
Journal of Structural Biology 214 (2022) 107826

Available online 13 December 2021
1047-8477/© 2021 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

EMDA: A Python package for Electron Microscopy Data Analysis 

Rangana Warshamanage *, Keitaro Yamashita , Garib N. Murshudov * 

Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom   

A R T I C L E  I N F O   

Edited by Andreas H. Engel  

Keywords: 
Cryo-EM 
EMDA 
Local correlation 
Likelihood 
Magnification 
Overlay 

A B S T R A C T   

An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus 
on validation. The use of several functionalities in the library is presented through several examples. The utility 
of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it 
is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual 
atoms, and its use to draw insights on local signal variations are discussed. EMDA’s likelihood-based map overlay 
is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried 
out first to bring both maps into the same coordinate frame and then to estimate the relative movement of 
domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the 
importance of adjusting the map magnification in structural comparison studies.   

1. Introduction 

Single-particle cryo-electron microscopy (cryo-EM) has become an 
increasingly popular structure determination tool among structural bi-
ologists (Faruqi and McMullan, 2011; Kühlbrandt, 2014; Lyumkis, 2019; 
Lyumkis et al., 2013; Scheres, 2014). The technique has evolved at an 
unprecedented speed in the past few years as shown by the rapid growth 
of cryo-EM structure depositions into the Electron Microscopy Data 
Bank – EMDB (Lawson et al., 2020). As the number of depositions into 
EMDB increases, it is important to maintain quality standards for both 
maps and atomic models not only to ensure their reliability, but also to 
prevent accumulation of errors. 

The EM validation task force 2010 (Henderson et al., 2012) has 
recognized the critical need of validation standards to assess the quality 
of EM maps, models and their fits. The task force’s recommendations for 
map validation included the tilt-pair experiments for the absolute hand 
determination (Rosenthal and Henderson, 2003), the raw image to 3D 
structure projection matching for validating reconstruction accuracy 
and the data coverage (Orlova et al., 1996; Tang et al., 2007), statistical 
tests using map variances for assessing the map quality and interpret-
ability (Ménétret et al., 2007; Penczek et al., 2006), resolution estima-
tion through Fourier Shell Correlation (FSC) using fully independent 
half data sets (Scheres and Chen, 2012), visual assessment of map fea-
tures to the claimed resolution, and the identification and validation of 
the map symmetry where applicable (Reboul et al., 2020). 

The task force has identified the model validation in cryo-EM as an 

area for further research, mainly due to the fact that, at the time, there 
were few high resolution cryo-EM structures. Thus, the recommenda-
tions for model validation included, among others, the assessment of 
subunits and their interfaces according to the guidelines proposed by the 
PDB (Read et al., 2011), the assessment of agreement between the model 
and the map utilizing chemical measures such as chemical properties 
and atomic interactions and their clashes as employed in EMFIT pro-
gram (Rossmann, 2000; Rossmann et al., 2001) or statistical measures 
such as correlation coefficient. 

Since the first meeting in 2010, the field has grown by accumulating 
many methods and tools to address the issue of map validation. Exam-
ples include the gold standard FSC to monitor the map overfitting into 
noise during reconstruction (Rosenthal and Henderson, 2003; Scheres 
and Chen, 2012), tilt-pair validation to assess the accuracy of initial 
angle assignment (Wasilewski and Rosenthal, 2014) and the false dis-
covery maps for visual assessment of map features (Beckers et al., 2019). 

The progress in atomic model building, refinement and validation 
has also been substantial. Resolution in cryo-EM reconstructions vary 
widely, however the progress made in the field of atomic model building 
encapsulates modelling tools for low, medium to high resolution. 

Examples include Chimera (Pettersen et al., 2004), DockEM (Rose-
man, 2000), FlexEM (Topf et al., 2008), COOT (Brown et al., 2015), 
DireX (Wang and Schröder, 2012), MDFF (Trabuco et al., 2009), Cryo- 
Fit (Kim et al., 2019), Rosetta (Wang et al., 2016), MDeNM-EMfit 
(Costa et al., 2020). The atomic model refinement has also gained a 
significant progress. Unlike in crystallography, cryo-EM maps contain 
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both amplitudes and phases and the atomic model refinement programs 
can use a phased likelihood target function as employed in REFMAC5 
(Murshudov, 2016; Nicholls et al., 2018) or real space target functions as 
used in phenix.real_space_refine (Afonine et al., 2018a), ISOLDE (Croll, 
2018) and COOT (Brown et al., 2015). There has also been a consider-
able progress in map and model validation. Examples include various 
metrics for map-model fit validation (Afonine et al., 2018b; Barad et al., 
2015; Brown et al., 2015; Pintilie et al., 2020; Ramírez-Aportela et al., 
2021), and chemistry and geometry based tools for model validation 
(Emsley et al., 2010; Prisant et al., 2020). The EM practitioners can 
access these methods and tools as parts of stand-alone packages, sepa-
rate tools in collaborative projects such as CCP-EM (Burnley et al., 
2017), or as web based tools such as EMDB validation server (https:// 
www.ebi.ac.uk/pdbe/emdb/validation/fsc/), Molprobity server (htt 
p://molprobity.biochem.duke.edu/) etc. 

Developing better validation methods and tools in cryo-EM is an 
active area of research because the goal of validation in cryo-EM is a 
changing target (Lawson et al., 2020). The metrics for validation should 
evolve as the field progresses towards the atomic resolution because the 
methods that are applicable to low and medium resolution may not be 
equally applicable to atomic resolution data and derived models. 

In this paper we present Electron Microscopy Data Analytical toolkit 
(EMDA) - a new Python package for post reconstruction/atomic model 
refinement analysis and validation of cryo-EM maps and models. EMDA 
is a portable Python package with a command line and an Application 
Programming Interface (API) for Python programmers. 

EMDA’s capabilities are fully described at https://emda.readth 
edocs.io. This manuscript focuses on three main functions: 

(1) Local correlation evaluating the map signal and the local agree-
ment between an atomic model and a cryo-EM map. We describe 
the mathematics relevant to correlation calculation in Section 3.1 
and examples are presented in Section 4.1. 

(2) Likelihood-based map superposition enhancing structure com-
parison analysis. Map superposition is an important operation in 
cryo-EM. In structure comparison studies, it brings all maps into a 
common coordinate frame for comparison. In the difference and 
average map calculations, the superposition is an essential first 
step to align the input maps. The available tools for superposing 
maps include Chimera’s Fit-in-map (Pettersen et al., 2004), 
TEMPy2 (Cragnolini et al., 2021). EMDA map overlay is based on 
the maximisation of the likelihood function described in Section 
3.2 and demonstrated on examples in Section 4.2.  

(3) Likelihood-based map magnification correction. Magnification of 
an EM map is related to the microscope optics on which the data 
has been collected. During merging of several data sets collected 
on different microscopes or on the same microscope with 
different optical alignments, their magnifications may need to be 
adjusted to a reference (Wilkinson et al., 2019). The reference can 
be another map whose accurate pixel size is already known or an 
atomic model derived independently of the map whose magnifi-
cation is sought. The use of EMDA for map magnification 
correction is demonstrated in Section 4.2.2. 

The rest of the paper is organised into three sections. The first section 
covers the design and the infrastructure of EMDA with an introduction 
to the EMDA command line and Application Programming Interface 
(API). The second section describes the mathematical framework of 
EMDA behind those three functionalities. In the third section, we 
demonstrate each functionality by examples. Lastly, the conclusions and 
outlook followed by information about the package availability are 
given. 

2. EMDA architecture 

EMDA is written primarily in Python using Numpy (Harris et al., 
2020), Scipy (Virtanen et al., 2020) and Matplotlib (Hunter, 2007), 
however, numerically intensive tasks are written in Fortran. F2PY 
(Peterson, 2009) mediates the communication between Python and 
Fortran. This combination allows us to integrate powerful numerical 
calculations with abstraction features in Python. 

EMDA code is organized into three layers as shown in Fig. 1. The 
innermost layer (Layer 3) consists of core and extension modules. The 
core modules provide basic services such as read & write, format con-
version, resampling, binning etc. All higher-level functionalities such as 
rigid-body fitting, magnification refinement, difference map calcula-
tions are provided through extensions. The extension modules use the 
basic services provided by the core modules. Both core and extension 
modules are wrapped into another module to form the EMDA API (Layer 
2). API abstracts the underlying complexity of the code into methods and 
objects providing a simplified mechanism for other developers to gain 
advantage of EMDA infrastructure. EMDA-API functions are further 
wrapped to form the EMDA command-line-interface (Layer 1). The users 
can access the underlying functionalities through the command line. 
Each functionality is callable with a keyword followed by a set of ar-
guments. A list of up-to-date functionalities with their arguments are 
given in https://emda.readthedocs.io. In addition, a tutorial describing 
the presented examples in this paper can be found in https://www2. 
mrc-lmb.cam.ac.uk/groups/murshudov/. 

EMDA uses open-source, standalone Python library mrcfile (Burnley 
et al., 2017) for the reading, writing and validating EM files in the 
standard MRC2014 format (Cheng et al., 2015). Also, EMDA uses gemmi 
(https://gemmi.readthedocs.io) for reading and writing atomic coordi-
nate files, and ProSHADE (Nicholls et al., 2018; Tykac, 2018) for sym-
metry detection in EM maps. 

3. Methods 

In this section we outline the mathematical framework for local 
correlation and probability-based methods in EMDA. The notations we 
use throughout this text and in the appendices are summarised in 
Table 1. 

3.1. Local correlation in real space 

Pearson’s product-moment sample correlation coefficient (CC) has 
been extensively used for various purposes in X-ray crystallography 
(Karplus and Diederichs, 2012; Tickle, 2012) and in cryo-EM (Van Heel, 
1987). The CC depends on the signal and noise levels. If we assume that 
the noise variance is constant within the masked map then for a given 
data the CC will be an indicator of the signal in the data. Care should be 
exercised in its interpretation as any systematic behaviour will be 
considered as signal. Since the CC is calculated using the data, its vari-
ance depends on the volume of the data being used. 

Local CC in real space can be calculated using the formula for the 
weighted Pearson’s product moment sample correlation coefficient with 
weights defined by the kernel. The local CC for two maps ψ1(x) and 
ψ2(x) is: 

CC12,m(x) =
cov12,m(ψ1(x),ψ2(x))̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var1,m(ψ1(x) )var2,m(ψ2(x))
√ . (1) 

cov12,m(ψ1(x),ψ2(x) ) and vari,m(ψ i(x) ) are the local covariance and 
variances for ψ1(x) and ψ2(x) calculated with a kernel m(x). The kernel 
is normalized such that 

∫

R3 m(x)dx = 1. 
The expression for local covariance is, 
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Similar expressions can be written for local variances vari,m(ψ i(x)). 
Note that the Eq. (2) can be readily evaluated using the convolution 
theorem (see Appendix A). 

Such correlations could be calculated for any pairs of maps. When it 
is calculated using half maps (CChalf ,m(x)) reconstructed from randomly 
chosen half of the particles, then it indicates the local signal to noise 
ratio, whereas the local correlation between observed and calculated 
maps (CCmap,model,m(x)) indicates local agreement between atomic model 
and observed map. Similarly, the local correlation between two different 
observed maps indicates local common signals between them. 

The correlation calculated using half maps is converted to that of 
fullmap using the following formula (Rosenthal and Henderson, 2003) 

CCfull,m(x) =
2CChalf ,m(x)

1 + CChalf ,m(x)
. (3) 

In the local correlation calculation, EMDA uses a spherically sym-
metric kernel defined as: 

m(x) = f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
Z
, |x| ≤ r0

1
2Z

(

1 + cos
(

π(|x| − r0 )

r1 − r0

))

, r0 < |x| < r1

0, otherwise  

where r0 and r1 are the radii of inner and outer concentric spheres. Z is 
the coefficient that makes sure that the total integral of m(x) is equal to 
1. 

The size of the kernel (i.e. r1) should be chosen such that the number 
of data points included is sufficient to calculate a reliable statistic. Both 
too small or too large kernels lead to inaccurate correlations due to 
insufficient data points or loss of locality, respectively. In the current 
implementation of EMDA, r1 should be chosen by trial-and-error. Both r0 
and r1 are in pixel unit and by default 2 pixels are used to soften the edge 
of the mask, in other words r1 = r0 + 2. 

The CCfull,m(x) (hereafter CCfull) depends on the local signal strength. 
It has two implications: 1) it depends on the local variation of the signal, 
and hence different parts of the map with different mobilities will have 
differing correlations; 2) it will depend on global sharpening/blurring 
parameters, i.e. maps sharpened with different B values will have 
different local CCfull. 

It should also be noted that the CCmap,model,m(x) (hereafter CCmap,model) 

calculated between an atomic model and a given map (fullmap) depends 
on atomic coordinates, occupancies and B values. Therefore, to obtain 
the best possible CCmap,model it should be calculated using a refined model 
with optimized atomic B values. 

In order to compare CCmap,model with CCfull all maps should be 
weighted appropriately. To achieve this, Fourier coefficients of all maps 
are normalized and weighted by FSC in resolution bins. All correlation 
examples discussed in this paper used such normalized and weighted 
maps. The details are in Appendix D. 

Let us assume that errors in the observations are additive and they 
follow a Gaussian distribution with zero mean. Also, assume that there is 
no correlation between the noise and the calculated map from the 
atomic model. This is true only when there’s no overfitting. Under these 
assumptions, a relationship between CCmap,model and CCfull useful for 
validation is given by Eq. (4). The full derivation of Eq. (4) is given in 
Appendix A as well as in (Nicholls et al., 2018). 

CCmap,model,m(x) = CCtruemap,model,m(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

CCfull,m(x)
√

(4) 

According to Eq. (4), the CCmap,model(x) is equal to 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CCfull,m(x)

√
only 

when CCtruemap,model,m(x) = 1, i.e. perfect model. Since this situation is 
almost never realised, the CCmap,model,m(x) should always be less than 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CCfull,m(x)

√
. If CCmap,model,m(x) is greater than 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CCfull,m(x)

√
, that could be 

an indication of overfitting. 

3.2. Parameter estimation and map calculation: Likelihood and posterior 
distribution 

As in any application of Bayesian computations to the data analysis 
we need two probability distributions: 1) probability distribution of 
observations given parameters to be estimated – likelihood function and 
2) probability distribution of unknown signal given observations and 
current model parameters – posterior probability distribution. The de-
tails are given in Appendix C. 

Likelihood function 
The negative log likelihood function in the absence of atomic models 

and in the presence of multiple related maps is (see Appendix C for 
details): 

LL
(
Fo;R, t,Σo,s

)
=
∑

s
((Fo(s,R, t) )T( Σo,s + σ2)− 1( F*

o(s,R, t)
)

+ log
(
det
(
Σo,s + σ2) )

(5)  

where Fo(s) is a vector of Fourier coefficients of the observed maps, R 

Fig. 1. Architecture of EMDA library. The three Python code layers are shown in blue and the layer of external libraries is shown in green. The black arrows show the 
data flow and the functional dependencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

cov12,m(ψ1(x),ψ2(x)) =
∫

R3
m(x − y)ψ1(y)ψ2(y)dy −

∫

R3
m(x − y)ψ1(y)dy

∫

R3
m(x − y)ψ2(y)dy (2)   
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and t are the vectors formed by rotation and translation parameters for 
each map, respectively, Σo,s is the covariance matrix between “true” 
maps calculated using observed maps and σ2 is a diagonal matrix of 
noise variances. In EMDA, the above likelihood function is implemented 
to estimate parameters between a pair of maps where one map is static 
the other moves onto it. In the case of estimation of transformation 
parameters, the only terms that depend on adjustable parameters are the 
cross-terms in the Eq. (5): 
∑

s,i∕=j

wi,jFo,i(Ris)F*
o,j

(
Rjs
)
e2πιsT (ti − tj)

Fo,i and Fo,j are the Fourier transforms of ith and jth maps, Rj and tj are 
the rotation and translation parameters. wi,j is related to the corre-
sponding term in the inverse of the covariance matrix and is related to 
FSC between maps. For parameter estimation Σo,s and σ2 do not need to 
be estimated separately, their sum is used in Eq. (5). 

Note that if we relax the conditions that R is a rotation matrix, the 
same formula also allows refining the magnification parameters. In cryo- 
EM, we assume that the magnification is a scalar parameter and R be-
comes a diagonal matrix with the same magnification parameter in 
magnification-only-refinements. The covariance matrices and trans-
formation parameters are estimated iteratively. 

The algorithm in EMDA for transformation estimation includes 
following steps. 1) starting with initial rotation and translation param-
eters the covariances are calculated and converted them into weights to 
calculate the functional value. 2) the derivatives of translation and 
rotation are calculated and the shifts are estimated. 3) the current 
translation and rotation are updated and applied on maps. The co-
variances are recalculated and the new functional value is evaluated. 5) 
the new functional value is compared with that of the previous iteration, 
and if the convergence criterion is met the final maps are output and the 
transformation is retained. Otherwise, the process continues at step 2 
with the next cycle of iteration. 

Posterior distribution: 
For map calculations we need the probability distribution of the 

unobserved “true” maps given the current state of atomic models as well 
as observations. In the absence of atomic models this distribution is a 
multivariate Gaussian with mean (see Appendix C for details): 

< Ft >= k− 1Σo,s
(
Σo,s + σ2)− 1σ− 2Fo (6)  

where k is the diagonal matrix formed by the blurring parameters, σ2 is 
the diagonal matrix formed with the variance of the noise in the ob-
servations, Σo,s is the covariance matrix between “true” maps calculated 
using observed maps, Fo is a vector of Fourier coefficients of observed 
maps, < Ft > is a vector of expectation values of the “true” map Fourier 

Table 1 
Table of notation.  

Notation Description 

fullmap Map obtained by averaging half data 
reconstructed maps 

cov(X,Y) Covariance between random variables X 
and Y 

var(X) Variance of the random variable X 
x and s  3D column vectors in real and Fourier 

space 
m(x) Convolution kernel 
ψ i(x) Cryo-EM map number i 
vari,m(ψ i(x)) Local variance of ψ i(x) calculated with the 

kernel m(x)
cov12,m(ψ1(x),ψ2(x)) Local covariance between ψ1(x) and ψ2(x)

calculated with the kernel m(x)

CC12,m(x) =

cov12,m(ψ1(x),ψ2(x))̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var1,m(ψ1(x) )var2,m(ψ2(x))

√

Local correlation coefficient calculated 
between ψ1(x) and ψ2(x) with the kernel 
m(x)

CChalf,m(x) Local correlation calculated between 
halfmaps 

CCfull,m(x) =
2CChalf ,m(x)

1 + CChalf,m(x)
Local correlation in the fullmap (Rosenthal 
and Henderson, 2003) 

CCmap,model,m(x) Local correlation calculated between the 
fullmap and the atomic model-based map 

N 2

(

Fo,j; kjFt,j ,
1
2

σ2
n,j

)

=

1
πσ2

n,j
e
−

⃒
⃒Fo,j − kjFt,j

⃒
⃒2

σ2
n,j  

Two-dimensional Gaussian distribution 

with mean kjFt,j and variance 
1
2

σ2
n,j of jth 

map. Since there is no correlation between 
real and imaginary parts, a single variance 
is used to describe this distribution.  

N 2N

(

Fo; kFt ,
1
2

Σ
)

=

1
πNdet(Σ)

e− (Fo − kFt)
T Σ− 1(Fo − kFt)

*  

2 N dimensional Gaussian distribution 

with mean kFt and covariance 
1
2

Σ. Since 

there is no correlation between real and 
imaginary parts N×N covariance matrix is 
used to describe the 2 N dimensional 
random variable*.  

Fo(s) = (Fo,1(s),Fo,2(s),⋯.,Fo,N(s)) A column vector formed by complex 
Fourier coefficients of observed maps 

Ft(s) = (Ft,1(s),Ft,2(s),⋯.,Ft,N(s)) A column vector formed by complex 
Fourier coefficients of unknown “true” 
maps 

Fc(s) = (Fc,1(s),Fc,2(s),⋯.,Fc,N(s)) A column vector formed by complex 
Fourier coefficients calculated from 
models 

Eo(s) = (Eo,1(s),Eo,2(s),⋯.,Eo,N(s)) A column vector formed by normalized 
complex Fourier coefficients of observed 
maps 

Eo,j(s) =
Fo,j(s)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σo,s,jj(s) + σ2

j (s)
√

Normalized complex Fourier coefficients 
of jth map. 

Rj and tj  Transformation matrix and translational 
vector in 3D to be applied for the map 
number j  

F(s,R, t) = (F1(R1s)e2πιsT t1 ,⋯,

FN(RNs)e2πιsT tN )

N dimensional column vector of complex 
Fourier coefficients after application of 
transformation. Usually, but not 
necessarily, (R1 = I, t1= 0) is the identity 
transformation.  

D = diag(D1, ..,DN) Diagonal matrix formed by scale factors 
between the true and calculated Fourier 
coefficients 

k = diag(k1,⋯,kN) Diagonal matrix formed by blurring 
parameters 

Σ  N × N covariance matrix of “true” maps 
without blurring  

Σo,s = kTΣk = kΣk  N × N covariance matrix of signals 
calculated using observed maps  

σ2 = diag(σ2
o,1,σ2

o,2,⋯,σ2
o,N) Diagonal matrix formed by variances of 

observational noise 
< Ft >= (< Ft,1 >,< Ft,2 >,⋯.,<

Ft,N >)

A column vector formed by the expectation 
values of the true maps 

fsc = 2fschalf/(1+ fschalf ) FSC in the fullmap converted from halfmap 
FSC (Rosenthal and Henderson, 2003)  

Table 1 (continued ) 

Notation Description 
̅̅̅̅̅̅̅
fsc

√
= diag

( ̅̅̅̅̅̅̅̅
fsc1

√
,
̅̅̅̅̅̅̅̅
fsc2

√
,⋯.,

̅̅̅̅̅̅̅̅̅
fscN

√ )

Diagonal matrix formed by square root of 
fullmap FSC values. It is also an estimate 
for FSC between fullmap and “true” signal 
(Rosenthal and Henderson, 2003) 

ρs  N × N correlation matrix between true 
maps  

ρs,ij =
Σij
̅̅̅̅̅̅̅̅̅̅̅
ΣiiΣjj

√
Correlation coefficient between true maps 
i and j. An element in ρs.  

ρo  N × N correlation matrix between 
observed maps  

ρo,ij =
Σo,s,ij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Σo,s,ii + σ2

i )(Σo,s,jj + σ2
j )

√
Correlation coefficient between observed 
maps i and j. An element in ρo.   

* It should be noted that the covariance matrix is Σ ⊗ I2, i.e. Kronecker product 
of N × N covariance and 2-dimensional identity matrices. The reason of such 
covariance matrix structure is that there are not correlations between real and 
imaginary parts of Fourier coefficients and the variance of real and imaginary 
parts of each Fourier coefficient are equal to each other. 
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coefficients. 
Since k is unknown, we replace it with the standard deviation of the 

signal as explained in (Yamashita et al., 2021). After some algebraic 
manipulation we get (see Appendix C): 

< Ft >= ρs

̅̅̅̅̅̅̅
f sc

√
ρ− 1

o Eo (7)  

where ρs is the correlation matrix between Fourier coefficients of “true” 
maps, ρo is the correlation matrix between Fourier coefficients of 
observed maps, Eo is a vector of normalised Fourier coefficients of 
observed maps and < Ft > is a vector of the expectation values of the 
normalised Fourier coefficients of the “true” maps. 

Note that if we know the blurring factor, it might be better to use 
them in the map calculation. However, observations alone do not allow 
us to calculate these quantities, and they need to be estimated using 
different methods. 

4. Results and discussion 

In this section, we demonstrate the use of local correlation, map 
overlay and magnification refinement implemented in EMDA package 
through examples. 

4.1. Examples of use of local correlation 

4.1.1. Model-map differences by local correlation 
To demonstrate the use of local correlation to detect model-map 

differences, we used archaeal 20S proteasome (EMD-5623) map with 
overall resolution 3.3 Å and the corresponding atomic model 3j9i (Li 
et al., 2013). The atomic model was refined against the fullmap to a 
resolution of 3.3 Å using REFMAC5 (Nicholls et al., 2018). Using the 
refined model, an EM map to 3.3 Å was computed in EMDA using gemmi 
(https://gemmi.readthedocs.io). Local correlations were calculated 
within a kernel of radius r1 = 4 pixels (pixel size = 1.22 Å). The CCfull 

was calculated using the normalized and weighted halfmaps (see Ap-
pendix A). Similarly, the CCmap,model was calculated between the 
normalized and weighted fullmap and the normalized and weighted 
calculated map. Fig. 2a shows the primary map density near residues 
Lys52-Val54 of chain U of the 3j9i model coloured by the 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
and 

the superimposed model. One can appreciate a moderate signal, but the 
model is outside the density. The same density coloured by CCmap,model 

(Fig. 2b) shows a low correlation resulting from the misplaced model. 
Fig. 2c shows the corresponding part of the refined atomic model col-
oured by CCmap,model and it also highlights those residues with low cor-
relation. Thus, CCmap,model can highlight areas with map-model 
discrepancies, while 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
can be used to validate the existence of a 

signal. A comparison of CCmap,model versus 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
is useful not only to 

pinpoint map-model differences, but also to identify viable ways to 
minimise them. Moreover, colouring the atomic coordinates by 
CCmap,model is an effective way to identify misplaced regions in the model. 

4.1.2. Unmodeled regions by local correlation 
Next, we used SARS-CoV-2 spike protein structure EMD-11203 and 

the corresponding model 6zge (Wrobel et al., 2020) to demonstrate the 
use of local correlation to highlight an unmodeled density. This density 
has been modelled as linoleic acid (LA) in the homology model 6z5d 
(Toelzer et al., 2020). 

First, we present the use of 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
and CCmap,model to identify the 

unmodeled density in the map. Then, we compare those local correla-
tions against the local correlation calculated from the model with the 
ligand. 

Using the normalized and weighted EMD-11203 halfmaps the CCfull 

was calculated within a kernel of radius r1 = 3 pixels (pixel size = 1.087 
Å). The size of the kernel was chosen to maximize the variation of local 
correlation and minimize the leakage of correlation from the sur-
rounding (a comparison of correlations calculated using different kernel 
sizes is given in Supplementary materials). The model 6zge was refined 
against the EMD-11203 fullmap using REFMAC5 (Nicholls et al., 2018) 
to optimise atomic coordinates and the B values. Using the refined 
model an EM map was computed to 2.6 Å in EMDA using gemmi (htt 
ps://gemmi.readthedocs.io). The CCmap,model was calculated using the 
normalized and weighted EMD-11203 fullmap and the normalized and 
weighted model-based map. EMD-11203 primary map was coloured by 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
and CCmap,model, and their comparison highlighted an unmodeled 

structured densities located near all receptor binding domains. One such 
density coloured by 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
and CCmap,model is shown in Fig. 3a and 3b, 

respectively. The high 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
implies the density is real, but low 

CCmap,model implies there is no corresponding model. Next, the homology 
model 6zb5 with LA was fitted on the EMD-11203 fullmap and refined 
using REFMAC5 (Nicholls et al., 2018), and the CCmap,model was recal-
culated. The improved CCmap,model for the ligand region is shown in 
Fig. 3c and this improvement is due to the presence of LA in the model. 

Fig. 3d shows the refined LA molecule whose atoms are coloured 
according to the atomic B values. The overall trend shows that B values 
in the hydrophobic tail are relatively small, but they gradually increase 
towards the hydrophilic carboxyl group. In Fig. 3e, atomic 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
and 

CCmap,model are plotted in blue and orange, respectively, along with the 
atomic B values in grey. The atomic correlation values were obtained 
from correlation maps by interpolating at atomic positions. 

The 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
is close to 1 throughout the molecule, but largest vari-

ation is seen in the carboxyl group. The CCmap,model is lower than the 
̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
in all atoms, and its variation is larger than that of 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
. The 

difference in atomic CCmap,model for carbonyl O1 and O2 is significant 
despite their similar B values. The carbonyl group is anchored by the 
neighbouring Arg408 and Gln409 residues through H-bonding with O2 
atom (Toelzer et al., 2020, Fig. 3c), but O1 atom does not seem to have 
close neighbours thus its atomic correlation may be compromised by the 
surrounding noise. It should also be noted that at some atoms there is a 
leakage of correlation. This effect is pronounced at atoms O2, C10, C14 

Fig. 2. Identifying model-map discrepancies by local correlation. a) EMD-5623 primary map density near residues Lys52-Val54 of chain U of the 3j9i model coloured 
by 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
. b) the same density coloured by CCmap,model. c) corresponding atomic model coloured by CCmap,model showing low correlation residues Lys52-Val54 of chain 

U. The figure was made with ChimeraX (Pettersen et al., 2021). 
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and C18 in Fig. 3b. 
A comparison of 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
versus CCmap,model can highlight map-model 

differences as shown by the previous examples. In model building and 
refinement, we aim at explaining the full signal in the map by the model, 
and hence the chance of building model into the noise is unavoidable. In 
such situations, the local correlation can be a helpful tool to monitor the 
overfitting. According to Eq. (4) the inequality CCmap,model ≤

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√

should hold when there is no overfitting, and Fig. 3e shows such a 
situation. 

4.2. Examples of use of map overlay 

4.2.1. EMDA map overlay 
To demonstrate the benefit of the overlay method, we have used 

cryo-EM maps EMD-21997 and EMD-21999 (Henderson et al., 2020) of 
SARS-CoV-2 spike protein, whose resolutions are 2.7 Å and 3.3 Å, 

respectively. The former map is in rS2d locked state in which all three 
receptor binding domains (RBDs) are down and locked, thus maintain-
ing C3 symmetry. Whereas the latter map is in u1S2q state in which one 
of the RBDs is open causing the whole structure to be in C1. In this 
example, we estimate the movement of one of the down RBDs in EMD- 
21999 map relative to one of the down RBDs in EMD-21997 map using 
EMDA overlay operation. We kept the primary EMD-21997 map and the 
corresponding 6x29 atomic model static, while the primary EMD-21999 
map and the corresponding 6x2a atomic model moving. First, we 
overlaid EMD-21999 map (Fig. 4a(ii)) on EMD-21997 map (Fig. 4a(i)) 
and the resulting transformation (relative rotation = 8.35◦, translation 
= 4.14 Å) was applied on the 6x2a atomic model. The overlaid maps are 
shown in Fig. 4a(iii), and they are the starting maps for the subsequent 
domain overlay (shown by 4a(iv) and (v) for static and moving maps, 
respectively). Next, a pair of RBDs located proximity to each other on 4a 
(iii) were extracted within model generated masks. The extracted RBDs 

Fig. 3. Use of local correlation to identify 
unmodeled linoleic acid (LA) in EMD-11203 
map. a) unmodeled ligand density in the 
primary map coloured by the 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
. High 

correlation indicates the presence of a strong 
signal. b) the same density coloured by 
CCmap,model calculated between the fullmap 
and the refined 6zge model using normalized 
and weighted densities. The correlation in 
this region is low compared to its surround-
ing. c) ligand density coloured by CCmap,model 

calculated between the fullmap and the 
refined model with LA using normalized and 
weighted densities. Densities in a, b and c 
panels were contoured at the same level. 
Those figures were made with Chimera 
(Pettersen et al., 2004). d) distribution of 
atomic B values of refined LA where the 
atoms are coloured by the B values. This 
figure was made with PyMOL (Schrödinger 
and DeLano, 2020). e) distribution of atomic 
correlation values at refined LA coordinates. 
CCmap,model and 

̅̅̅̅̅̅̅̅̅̅̅̅
CCfull

√
are shown with or-

ange and blue, respectively. Also, the atomic 
B values are shown in grey. (For interpreta-
tion of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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are shown in 4a(vi) and 4a(vii) and their superposition before fit opti-
misation is shown in 4a(viii). Next, their relative fit was optimized and 
at the convergence the relative rotation and translation values were 
3.38◦ and 1.76 Å, respectively. The superposed domains after the fit 
optimisation is shown in 4a(ix). These rotation and translation values 
indicate the movement of the selected RBD of EMD-21999 map relative 
to the corresponding RBD of EMD-21997 map in the same coordinate 
frame. Finally, the estimated transformation between domains was 
applied on the 6x2a RBD coordinates to bring it on the static model 
(6x29). Fig. 4a(x) and (xi) present the superposition of models before 
and after the transformation has been applied, respectively. Fig. 4b 
shows the FSC curves calculated between the two domains before and 
after the overlay optimisation. 

4.2.2. EMDA magnification refinement 
Magnification refinement in EMDA involves 1) resampling the target 

map on the reference grid to make sure both maps refer to the same 

coordinate system, 2) superposition of the target map on the reference 
and refining the magnification of the target map, iteratively. To 
demonstrate the magnification refinement in EMDA, we intentionally 
introduced a -5% magnification error in one of the half maps of Hae-
moglobin (half1 of EMD-3651; (Khoshouei et al., 2017)) to yield the 
initial map, and let EMDA to refine its magnification against the half1 
map (original map). The pixel sizes of the original and the magnification 
modified maps (initial map, Fig. 5a) are 1.05 and 0.998 Å, respectively. 
EMDA optimized the magnification of the initial map relative to the 
original map to yield the magnification adjusted map (Fig. 5a) with the 
pixel size 1.05 Å. Fig. 5b shows the FSC curves for the initial and the 
adjusted maps calculated against the original map. The increase from 
initial map to adjusted map is due to the correction in the magnification. 
To validate the accuracy of refinement, the FSC for adjusted map is 
compared with the half data FSC (Fig. 5c) and they are in very good 
agreement. 

In the next example, we illustrate the estimation of the relative 

Fig. 4. Map superposition in EMDA illustrated using EMD-21997 and EMD-21999 maps. (a) keeping EMD-21997 map (i) static, EMD-21999 map (ii) was moved to 
obtain the optimal overlay between them (iii). Starting from the overlaid maps (iv) and (v), RBDs were extracted using masks. The extracted RBDs (vi) and (vii) were 
superposed (viii) and optimized their overlay (ix) in EMDA. The final values of relative rotation and translation are 3.38◦ and 1.76 Å, respectively. The same 
transformation was applied on the model 6x2a of the moving map. The superposition of 6x29 (static, grey) and 6x2a (moving, cyan) RBD models before (x) and after 
(xi) the domain transformation being applied. This figure was made with Chimera (Pettersen et al., 2004). (b) FSC between static and moving RBDs before (blue) and 
after (orange) the overlay optimization. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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magnification differences of two cryo-EM maps of beta-galactosidase 
[EMD-7770 (Bartesaghi et al., 2018) and EMD-10574 (Saur et al., 
2020)] relative to an X-ray crystallography model 3dyp (Juers et al., 
2009). The resolution of EMD-7770 and EMD-10574 are 1.9 and 2.2 Å, 
respectively. The model 3dyp has been derived from X-ray data with 
resolution 1.75 Å. Both cryo-EM maps and the crystallographic model 
possess D2 point-group symmetry. Since one of the cryo-EM primary 
maps (i.e. EMD-10574) has been lowpass filtered, we used fullmaps 
generated from half maps for both cryo-EM entries in this analysis. First, 
all non-polymer atoms of 3dyp model were removed and just the poly-
mers were fitted onto EMD-7770 map in Chimera (Pettersen et al., 
2004). Then the model-based map was calculated up to 1.9 Å using 
REFMAC5 (Nicholls et al., 2018) and it was kept as the crystallographic 
reference for the subsequent magnification analysis. Both the reference 
map and the EMD-7770 map have the same pixel size 0.637 Å, while 
EMD-10574 map has 0.68 Å. Thus, the latter map was resampled on the 
reference to bring all maps on the same coordinate system. Next, a 
principal component analysis was performed on the var-
iance–covariance matrices of the reference and resampled maps to bring 
the orientation of the latter approximately matches that of the reference. 

Lastly, the fits and the magnifications of EMD-7770 and the resam-
pled EMD-10574 maps were optimized relative to the reference map, 
iteratively. This resulted in +0.3% and +1.7% magnification differences 
in EMD-7770 and EMD-10574 maps relative to the reference, respec-
tively. Fig. 6a(i) and (ii) show the superpositions of EMD-7770 (yellow) 
and EMD-10574 (cyan) maps on the reference (grey). Their magnified 
portions enclosed by red rectangles are shown in Fig. 6b on the left two 
columns. The yellow density overlaid on the grey density does not show 
an obvious offset discernible to human eye in both centre or periphery 
regions. However, the cyan density shows an offset relative to the grey 
density. Moreover, this offset increases from the centre to periphery; an 
indication of the magnification problem. Fig. 6a(iii) and (iv) show the 
magnification corrected EMD-7770 and EMD-10574 maps overlaid on 
the reference map, respectively. The magnified portions marked by red 
rectangles are shown in Fig. 6b on the right two columns for centre and 
periphery regions. Both yellow and cyan densities overlay on grey 
density, and the offset seen in the cyan density before the correction has 
now disappeared confirming that EMD-10574 map indeed suffers from 
magnification problem. Furthermore, Fig. 6a(v) and (vi) present the 
masked FSC curves for EMD-7770 and EMD-10574, respectively, before 

Fig. 5. The magnification refinement in EMDA using Haemoglobin data (EMD-3651). (a) the superposition of the original (half1) map (in grey) on the initial map (in 
cyan) obtained by introducing a -5% magnification error on the original map is improved after magnification correction (adjusted map shown in cyan). This figure 
was made with Chimera (Pettersen et al., 2004). (b) FSC between initial and adjusted maps against the original map indicating improvement in the superposition due 
to correction in magnification. (c) FSC curves for initial and adjusted maps calculated against the half2 are shown in blue and orange, respectively. The increase of 
FSC from blue to orange is due to the improved magnification. The green curve is the FSC between the half maps and it serves as the ground truth. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(blue) and after (orange) the magnification has been corrected. The 
increase in FSC, especially in (vi) is attributed to the improved 
magnification. 

Even after the magnification correction, some discrepancies in den-
sity overlay were apparent in both EMD-7770 and EMD-10574 maps 
relative to the reference map. We focused on one monomer unit of EMD- 
7770 map and extracted it using a model generated mask. The 

corresponding monomer unit of the reference map was also extracted in 
similar manner. Fig. 7(i) shows the overlaid EMD-7770 map on the 
reference after the magnification correction. The monomer units chosen 
is highlighted within the mask. Extracted monomers are shown in Fig. 7 
(ii), and one can easily appreciate the rotation of the yellow density 
relative to the reference grey density due to movements between do-
mains. We estimated the relative transformation between those 

Fig. 6. Magnification correction in EMD-7770, EMD-10574 maps relative to the crystallography model 3dyp. (a) the overlaid EMD-7770 (i, yellow) and EMD-10574 
(ii, cyan) maps on the reference map (grey) before the magnification optimisation. (iii) and (iv) are the same maps after the optimisation. The magnification dif-
ferences in EMD-7770 and EMD-10574 relative to the reference are +0.3% and +1.7%, respectively. The FSC curves for EMD-7770 and EMD-10574 maps against the 
reference before and after the magnification adjustment are shown in (v) and (vi), respectively. The blue and orange curves correspond to FSCs before and after the 
magnification refinement, respectively. The increase in FSC is attributed to the corrected magnification. This figure was made with Chimera (Pettersen et al., 2004). 
(b) comparison of EMD-7770 map (yellow) and EMD-10574 map (cyan) densities against the reference map (grey) in different regions before and after the 
magnification correction. See text for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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monomer units and that resulted in 1.02◦ rotation and 0.12 Å translation 
(similar analysis was performed using monomers from EMD-10574 map 
and the reference. That resulted in 0.28◦ rotation and 0.17 Å trans-
lation). Fig. 7(iii) and (iv) show the optimized fit of the monomers and 
the FSCs between them before (blue) and after (orange) the fit optimi-
sation, respectively. The increase in FSC is attributed to the improved fit. 

As illustrated in this example, the map magnification is an important 
factor to consider during structural comparison studies. It should be 
refined and make sure all structures have the same magnification before 
comparing for other structural variations. Internal motions such as 
domain movements should be estimated and compared to other similar 
structures only if their magnifications are comparable. 

5. Conclusions 

We presented the EMDA Python package to serve the need of map 
and model validation in cryo-EM. We showed the use of map-model 
local correlation to identify residues outside the density or those 
poorly fitted. Since the fullmap local correlation gives an indication of 
the signal level in the map, it can be used to draw insights about the 
presence of a signal. Moreover, a comparison of map-model local cor-
relation with fullmap local correlation can be used for validating the 
model-to-map fit. In one of the examples, we used the local correlation 
to identify an unmodeled ligand in a map, thereby demonstrating its 

complementary nature to the difference map. The use of local correla-
tion to identify ligands has the advantage that the correlation naturally 
offers a way to validate the presence/absence of the density as revealed 
by the half map local correlation. Also, we showed that correlation 
values mapped into atoms are useful to study the local signal variations. 

Secondly, we presented the likelihood-based map-to-map fitting 
using an example, where two SARS-CoV-2 structures were first fitted to 
bring them on the same coordinate frame. Then two receptor binding 
domains were fitted in the same coordinate frame to estimate their 
relative movement. The last example illustrated the use of likelihood- 
based magnification adjustment where the magnifications of two cryo- 
EM maps relative to an X-ray crystallography derived atomic model 
have been estimated. The importance of correcting the relative magni-
fication between structures in structure comparison studies have been 
highlighted. 

6. Software availability 

EMDA is released under the Mozilla Public License Version 2.0 (MPL 
2.0) and it is free and open source. The source code is accessible at 
https://gitlab.com/ccpem/emda. EMDA is distributed as a part of CCP- 
EM suite and also available via Python Package Installer (pip). EMDA’s 
documentation is available at https://emda.readthedocs.io, and we 
encourage the reader to look at the documentation for most recent 

Fig. 7. Movement of one monomer unit of EMD-7770 (yellow) relative to the corresponding monomer unit of the reference map (grey). Selected monomers are 
highlighted in (i) and those extracted are shown in (ii) before the fit optimisation. (iii) the monomer units after the fit optimisation. (iv) FSCs between monomer units 
before (blue) and after (orange) the fit optimisation. This figure was made with Chimera (Pettersen et al., 2004). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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functionalities and up-to-date instructions. 
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Appendix A 

A.1. Local correlation in real space 

Let ψ(x) and m(x) be two functions where the latter is normalized 
∫

R3
m(x)dx = 1 (A1) 

Then the local averages of ψ(x) with the kernel m(x) can be written as a convolution operation: 

ψm(x) =
∫

R3
ψ(y)m(x − y)dy (A2) 

This can be calculated using the convolution theorem: 

ψm(x) = F
− 1[(F (ψ(x) )(F (m(x) ) ] (A3)  

where F is the Fourier transformation operator and F − 1 is its inverse. 
Similarly, the local covariance between ψ1(x) and ψ2(x) is given by 

cov12,m(x) =
∫

R3
m(x − y)ψ1(y)ψ2(y)dy −

∫

R3
m(x − y)ψ1(y)dy

∫

R3
m(x − y)ψ2(y)dy (A4) 

The local correlation between the two functions can be written as 

CC12,m(x) =
cov12,m(x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var1,m(x)var2,m(x)

√ (A5) 

Now, let us assume that there are two noisy maps, each has 

ψi,n(x) = ψi(x)+ ni(x) (A6)  

where ψ i(x) and ni(x) are the signal and the noise components in ith map. 
If the noise components between the maps, and the noise and signal within as well as between maps are uncorrelated, then the local variance and 

covariance can be written: 

vari,m
(
ψi,n(x)

)
= vari,m(ψi(x) )+ vari,m(ni(x)) (A7)  

cov12,m(ψ1,n(x),ψ2,n(x)) = cov12,m(ψ1(x),ψ2(x) ) (A8) 

And finally, the local correlation can be written 

CC12,m(x) =
cov12,m(ψ1(x),ψ2(x))̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var1,m(ψ1(x) ) + var1,m(n1(x))
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var2,m(ψ2(x) ) + var2,m(n2(x))
√ . (A9) 

If two maps are cryo-EM half maps, then they share a common signal. In addition, if the noise components have the same variance for both halves 
then the following relationships hold 

cov(ψ1(x),ψ2(x) ) = var(ψ1(x) ) = var(ψ2(x) ) (A10)  

var(n1(x) ) = var(n2(x) ) = 2var(n(x) ) (A11)  

where var(n(x) ) is the noise variance in the averaged map. 
Thus, the local correlation between half maps is: 
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CChalf ,m(x) =
var1,m(ψ1(x) )

var1,m(ψ1(x) ) + 2var(n(x) )
(A12) 

The corresponding local correlation in the full map (Rosenthal and Henderson, 2003) is 

CCfull,m(x) =
2CChalf ,m(x)

1 + CChalf ,m(x)
. (A13)  

A.2. Relationship between correlations 

Let us assume that we have a map with the Fourier coefficients Fo(s). The observation was made for the true map with the Fourier coefficients Ft(s). 
And we have a model describing the true map with the Fourier coefficients Fc(s). We assume that noise on the observations Fn(s) is additive as well as 
that noise and signal are uncorrelated: 

Fo(s) = Ft(s)+Fn(s) (A14)  

cov(Ft(s),Fn(s) ) = 0 (A15) 

We also assume that noise in the observation is uncorrelated with the Fourier coefficients from atomic model (cov(Fc, Fn) = 0). Correlation between 
observed and calculated Fourier coefficients calculated within thin resolution shells is: 

cor(Fo(s),Fc(s)) =
cov(Fo(s),Fc(s))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Fo(s))var(Fc(s))

√ (A16) 

Since we assume that the correlation between observed noise and atomic model is zero we can write: 

cor(Fo(s),Fc(s) ) =
cov(Ft(s),Fc(s) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(var(Ft(s) ) + var(Fn(s) ) )var(Fc(s) )

√ (A17) 

Correlation between observed and “true” Fourier coefficients can be written as: 

cor(Fo(s),Ft(s) ) =
cov(Fo(s),Ft(s) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(Fo(s) )var
(
Ft(s)

)√ =
var(Ft(s) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(var(Ft(s)) + var(Fn(s)) )var(Ft(s))

√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Ft(s) )

var(Ft(s) ) + var(Fn(s) )

√

(A18) 

If we multiply the numerator and denominator of (A17) by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Ft(s))

√
then we can write: 

cor(Fo(s),Fc(s) ) =
cov(Ft(s),Fc(s) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Fc(s) )var(Ft(s) )

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(Ft(s) )

var(Ft(s) ) + var(Fn(s) )

√

= cor(Ft(s),Fc(s) )cor(Fo(s),Ft(s) ) (A19) 

In practice we do not know “true” Fourier coefficients. However, if we can assume that we have two independent data sets (i.e. independent half 
data reconstructions) then we can use the expression (Rosenthal and Henderson, 2003) 

cor(Fo(s),Ft(s) ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2cor

(
Fo,half 1(s),Fo,half 2(s)

)

1 + cor
(
Fo,half 1(s),Fo,half 2(s)

)

√

(A20) 

Therefore, we can write: 

cor(Fo(s),Fc(s) ) = cor(Ft(s),Fc(s) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2cor

(
Fo,half 1(s),Fo,half 2(s)

)

1 + cor
(
Fo,half 1(s),Fo,half 2(s)

)

√

(A21) 

Although formulas are derived for correlations calculated in Fourier space, under above assumptions (uncorrelatedness of the noise and true and 
the noise and model) they are valid also for real space correlation. 

Appendix B 

B.1. Calculation of variances and covariances using the data 

Let us assume that we have N observations and they are made for “true” maps. Noise is additive and uncorrelated with each other and with the 
signals. We also have half data reconstructed maps for each map. Thus: 

Fo,j = kjFt,j +Fn,j (B1)  

Fo,j,hk = kjFt,j +Fn,j,hk (B2)  

Fo,j =
1
2
(
Fo,j,h1 +Fo,j,h2

)
(B3)  

Fn,j =
1
2
(
Fn,j,h1 +Fn,j,h2

)
(B4) 

The noise components between half maps are uncorrelated, they have 0 mean and they have the same variance (i.e σ2
o,j,h1

= σ2
o,j,h2

). 
Variances are calculated within resolution bins. This is described in a number of papers (Murshudov, 2016; Rosenthal and Henderson, 2003). 
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Covariances between different maps within resolution bins are calculated using the formula: 

cov
(
Fo,j,Fo,l

)
=

1
Ni

∑

s∈bi

Fo,jF*
o,l (B5)  

where Ni is the number of Fourier coefficients within the resolution bin bi. Then the covariances are: 

cov
(
Fo,j,Fo,l

)
= Σo,j,l for j ∕= l (B6)  

var
(
Fo,j
)
= Σo,j,j + σ2

o,j (B7) 

And using the half maps: 

Σo,j,j = cov
(
Fo,j,h1 ,Fo,j,h2

)
(B8) 

Using (B7) and (B8), variance of the noise for each map is calculated. It should be noted that when maps are being fitted into each other, the 
covariance matrix should be recalculated at every cycle. Also, the covariances should be adjusted to account for the effect of a mask (Chen et al., 2013). 

Appendix C 

C.1. Derivation of likelihood function and posterior probability distribution 

Let us assume that we have N observed maps with Fourier coefficients - Fo(s) = (Fo,1(s),Fo,2(s),⋯.,Fo,N(s)). Each of Fo,j(s) is a complex number, i.e. it 
has two components – real and imaginary. Let us assume that these observations have been made for N “true” maps - Ft(s) = (Ft,1(s),Ft,2(s),⋯.,Ft,N(s)). 
In practice, the number of “true” maps could be less than the number of observed maps. 

We assume that the underlying signals in those maps are related. For instance, those maps can be liganded-unliganded protein complexes, mol-
ecules in slightly different conformations, or related but not exactly the same macromolecules. Let us assume that for each “true” map we have a model 
– usually an atomic model from which we can calculate Fourier coefficients accounting for the nature of the experiment: Fc(s) = (Fc,1(s),Fc,2(s),⋯.,

Fc,N(s)). We further assume that noise in the observations is additive, independent and with zero mean normal distribution. 
We also assume that the conditional probability distributions of Fourier coefficients of the maps given the Fourier coefficients of true signals are 

Gaussian. Because of the central limit theorem this assumption holds in practice with sufficient accuracy. 

P
(
Fo,j(s);Ft,j(s)

)
= N 2

(

Fo,j(s); kjFt,j(s),
1
2
σ2

n,j

)

(C1)  

where N 2 denotes two-dimensional normal distribution with mean equal to kj(s)Ft,j(s) and variance equal to 12σ2
n,j. kj is the scale parameter for the 

“true” map number j implying that “true” signal is blurred with a position independent point spread function before/during observations and/or data 
processing. Under an assumption that blurring is with an isotropic Gaussian kernel then kj can be expressed in a form of Gaussian with a B value, 

k0,je−
Bj |s|

2

4 . We will further assume that the “true” signals are on the same coordinate frame, however, observations may have been made for rotated and 
translated molecules. Then the probability distribution of individual Fourier coefficients will have the form: 

P
(
Fo,j(s);Ft,j(s)

)
= N2

(

Fo,j(s); kjFt,j

(
RT

j s
)

e− 2πιsT tj ,
1
2
σ2

n,j

)

(C2) 

To get the total conditional probability distribution of observed Fourier coefficients all individual components are multiplied. Then, we can apply 
transformations to the observed Fourier coefficients. To do this, it is assumed that variances of noise are the same on the surface of each sphere with a 
radius |s|. We also ignore correlation between different Fourier coefficients after transformation: 

P
(

Fo,j
(
Rjs
)
e2πιsT tj ;Ft,j(s)

)
= N 2

(

Fo,j
(
Rjs
)
e2πιsT tj ; kjFt,j(s),

1
2
σ2

n,j

)

(C3) 

The probability distribution of the “true” Fourier coefficients given atomic model is also Gaussian, justification of which can be found in (Luzzati, 
1952). Since “true” maps are related, we need to account for the relationship between different maps. We assume that the distribution of all “true” 
maps given all atomic models is Gaussian. This form of the distribution can be derived using the same technique used by Luzzati or the central limit 
theorem: 

P(Ft(s);Fc ) = N 2N

(

Ft(s);DFc,
1
2

Σ
)

(C4)  

where the subscript 2N signifies 2 N dimensional normal distribution. D is a diagonal matrix formed by scale factors between calculated and “true” 
Fourier coefficients and Σ is the matrix of covariances 

Σ =

⎛

⎜
⎜
⎝

Σ11
Σ21
⋯

ΣN1

Σ12
Σ22
⋯

ΣN2

⋯
⋯
⋯
⋯

Σ1N
Σ2N
⋯

ΣNN

⎞

⎟
⎟
⎠ (C5)  

with Σij =< (Ft,i − DiFc,i)(Ft,j − DjFc,j)
*
> to be estimated using data and atomic model. 

We also assume that observations are conditionally independent on model if the true map is known. In other words, if we know the true map, then 
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atomic models would not say anything more about observations. Then the joint probability distribution of observed and “true” Fourier coefficients can 
be written as (Murshudov, 2016): 

P(Fo,Ft;Fc) = P(Fo;Ft,Fc)P(Ft;Fc) = P(Fo;Ft)P(Ft;Fc) (C6) 

Since both distributions on the right-hand side are Gaussian, their product also will be Gaussian. In a multivariate Gaussian probability distri-
bution, both marginal (integrating out some of the random variables) and conditional probability distributions of one subset given another subset of 
random variables are also Gaussian distributions (Eaton, 2007). To fully specify a Gaussian distribution, we need its mean vector and the covariance 
matrix. 

Likelihood function is derived by integrating out the “true” unknown Fourier coefficients from the joint probability distribution of observations and 
“true” Fourier coefficients. I.e. it is a marginal probability distribution of observed Fourier coefficients. Since we know that the resultant probability 
distribution will be Gaussian with the mean and covariance matrix equal to the corresponding terms of the joint probability distribution of observed 
and “true” Fourier coefficients, we only need to find these terms. Since we know that: 

Fo,j = kjFt,j +Fn,j (C7) 

Therefore: 

< Fo,j >=< kjFt,j +Fn,j >=< kjFt,j >= kjDjFc,j (C8)  

var
(
Fo,j
)
= var

(
kjFt,j +Fn,j

)
= k2

j var
(
Ft,j
)
+ var

(
Fn,j
)
= k2

j Σj,j + σ2
o,j (C9)  

cov
(
Fo,j,Fo,l

)
= cov

(
kjFt,j +Fn,j, klFt,l +Fn,l

)
= kjklcov

(
Ft,j,Ft,l

)
= kjklΣj,l (C10) 

These fully specify the probability distribution of observed Fourier coefficients given calculated one. In practice, we cannot estimate all kj without 
additional information. Relative scale values between observations i and j, kik− 1

j , can be estimated using observed maps. 
Coming back to our matrix/vector form using short notations Fo,Ft,Fc for Fo(s),Ft(s),Fc(s) for clarity, we have 

P(Fo(s,R, t);Fc ) =

∫

FT

P(Fo;Ft)P(Ft;Fc)dFt =

∫

Ft

N 2N

(

Fo; kFt
(
s,RT , − t

)
,
1
2

σ2
)

N 2N

(

Ft;DFc,
1
2

Σ
)

dFt = N 2N(Fo(s,R, t); kDFc,
1
2
(
kTΣk + σ2)) (C11)  

where Σ is the covariance matrix of “true” map without blurring and Σo,s = kTΣk = kΣk is the covariance matrix calculated using observed maps 
including half maps (Appendix B), k is a diagonal matrix formed by the scale factors of “true” Fourier coefficient. 

In the absence of models (D→0), the probability distribution will have the form: 

P(Fo(s,R, t); atoms ) =
1

(π)Ndet
(
Σo,s + σ2

)e−
(

Fo(s,R,t))T(Σo,s+σ2)− 1(F*
o(s,R,t) ) (C12)  

where atoms signifies that observations are made for a molecule that consists of atoms, but we do not know their positions. 
The negative log likelihood function including all Fourier coefficients has the form: 

LL
(
Fo;R, t,Σo,s

)
=
∑

s
((Fo(s,R, t))T ( Σo,s + σ2)− 1( F*

o(s,R, t)
)
+ log

(
det
(
Σo,s + σ2) )+ const. (C13) 

The formula (C13) is used in EMDA to estimate rotations and translations of maps into each other as well as for magnification refinement. EMDA 
uses a special case of this, the two-observation case to fit two maps into each other. In general, R is a rotation matrix. However, if we relax this 
condition then we can also account for relative magnification of maps. If the only difference between maps is the relative isotropic magnification, then 
R will become a diagonal matrix where diagonal elements are relative magnification parameter. 

Posterior probability of “true” Fourier coefficients given observations and atomic model is a conditional probability distribution of “true” maps given 
observations and model parameters: 

P(Ft;Fo,Fc) =
P(Fo,Ft;Fc)

P(Fo;Fc)
=

P(Fo;Ft)P(Ft;Fc)

P(Fo;Fc)
(C14) 

Again, the conditional probability distribution of a subset of random variables given another subset of variables in multivariate Gaussian distri-
bution is also a Gaussian distribution (Eaton, 2007). So, we need to find the mean and covariance matrix. We know that the logarithm of a Gaussian 
distribution is a quadratic function. Argument that maximises this function is the mean of the random variable and the second derivative of this 
function with respect to the random variable we are interested in is related to the covariance matrix: 

argmaxFt (log(P(Ft;Fo,Fc) ) ) =< Ft > (C15)  

−
∂2log(P(Ft;Fo,Fc) )

∂Ft∂FT
t

= Σ− 1
t (C16) 

We need to find the argument that maximises the following function and its second derivative: 

f (Ft) = log(Ft;Fo,Fc) = log(Fo;Ft)+ log(Ft;Fc) − log(Fo;Fc) (C17) 

Since the third term on the RHS does not depend on Ft it can be ignored. We can also ignore normalisation coefficients in the probability dis-
tributions, because they depend on covariances not on the “true” Fourier coefficients. 

In the following treatment, we will use the fact that all involved matrices are symmetric. The covariance matrix is symmetric by its nature, and the 
rest of the matrices are diagonal and therefore symmetric. 

So, we need to get the derivatives of (after ignoring terms independent on Ft): 
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f1(Ft) = −
∑

j

⃒
⃒Fo,j − kjFt,j

⃒
⃒2

σ2
o,j

− (Ft − DFc)
T Σ− 1(Ft − DFc)

* (C18) 

We can write: 

f1(Ft) = − (Fo − kFt)
T σ− 2(Fo − kFt)

* − (Ft − DFc)
T Σ− 1(Ft − DFc)

* (C19) 

To find the maximum we need to solve: 

∂f1

∂Ft
= − 2kσ− 2(kFt − Fo) − 2Σ− 1(Ft − DFc) = 0 (C20) 

It can be conveniently solved: 

< Ft >=
(
kσ− 2k + Σ− 1)− 1( kσ− 2Fo + Σ− 1DFc

)
(C21) 

It shows that the mean value of the posterior probability distribution is a linear combination of observed and calculated Fourier coefficients with 
suitable weights. 

Using the properties of matrices and their inverses we can write these formulas in a more convenient way: 

< Ft >= k− 1kΣk
(
kΣk + σ2)− 1Fo + k− 1σ2(kΣk + σ)− 1kDFc = k− 1

(
kΣk

(
kΣk + σ2)− 1Fo + σ2( kΣk + σ2)− 1kDFc

)
(C22) 

A special case of this when there is one model and one observation is considered in (Yamashita et al., 2021). 
When there are no atomic models then D→0 and the formula becomes: 

< Ft >= k− 1kΣk
(
kΣk + σ2)− 1Fo (C23) 

Further we denote Σo,s = kΣk that can be estimated using the observed data: 

< Ft >= k− 1Σo,s
(
Σo,s + σ2)− 1Fo (C24) 

For completeness we also give the covariance matrix of the posterior probability distribution of the “true” Fourier coefficients (this can be used for 
estimation posterior noise variance and covariances in the calculated maps): 

Σt = −

(
∂2log(P(Ft;Fo,Fc) )

∂Ft∂FT
t

)
− 1 =

1
2
(
kσ− 2k + Σ− 1)− 1 =

1
2

k− 1(kΣk)
(
kΣk + σ2)− 1σ2k− 1 =

1
2
k− 1Σo,s

(
Σo,s + σ2)− 1σ2k− 1 (C25) 

Since not all components of k can be estimated using the observations only, for current calculations we replace the elements of k with the standard 

deviations of the observed signal kj =
̅̅̅̅̅̅̅̅
Σo,jj

√
(explained in (Yamashita et al., 2021)). If k1 is a diagonal matrix formed with 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σo,jj+σ2

j

√
then we can write: 

< Ft >= k− 1Σo,s
(
Σo,s + σ2)− 1k1k− 1

1 Fo = k− 1Σo,sk− 1kk− 1
1 k1

(
Σo,s + σ2)− 1k1Eo (C26) 

Here we used the notation Eo,j =
Fo,j̅̅̅̅̅̅̅̅̅̅̅̅

Σo,jj+σ2
j

√ . We recognise that ρs = k− 1Σo,sk− 1 is the correlation matrix between “true” maps, 
̅̅̅̅̅̅̅
f sc

√
= kk− 1

1 is the 

diagonal matrix formed with square root of fullmap FSCs, ρo = k− 1
1 (Σo,s +σ2)k− 1

1 is the correlation matrix between observed maps. Now we can write: 

< Ft >= ρs

̅̅̅̅̅̅̅
f sc

√
ρ− 1

o Eo (C27) 

When there is only one map then this formula gives normalised and fsc weighted map. 
Next, we consider the case when N = 2. Then we can write the formulas in an explicit form: 

< Ft >= ρs

̅̅̅̅̅̅̅
f sc

√
ρ− 1

o Eo =
1

1 − ρ2
o

( ̅̅̅̅̅̅̅̅
fsc1

√
−

̅̅̅̅̅̅̅̅
fsc2

√
ρsρo̅̅̅̅̅̅̅̅

fsc1
√

ρs −
̅̅̅̅̅̅̅̅
fsc2

√
ρo

−
̅̅̅̅̅̅̅̅
fsc1

√
ρo +

̅̅̅̅̅̅̅̅
fsc2

√
ρs

−
̅̅̅̅̅̅̅̅
fsc1

√
ρoρs +

̅̅̅̅̅̅̅̅
fsc2

√

)(
Eo,1
Eo,2

)

(C28) 

And 

< Ft >=
1

1 − ρ2
o

(( ̅̅̅̅̅̅̅̅
fsc1

√
−

̅̅̅̅̅̅̅̅
fsc2

√
ρsρo

)
Eo,1 +

(
−

̅̅̅̅̅̅̅̅
fsc1

√
ρo +

̅̅̅̅̅̅̅̅
fsc2

√
ρs

)
Eo,2

( ̅̅̅̅̅̅̅̅
fsc1

√
ρs −

̅̅̅̅̅̅̅̅
fsc2

√
ρo

)
Eo,1 +

(
−

̅̅̅̅̅̅̅̅
fsc1

√
ρoρs +

̅̅̅̅̅̅̅̅
fsc2

√ )
Eo,2

)

(C29) 

It must be stressed that since correlations are calculated using observed maps and when signal to noise ratio is very small then this estimation can 
vary dramatically. Therefore, for accurate estimations we may need to improve the estimation of the correlations, especially those between signal 
components, for example using smoothening or using prior knowledge derived from the PDB. 

Appendix D 

D.1. Use of normalized and weighted maps in local correlation calculation 

In order to compare local correlations calculated using various maps, they need to be weighted appropriately in the same way. 
The normalized expected map for a single map according to Bayesian interpretation is 

< FT >= w1Fo (D1) 

Fo is the observed Fourier coefficients, and w1 =
Σo,s

Σo,s+σ2
1
k in which Σo,s and σ2 are the covariance and the noise variance in the fullmap estimated 

using half maps in resolution bins as explained in Appendix B. k is a scale factor that associated with distortions of the true signal such as blurring. In 
the current implementation, k is replaced with the standard deviation of the observed signal (i.e. k(s) =

̅̅̅̅̅̅̅
Σo,s

√
) to yield 
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< FT >=
̅̅̅̅̅̅
fsc

√
Eo (D2) 

where Eo = Fo̅̅̅̅̅̅̅̅̅̅̅
Σo,s+σ2

√ .  

While FSC-type weighting dampening down the noise, the normalisation works as a position independent deblurring operation. 
Similar to (D1), weights can be assigned on the calculated map as follows: 

Fc,weighted = w2Fc (D3)  

where Fc are calculated Fourier coefficients. The weights on calculated Fourier coefficients should be selected to dampen high resolution frequencies 
as in the weighted observed maps. Otherwise, the variance contribution of calculated high-resolution Fourier coefficients will reduce the correlation 
making it incomparable to that calculated for observed maps. We would also like to remove overall B value effect as in (D2). This way correlation in 
observed maps calculated using half maps will be comparable to that calculated between observed and calculated maps. To achieve this, we chose 
w2 =

Σo,s
Σo,s+σ2

1
σc 

where σc is the standard deviation of calculated Fourier coefficients estimated in the same resolution bins as Σo,s. 
Choosing such weights is equivalent to scaling Fc and Fo by making their variances equal, i.e., 

Fc,scaled =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σo,s + σ2

√

σc
Fc (D4)  

and using the calculated map with the following weights 

Fc,weighted =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σo,s

Σo,s + σ2

√
Fc

σc
=

̅̅̅̅̅̅
fsc

√
Ec. (D5)  

Appendix E. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsb.2021.107826. 
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