3, (𝜃1 − 𝜃2)) =
n∏
i

⎡⎢⎢⎣ e𝜃5Xi5+𝜃3(Xi3+Tpi)+(𝜃1−𝜃2)Xi1∑
j∶Tpj⩾Tpi

e𝜃5Xj5+𝜃3(Xj3+Tpi)+(𝜃1−𝜃2)Xj1

⎤⎥⎥⎦
Δpi

. (32)

The estimates of e𝜃1−𝜃2 under the pairwise model (30) and the unadjusted Cox models (31) and (32)
are presented in Table II with 95% confidence intervals obtained from the observed information. The R
code for the pairwise model (30) is provided in Appendix B. The PERR estimate is 1.25∕0.93 = 1.34,
and the 95% confidence interval was obtained by the bootstrap method. The estimates for the pairwise,
unadjusted and PERR methods are consistently above 1, but the differences are not significant at the 5%
level. Use of the pairwise method has led to an increased point estimate of 1.55, suggesting there may be
the potential to uncover genuine differences between therapies in a larger study.

8.3. Using the prior data to detect unmeasured confounding

To make use of the method in Section 4, we first test whether the assumptions (X5,X3)⊥X1 and
S+

p (t|X1,X5,X3) = S+
p (t|X5,X3) hold. We assessed these by fitting a logistic regression to X1 on X3 and

X5, and a Cox model to tp on X1,X3,X5 with the censoring indicator swapped. There was no signifi-
cant evidence against either of these assumptions (the p-values for likelihood ratio tests are 0.14 and
0.88, respectively ). Under these assumptions, the p-value of the unadjusted Cox model (32) provides a
test for hidden confounding. In this example, there was no significant evidence of hidden confounding
(p = 0.86), perhaps due to lack of power to detect an effect in this small sample. However, as mentioned
in Section 4, the unadjusted Cox model and the PERR will underestimate the treatment effect, even if the
unmeasured covariate is not a confounder. The pairwise method is still recommended in the absence of
significant evidence of hidden confounding.

9. Discussion

This paper is concerned with identifying and reducing the impact of hidden confounding in observational
studies of treatment effectiveness. Building on the work of Tannen and colleagues, we set out a gen-
eral framework for quasi-experimental analysis using the PERR approach and derived a flexible pairwise
Cox likelihood function that can be used to estimate unbiased treatment estimates, under appropriate
assumptions. The pairwise likelihood was used to demonstrate the consistency of the simple and con-
venient PERR-ALT estimator introduced by Yu et al. [6]. We showed how to estimate standard errors
and confidence intervals for treatment effect estimates based on the pairwise model and provided R code
to illustrate how to implement the method. A simple test to detect unmeasured confounding was also
developed based on data from a prior period.

Much of the previous work on PERR adjustment has focused on analysis of electronic medical record
databases. While the growth of large-scale data registries makes this a particularly important application,
the approach also has potential value in population-based research studies. This was illustrated through an
example in which the pairwise method was applied to a longitudinal cohort study combining prospective
data collection with retrospective use of routine health records.

Designing future quasi-experimental studies that exploit the pairwise Cox method requires an under-
standing of the power of the method. We showed that the variance for the pairwise method is usually
larger than that for a conventional Cox regression analysis. In the era of large electronic medical record
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databases, the additional variance is unlikely to be overly burdensome unless the focus is on narrow
segments of the population.

One of the strengths of the pairwise Cox likelihood approach is its inherent flexibility. Like the conven-
tional Cox model, the pairwise method can easily be extended to accommodate time-varying treatment
covariates and coefficients. Furthermore, the form of 𝛼(t), corresponding to the period effect, can be
chosen by comparing models with different forms of 𝛼(t), making it possible to relax the proportional
baseline hazards assumption. In addition, we leave the user free to define the prior and study events for
different research problems, without the need for the prior and study periods to be successive.

Several limitations of the PERR approach need to be considered by investigators conducting obser-
vational research. Yu et al. [6] highlight the fundamental requirement for prior events. Consequently, in
its current form, the pairwise Cox likelihood cannot be used for evaluating treatment effects on mor-
tality or other terminal events. The method also relies on strong assumptions about model specification
including the absence of time-varying hidden confounders and confounder by treatment interaction.
In practice, the method may be robust to realistic levels of departure from these assumptions [6], but
as we have demonstrated in extreme cases, the method can be as biased, or even more biased, than
conventional approaches.

An additional challenge to the validity of the method arises when treatment allocation is associated
with prior events, such as if a patient is switched to a new treatment following failure of an existing
treatment. Consistent with the findings of Gallagher et al. [20], our simulations highlighted that both
pairwise and PERR methods are likely to be biased in this situation. These findings reinforce the need to
consider the context of the problem carefully when assessing the suitability of the PERR approach. In its
current form, the pairwise method may be most useful where the decision to start treatment is not likely
to be related to the risk of future events, for example, in drug safety monitoring or evaluations of national
vaccination programs.

A number of other biostatistical methods for tackling hidden confounding have been proposed. Com-
mon approaches that provide estimates of causal effects include propensity scoring combined with
regression calibration [23], instrumental variables [24], and regression discontinuity designs [25]. In prac-
tice, no one method is likely to be best in all problems, and it is essential for investigators to carefully
assess the potential biases in each proposed study, where possible tailoring the methods or combination
of methods to address these biases [2]. Tannenet al. [5] provided preliminary evidence that the PERR
approach can produce reliable results when replicating outcomes of cardiovascular trials, but further
empirical studies are needed to establish the validity of the method for use in other clinical problems,
and to determine the strengths and limitations of the PERR approach relative to other methods. Where
possible, this should include proof of concept studies to replicate results of randomized trials as well as
clinically informed simulation studies.

Like the instrumental variable method that requires a suitable instrument and propensity score calibra-
tion that needs a suitable validation study, the pairwise method can be only used when suitable data are
available. For example, data on prior events will not be available in some problems, such as a primary pre-
vention study of statin therapy for patients with no prior history of cardiovascular disease. However, the
pairwise method is likely to become more accessible with the increasing availability of large electronic
medical record databases, because such datasets can often provide the necessary volumes of longitudinal
data (albeit of variable quality and completeness) before and after patients receive treatments.

In conclusion, the PERR and pairwise Cox methods offer a promising approach to addressing biases
that can arise in observational studies because of lack of randomization and through further develop-
ment could become a highly cost-effective way of using established datasets to answer questions about
treatment effectiveness in clinical practice. The flexibility of the pairwise Cox likelihood offers a basis
for generalizing the method, but widespread adoption of the approach will require further progress in
addressing the challenges of dealing with prior events that influence treatment, terminal events, and the
presence of time-varying confounding.

Appendix A:Estimate of h0pi(⋅)

The log full likelihood is as follows:

lfull =
n∑
i

[
Δpi log

{
h0pi

(
Tpi

)}
− H0pi

(
Tpi

)
+ Δsi

[
log
{

h0pi

(
Tsi

)}
+ 𝜃Xi + 𝛼

]
− H0pi

(
Tsi

)
e𝜃Xi+𝛼

]
.
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Using the argument similar to Johansen [26], we assume the hazard is 0, h0pi(t) = 0, except at event
times and the cumulative hazard is the summation of the hazards, that is,

h0pi

(
Tpi

)
= Δpihpi H0pi

(
Tpi

)
= Δpihpi + SiΔsihsi, (A.1)

h0pi

(
Tsi

)
= Δsihsi H0pi

(
Tsi

)
= Δsihsi + PiΔpihpi. (A.2)

Then lfull becomes

lfull =
n∑
i

[
Δpi log

(
Δpihpi

)
− Δpihpi − SiΔsihsi + Δsi

{
log
(
Δsihsi

)
+ 𝜃Xi + 𝛼

}
−
(
Δsihsi + PiΔpihpi

)
e𝜃Xi+𝛼

]
.

Keeping 𝜃 and 𝛼 fixed, the MLEs of hpi and hsi are the following:

𝜕lfull

𝜕hpi
=

Δpi

hpi
− Δpi − PiΔpie

𝜃Xi+𝛼 =⇒ hpi =
1

1 + Pie𝜃Xi+𝛼

𝜕lfull

𝜕hsi
= −SiΔsi +

Δsi

hsi
− Δsie

𝜃Xi+𝛼 =⇒ hsi =
1

Si + e𝜃Xi+𝛼
.

These together with (A.1) and (A.2) lead to the results (13) and (14).

Appendix B:R code for the example

The log-likelihood function of (30) is as follows:
l<-function(theta_3, paitheta_2, theta_12){
sum(-dp*log(1+p*exp(theta_12*x1+paitheta_2+theta_3*(x_4-x_3)))

+ds*(theta_12*x1+paitheta_2+theta_3*(x_4-x_3)
-log(exp(theta_12*x1+paitheta_2+theta_3*(x_4-x_3))+s)))

where theta_{3} is 𝜃3, paitheta_{2} is 𝛼 + 𝜃2, theta_{1}2 is 𝜃1 − 𝜃2, dp is 𝛿pi, p is pi, x1
is Xi1, x_{4}-x_{3}=Xi4 − Xi3, and s=si.

The parameters 𝜃3, 𝛼 + 𝜃2, and 𝜃1 − 𝜃2 were estimated by minimizing the negative log-likelihood:
lnlm<-function(p){
-l(p[1], p[2],p[3])
}
pairwise<-nlm(lnlm, c(0,0,0))
theta_3<-pairwise$estimate[1]
paitheta_2<-pairwise$estimate[3]
theta_12<-pairwise$estimate[2]

The following codes estimate the standard error ŝd( ̂𝜃1 − 𝜃2)=sd_{e}rror:
A<-exp(theta_12*X_{i1}+paitheta_2+theta_3*(x_4-x_3))*
(ds*s/(exp(theta_12*X_{i1}+paitheta_2+theta_3*(x_4-x_3))+s)ˆ2
+dp*p/(1+p*exp(theta_12*X_{i1}+paitheta_2+theta_3*(x_4-x_3)))ˆ2)

I<-rep(0,9)
dim(I)<-c(3,3)

I[1,1]<-sum(A*(x_4-x_3)ˆ2)
I[1,2]<-sum(A*(x_4-x_3))
I[2,1]<-I[1,2]
I[1,3]<-sum(A*(x_4-x_3)*X_{i1})
I[3,1]<-I[1,3]
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I[2,2]<-sum(A)
I[2,3]<-sum(A*X_{i1})
I[3,2]<-I[2,3]
I[3,3]<-sum(A*X_{i1}ˆ2)

sd_error<-sqrt(solve(I)[3,3])
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