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ABSTRACT

Chromatin in eukaryotic cells is folded into higher
order structures of folded nucleosome filaments,
and DNA damage occurs at all levels of this
structural hierarchy. However, little is known about
the impact of higher order folding on DNA repair
enzymes. We examined the catalytic activities of
purified human base excision repair (BER) enzymes
on uracil-containing oligonucleosome arrays, which
are folded primarily into 30nm structures when
incubated in repair reaction buffers. The catalytic
activities of uracil DNA glycosylase (UDG) and
apyrimidinic/apurinic endonuclease (APE) digest
G:U mismatches to completion in the folded oligo-
nucleosomes without requiring significant
disruption. In contrast, DNA polymerase b (Pol b)
synthesis is inhibited in a major fraction (�80%) of
the oligonucleosome array, suggesting that single
strand nicks in linker DNA are far more accessible
to Pol b in highly folded oligonucleosomes.
Importantly, this barrier in folded oligonucleosomes
is removed by purified chromatin remodeling com-
plexes. Both ISW1 and ISW2 from yeast significantly
enhance Pol b accessibility to the refractory nicked
sites in oligonucleosomes. These results indicate
that the initial steps of BER (UDG and APE) act
efficiently on highly folded oligonucleosome arrays,
and chromatin remodeling may be required for the
latter steps of BER in intact chromatin.

INTRODUCTION

DNA is a constant target of spontaneous hydrolysis
at 378C (1). Two frequent hydrolysis reactions are

depurination to produce non-coding abasic (AP) sites,
and deamination of cytosine to generate uracil (U) (2,3).
Minor base lesions and single-strand breaks are repaired
primarily by base excision repair (BER) in mammalian
cells. The first step of BER is removal of the damaged base
by a DNA glycosylase, cleaving the N-glycosyl bond
between the base and deoxyribose (4,5). This results
in forming apurinic or apyrimidic (AP) sites in DNA.
As noted earlier, AP sites can also occur from depurina-
tion or depyrimidination yielding a common intermediate
in BER. Subsequently, AP-endonuclease 1 (APE) incises
the damaged strand 50 to the AP-site generating a 30-
hydroxyl and a 50 deoxyribose phosphate (dRP) (6). Then,
short-patch BER proceeds by action of DNA polymerase
b (Pol b), filling the single-nucleotide gap and removing
the dRP group (7). Finally, the nick is sealed by DNA
ligase I or III. Generally, replication and transcription are
not significantly stalled at these types of base lesions. As a
result, they can be mutagenic if not repaired (8) resulting
in genomic instability and such chronic disorders as
cancer.
BER enzymes must deal with damage generated

throughout the genome, and the majority of eukaryotic
DNA is packaged into highly condensed structures (9).
As shown in previous studies in vitro using mononucleo-
somes (10,11), BER enzymes are significantly suppressed
in mononucleosomes. However, recently, considerable
flexibility of mononucleosome DNA has been reported
(12,13), particularly at the sites of entry and exit from the
nucleosome. Such dynamic properties of nucleosomes may
allow certain small proteins to gain access to DNA. For
example, it was found that Dnmt3a and Dnmt1 DNA
methyltransferases act more efficiently on nucleosome
DNA than naked DNA, and do not require disruption
of histone octamers (14). Furthermore, Thoma and
colleagues (15) have shown that UV photolyase, a light-
dependent DNA repair enzyme, recognizes and repairs
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CPDs in nucleosomes within seconds in intact yeast cells,
suggesting this protein takes advantage of nucleosome
dynamics to gain access to CPDs in chromatin.
Although dynamic properties of nucleosomes may

contribute to the accessibility of DNA, they are not
sufficient for some bulky proteins or protein complexes to
gain access to internal sites. Indeed, several different types
of chromatin remodeling factors have been identified that
assist DNA accessibility. One class of these factors
changes histone-DNA contacts by adding or removing
covalent modifications from histone tails. Another class
alters chromatin structure in a non-covalent manner using
ATP hydrolysis, and this class has been subdivided into
different families based on the ATPase subunit (16).
The effect of ATP-dependent chromatin remodeling on
overall DNA repair has been shown using mono- or
di-nucleosomes (17–19). Recently, we reported that the
SWI/SNF remodeling complex facilitates nucleotide exci-
sion repair (NER) of UV damage in yeast cells (20).
However, the question of whether chromatin remodeling
is required prior to damage recognition or during DNA
repair has not been addressed. Furthermore, the initiation
of DNA repair in highly compact chromatin remains an
essential component for the understanding of BER in
cells. Most BER enzymes are essential (21,22), making it
more difficult to assess this pathway in vivo. However,
a complete understanding of DNA repair in vivo will
remain elusive until the impact of higher order chromatin
folding on repair enzymes is understood. Therefore, we
are establishing conditions in vitro that more closely
resemble physiologic templates in vivo to study BER in
chromatin.
In this work, the process of short-patch BER was

studied in vitro using purified human BER enzymes and
highly folded oligonucleosomes containing DNA with
uracil at different sites. We measured the efficiency
of uracil removal by UDG and APE from G:U mismatch
base pairs in oligonucleosomes reconstituted with
12 tandem repeats of a 208 bp segment (208–12) of
Lytechinus variegates 5S rDNA. In addition, we examined
the effect of yeast chromatin remodeling complexes ISW1
and ISW2 on Pol b DNA synthesis in these oligonucleo-
some arrays. To our knowledge, this is the first study
examining DNA repair at the 30 nm oligonucleosome fiber
level of DNA packaging in chromatin and linking
chromatin remodeling with BER.

MATERIALS AND METHODS

Preparation of uracil-containing template DNA

Linearized plasmid pSL208-12 was denatured in freshly
prepared NaOH (0.32M) and mixed with 2� volume of
2% low melting agarose. Before it solidified, the mixture
was transferred to mineral oil to form a bead. Each bead
contained �500 ng/ml of DNA. A 5M sodium bisulfite
solution was mixed with 0.2 volume hydroquinone
solution, and the pH adjusted to 5.0. Freshly prepared
sodium bisulfite solution was added gently to the tube
containing a bead. The tube was covered with foil
and incubated at room temparature for 15min.

Following chemical treatment, the bead was washed
10 times with 1ml TE buffer. Desulfonation was carried
out by suspension in 0.2M NaOH for 10min, followed by
extensive washing in TE buffer overnight. DNA was then
extracted from the agarose beads, annealed, and digested
with restriction enzymes to generate 208-12 templates
for further use. The reaction was optimized such that the
majority of single-strand DNA fragments received 1–2
uracils.

Reconstitution of nucleosomal arrays—Histone octa-
mers were prepared from chicken erythrocyte nuclei as
described (23). Oligonucleosome arrays were reconstituted
from histone octamers and purified 208-12 DNA template
using salt dialysis methods (24,25). The degree of template
saturation was controlled by varying the ratio of moles
histone octamer to moles 208-bp DNA from 0.9 to 1.2.
In our system, a ratio of 1.1 provided optimal efficiency
of reconstitution.

EcoRI digestion assay

An aliquot of 700 ng of oligonucleosomes (or naked
DNA) was digested with EcoRI restriction enzyme in a
buffer containing 10mM Tris, pH 8.0, 125mM NaCl,
2.5mM MgCl2 and 1mM EDTA for 2 h at 378C. The
reaction was stopped by adding gel loading buffer,
containing SDS, and the samples run in 5% polyacryl-
amide gels in 1� TBE.

Analytical Ultracentrifugation

Sedimentation velocity experiments were performed in a
Beckman XL-A analytical ultracentrifuge utilizing scan-
ner optics at 260 nm. The temperature was equilibrated at
208C under vacuum for at least 1h prior to the run and
was controlled during the run to within �0.18C. Scans
were analyzed by the method of van Holde and Weischet
(26) using UltraScan 7.4 (B. Demeler, San Antonio, TX,
USA).

UDG/APE digestion

The UDG and APE reaction mixture contained 50mM
Hepes, pH 7.5, 2mM DTT, 0.2mM EDTA, pH 8.0,
100 mg/ml BSA, 10% glycerol (wt/vol) and 2.5mMMgCl2.
A lower Mg2+ concentration was used than in
previous studies to prevent oligonucleosomes from
aggregating. Reactions were initiated by adding UDG
and APE (1 nM or 10 nM final concentration), and
incubations were carried out at 378C for 0 to 1 h.
Aliquots were removed at different times and
treated with phenol to stop the reaction. Digested
DNA was resolved on denaturing alkaline gels, trans-
ferred to a Hybond-N+ membrane (GE Healthcare,
England), probed with randomly labeled 5S rDNA
fragments, and visualized on a PhosphorImager
(model 445-P90, Molecular Dynamics). Images were
analyzed with IMAGE QUANT software (Molecular
Dynamics).
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High-resolution mapping of UDG/APE cleavage sites
in 208-12 nucleosomal arrays

To uniformly enhance the signal of each fragment after
UDG/APE digestion, the resulting ss-fragments (up to
2.5 kb) were annealed with biotin-labeled primers and
purified using streptavidin magnetic beads, as previously
described (27). Briefly, biotin-attached oligonucleotides,
containing a sequence complementary to the 30-end of
208-12 DNA ([biotin]NNNNNNTTTTTGCATGCCTG
CAGGTC), were synthesized and the biotin group
was used to separate annealed fragments from the rest.
The 6 Ns ensured full-length labeling of the fragment, and
the 5 Ts allowed the annealed fragment to be extended
with [a-32P]dATP. Labeled fragments were separated in
a 5.5% polyacrylamide denaturing gels.

Pol bDNA synthesis

DNA synthesis with Pol b was performed in a mixture
containing 50mM Hepes, pH 7.5, 2mM DTT, 0.2mM
EDTA, 100 mg/ml BSA, 10% glycerol (wt/vol), 4mM
ATP, 5mM MgCl2 and [a-32P]dCTP. Templates were first
incubated with UDG and APE (10 nM each) for 10min.
DNA synthesis was then initiated by addition of Pol b and
incubations were at 378C for 0–4 h. Aliquots were
removed at different times and treated with phenol to
stop the reaction. Samples were then run on a native
agarose gels and the gels stained with ethidium bromide.
Gels were then blotted onto membrane, visualized on a
Phosphorimager and the images analyzed with IMAGE
QUANT software.

Effect of yISW1 and yISW2 activity on Pol bDNA synthesis

Pol b DNA synthesis reactions were carried out with
oligonucleosomes under identical conditions as above,
with or without chromatin remodeling complex.
Remodeling complexes, yISW1 or yISW2 (generous gift
of Dr Tsukiyama) were added at the beginning of repair
synthesis. The molar ratio of ISW1 or ISW2 to mono-
nucleosomes was 1.

RESULTS

Nucleosome arrays containing G:U mismatches can form
higher order structures. The experiments described in this
report utilize a DNA fragment composed of 12 tandem
repeats of a 208 bp segment of the L. variegates 5S rRNA
gene as a template for reconstitution of oligonucleosomes
(Figure 1A). Each repeat contains sequences that position
nucleosomes both translationally and rotationally on the
DNA molecule (28). To study short-patch BER, uracil
was incorporated at cytosine bases in the 208-12 DNA
fragment by treatment with sodium bisulfite. This reaction
was optimized to yield a majority of the single-stranded
(ss) fragments with 1 or 2 uracils. For example, 35% of the
fragments used for UDG/APE digestion (1 nM each)
contained a single uracil, 23% contained two uracils, and
15% of the fragments contained more than two uracils.

DNA-stripped histone octamers from chicken erythro-
cytes were reconstituted by stepwise salt dialysis (24,25)

onto a non-damaged 208-12 template or a 208-12 template
containing G:U mismatches. Initially, varying ratios (r) of
histone octamers to 5S rDNA repeats were used for
reconstitution to generate a fully loaded oligonucleosome
array. To evaluate the degree of nucleosome loading,
two different methods were used. First, gel mobility
shift assays, following restriction digestion with EcoRI,
were used. Since each repeat is flanked by EcoRI sites
(Figure 1A), a mononucleosome or 208-1 free DNA is
released after EcoRI digestion. When only about 2–5% of
the 5S repeats are released in the free form, the 208-12
rDNA is considered to be fully saturated with

Figure 1. Reconstitution of oligonucleosomes containing G:U
mismatches. (A) Schematic of 208-12 template. Templates used in this
work were composed of 12 tandem repeats of a 208 bp 5S rRNA gene
sequence. Thick arrow indicates the major nucleosome position, and
thin arrows indicate the minor nucleosome positions. (B) Degree of
nucleosome loading. Oligonucleosomes containing either control DNA
(N1) or DNA with uracils (N2 and N3) were digested with EcoRI,
electrophoresed in native 5% polyacrylamide gels and stained with
ethidium bromide. MK denotes 100 bp DNA ladder; and UN, 208-1
CP and 208-1 D, denote undigested nucleosomal arrays, mononucleo-
somes and naked DNA, respectively. (C) Sedimentation velocity
analysis of nucleosome arrays with and without uracil. Samples in
either TE buffer or TE with 2mM MgCl2 were equilibrated at 208C and
sedimented at either 18 000 or 20 000 rpm. Shown are the sedimentation
coefficient distribution plots for nucleosome arrays with (open symbols)
or without (closed symbols) uracil residues in TE buffer (circles) and
TE buffer+2mM MgCl2 (squares).
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nucleosomes (29). We obtained fully saturated oligonu-
cleosomes when r=1.1 (25). Importantly, no significant
differences in efficiency of oligonucleosome assembly were
detected between intact 208-12 oligonucleosomes and
those containing uracil (Figure 1B). This result was
expected since the G:U-mismatch has the capacity to
form base pairs (30). In addition, no additional disruption
of the core particles was observed in the reconstituted
oligonucleosomes in the BER reaction mixture buffer
employed in this study (Figure 1B).
Sedimentation velocity analysis was also carried out to

monitor the homogeneity of reconstituted oligonucleo-
some arrays, as well as the degree of salt-induced higher
order structure formation. The majority of nucleosomal
arrays both with and without uracil residues sediment as
rather homogeneous populations of 28–30S species in low
ionic strength buffer (Figure 1C). The small fraction of
material with larger S values was due to super-saturated
nucleosome arrays assembled with additional histones.
Furthermore, as the BER buffer used in this study
contains Mg2+, the Mg2+-dependent folding of 208-12
oligonucleosomes was characterized. Hansen and col-
leagues have shown that saturated 208-12 nucleosome
arrays form a maximally folded 55S structure in 1–2mM
MgCl2, with an extent of compaction equivalent to
the classical higher order 30 nm structures (31). In the
presence of 2mM Mg2+, S values of both intact
oligonucleosomes (open symbols) and uracil-containing
oligonucleosomes (closed symbols) were shifted to higher
values (more compact structures) in a similar manner
(Figure 1C). These results suggest that intramolecular
folding of uracil-containing oligonucleosomes in solution
is not disrupted in any significant way by G:U mismatches.
UDG and APE recognize and act on base lesions in

folded oligonucleosomes. Incubation of either uracil-
containing naked 208-12 DNA or oligonucleosomes with
UDG and APE generates a single strand break that can be
visualized on denaturing agarose gels (Figure 2). When
digested with 1 nM each of UDG and APE, shorter bands
are generated and the intensity of full-length (undigested)
fragments is reduced during increasing digestion times
(Figure 2A). Furthermore, the disappearance of full-
length fragments is slower with oligonucleosomes than
with naked 208-12 DNA (Figure 2A, graph), suggesting
that the combined activity of these enzymes is reduced
when DNA is folded into nucleosome arrays. The
calculated initial rates for these digestion curves indicate
that nucleosome arrays are digested �2–3-fold slower by
the combined action of UDG and APE. At higher enzyme
concentrations (10 nM each), however, the digestion
reaction proceeded to near-completion with folded oligo-
nucleosomes (Figure 2B). This result indicates that these
enzymes can access G:U sites within higher order
structures of chromatin and do not require a marked
disruption of DNA-histone contacts.
High resolution mapping of UDG/APE cleavage sites

at uracils can be observed on DNA sequencing gels
(Figure 2C). Overall, incision at damaged sites within
linker DNA regions (between ovals) was faster than in
core DNA (within ovals). However, a few sites within each
of the nucleosome core particles were cleaved considerably

faster than others (Figure 2C, red arrows). The rate of
cleavage at these sites may reflect (i) the influence of
flanking sequences in each of the 5S rDNA repeats, as
observed for other DNA sequences (32), and/or (ii) the
location of these sites at more accessible locations in the
nucleosome cores (e.g. facing away from the histone
surface in each nucleosome). In addition, some incised
sites are detected within each of the repeats in the absence
of UDG/APE digestion (Figure 2C, dotted arrows on left
of 0min lane), indicating that some fragments contained
nicks at specific sites following the sodium bisulfite
treatment. Although DNA was treated for short times
with high concentrations of bisulfite to limit these nicks,
the glycosyl bond at purine residues is still susceptible to
hydrolysis under acidic conditions. The resulting AP sites
lead to single strand breaks during desulfonation under
alkaline conditions. However, because these nicked sites
do not change during the UDG/APE digestion, they serve
as an intrinsic control for the enzyme-produced sites
(Figure 2C, dotted arrows).

Gap-filling by DNA Pol b is inhibited by oligonucleo-
some formation. To assess activity of Pol b, the single-
nucleotide repair patch was labeled with [a-32P]dCTP.
At a concentration of 1 nM, Pol b efficiently incorporates
dCMP into naked DNA and reaches a plateau after
90min (Figure 3 inset, open circles). On the other hand, at
this concentration, Pol b only incorporates dCMP into
�20% of the sites in oligonucleosomes (Figure 3 inset,
closed circles). The oligonucleosome template used in this
study includes about 60 bp of linker DNA between
nucleosome core particles (i.e. �30% of the total DNA).
Therefore, folded nucleosomes may affect the efficiency of
DNA synthesis in the linker DNA region. Indeed, even at
a 10-fold higher concentration of Pol b (10 nM), DNA
synthesis on oligonucleosomes proceeded to a plateau of
37% in �60min (Figure 3), indicating that nucleosome
core particles are a formidable barrier for the efficient
addition of nucleotides by Pol b in oligonucleosomes.
Therefore, it is possible that other factor(s) assist this step
in intact cells.

Chromatin remodeling complex ISWI facilitates DNA
synthesis by Pol b in oligonucleosomes. To investigate
whether ATP-dependent chromatin remodeling facilitates
Pol b DNA synthesis, purified yeast remodeling
complexes ISW1 and ISW2 (33) were tested with our
BER-oligonucleosome model system. ISWI complexes
induce nucleosome sliding both in vivo and in vitro (34),
which makes DNA segments accessible while maintaining
the overall packaging of DNA (35). The ISWI complex
is present in all eukaryotes, with the exception of
Schizosaccharomyces pombe (36), and is relatively abun-
dant. For example, ISWI is expressed during Drosophila
development at levels as high as 100 000 molecules/cell
(37). Moreover, ISWI induces nucleosome sliding on
nicked DNA (35), which makes the ISWI remodeling
complex a good candidate for assisting the Pol b step of
the BER pathway in cells. A quantitative comparison of
the synthesis of Pol b on oligonucleosomes in the absence
and presence of these complexes was made by setting the
maximum DNA synthesis achieved on oligonucleosomes
in the absence of these factors to 1. As shown in Figure 4,
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both of the yeast ISWI complexes promote efficient dCMP
incorporation at cleaved uracil sites in the oligonucleo-
some templates. Indeed, after 4 h, ISW1 and ISW2
increased incorporation by �4-fold and �6-fold, respec-
tively. Thus, both remodeling complexes significantly
increase the accessibility of nucleosome DNA to Pol b.

DISCUSSION

In facing the steric hurdles to surveying the genome, DNA
repair proteins may take advantage of the dynamic
properties of chromatin and/or rely on other factors to
remodel local regions of DNA damage. It has been shown
that nucleosome structure reduces the accessibility of

many different types of DNA processing proteins, and
chromatin remodellers such as SWI/SNF enable the access
by these proteins (16,38). In the case of DNA repair, the
question arises as to whether cells require chromatin
remodeling prior to or during the repair process. Here, we
show that two different chromatin states may be required
for efficient BER by systematically examining BER
in vitro, using highly folded nucleosome arrays of the
208-12 5S rDNA sequence, that more closely resemble
natural substrates in intact cells than mono- (or di-)
nucleosomes.
Uracil-containing DNA does not inhibit nucleosome

formation or compaction. In this study, chemical deami-
nation of cytosine to uracil was carried out to generate 1–2

Figure 2. UDG and APE digestion of dU-containing oligonucleosomes. (A) Alkaline agarose gels of naked 208-12 DNA and oligonucleosomes after
incubation with 1 nM each of UDG and APE. Time course is from 0 to 1 h, and MK denotes 100 bp and 1 kb DNA ladders. Plot shows % DNA
incised by 1nM UDG and APE for naked DNA (open circle) and oligonucleosomes (filled circle) following different digestion times. (B) Same as in
(A), except 10 nM each of UDG and APE were used. (C) High resolution mapping of UDG/APE cleavage sites. Oligonucleosomes digested with
UDG/APE for 0, 1, 5, 15 and 60min (Lane 1–5, respectively) were end-labeled as described in Materials and Methods section, and were
electrophoresed in denaturing gels for 6 h (left panel) and 12 h (right panel). Nucleosome positions are indicated by ovals where numbers denote
nucleosome position from end of the fragment. Rapidly cleaved sites within a nucleosome core are indicated by red arrows. Initially nicked sites
before UDG/APE digestion are indicated by dotted arrows, which serve as controls.
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uracils/ss-fragment (i.e. �2–4G:U mismatches in each
array template). A G:U mismatch has the capacity to form
a base pair (30), which is most likely why these lesions do
not affect nucleosome formation or compaction
(Figure 1). This aspect of non-distorting DNA lesions
makes their recognition more difficult than that of helix
distorting DNA lesions such as cis-syn cyclobutane
pyrimidine dimers caused by UV light, which bend the
long axis of DNA� 308 (39). Furthermore, our sedimen-
tation velocity results demonstrate that the reconstituted
nucleosome arrays containing G:U mismatches form
higher-order structures at increased ionic strength.
Finally, cytosine deamination occurs more frequently
where a segment of ssDNA is temporary exposed during
transcription and replication (1). Our data supports the
notion that such uracil-containing DNA can reassemble
into nucleosomes and fold back into more compact
structures in intact cells, if not repaired.
UDG and APE can access DNA base damage even in

highly folded regions of chromatin. Differences occur in
the activities of UDG and APE at different sites of
oligonucleosomes, depending on the predicted rotational
settings of the lesions as well as the flanking sequences
(Figure 2C), in agreement with previous studies on
mononucleosomes (10,11). More importantly, however,
these enzymes digest the highly folded arrays to comple-
tion in a concentration-dependent manner, indicating that
both enzymes are capable of accessing dU-damaged sites

within nucleosomes in a higher-order structure of chro-
matin (Figure 2). Moreover, the strong inhibition of Pol b
activity by oligonucleosomes following digestion with high
concentrations of UDG/APE (Figure 3) indicates there is
no significant nucleosome disruption by UDG/APE
digestion. Whether chromatin remodeling or recognition
of DNA lesions would come first during BER in cells is
unclear at this time. Phosphorylation of histone variant
H2AX following induction of DNA double-strand breaks

Figure 3. Pol b synthesis in dU-containing oligonucleosomes. After
digestion of both naked DNA and oligonucleosome DNA with UDG
and APE (10 nM each), samples were incubated with 10 nM Pol b for
different times and electrophoresed on a native agarose gel. Upper gel,
repair patch incorporation of [a-32P]dCMP into 208-12 DNA (RP).
Lower gel, total DNA stained with ethidium bromide (total). Plot
shows time course of [a-32P]dCMP incorporation into naked DNA
(open cicle) and oligonucleosomes (filled circle) by 10 nM Pol b.
Incorporation values were normalized to naked DNA maximum,
following 15, 30, 45, 60, 120 and 240min incubation time. (inset) Time
course of [a-32P]dCMP incorporation into naked DNA (open circle)
and oligonucleosomes (filled circle) by 1 nM Pol b.

Figure 4. Effect of yISW1 and yISW2 on Pol b synthesis in
dU-containing oligonucleosomes. (A) Native agarose gel showing Pol
b DNA synthesis, following different incubation times in the absence
(�) and presence (+) of ISW1. Upper gel, shows incorporation of
[a-32P]dCMP into 208-12 DNA (RP). Lower gel, total DNA stained
with ethidium bromide (total). Plot shows time course of [a-32P]dCMP
incorporation by 1 nM Pol b in the presence (diamond) and absence
(circles) of ISWI1, relative to maximum incorporation value for
oligonucleosomes in the absence of ISW1. (B) Native agarose gels
and time course plot showing Pol b DNA synthesis in the absence
(�, filled circle) and presence (+, filled triangle) of ISW2.
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(DSBs) by ionizing irradiation (40,41) is known to play
an important role in recruiting DSB-recognition and
repair proteins (42), chromatin remodeling factors (43)
and DNA damage-induced checkpoint proteins (44).
However, unlike induced DSBs, different types of minor
base alterations occur constantly throughout the genome
and, to date, there is no in vivo evidence showing that a
specific histone modification is formed following DNA
base damage. Our data suggests that, at least for BER,
a variety of base lesions could be recognized directly by
a substrate specific glycosylase in chromatin without
requiring significant local chromatin remodeling. UDG
and APE are relatively small, and bend the long axis of
DNA only �208 and �358, respectively, upon binding
(45,46). Such bending may be compatible with the
DNA flexibility allowed on the nucleosome surface.
Furthermore, such ‘direct recognition’ by these enzymes
may be critical for the cell to initiate BER in chromatin,
especially in heterochromatin.

Pol b DNA synthesis requires local chromatin remodel-
ing. Unlike the UDG and APE enzymes, Pol b is strictly
inhibited by the folding of DNA into nucleosome arrays
(Figure 3). In addition to our previous observation on
mononucleosomes (11), our results clearly indicate that
the major restriction of BER in oligonucleosome
templates is the Pol b step. However, our new results
indicate there are two levels of inhibition of Pol b in
oligonucleosomes. At a lower concentration of Pol b
(1 nM), �80% of the total gaps are not filled (Figure 3,
inset) in oligonucleosome arrays, which is equivalent to
the portion of potential uracil sites (i.e. dC sites) in 168 bp
of nucleosomal DNA within the 208 bp repeat. However,
when the concentration of Pol b is increased 10-fold,
�63% of total gaps remain unfilled (Figure 3), which is
almost equivalent to the fraction of potential uracil sites in
the 147 bp nucleosome core DNA (65%). This indicates
that the outer 10 bp of DNA at the points of entry and
exit to the nucleosome are more accessible in oligonucleo-
somes than the inner 147 bp of core DNA.

Pol b binding requires an �908 bend in the DNA
molecule (47), and such a radical distortion may not be
tolerated by nucleosomes. This result may reflect the
requirement for additional factor(s) to release the struc-
tural constraints of positioned nucleosomes in intact cells.
Since BER intermediates such as single-strand breaks are
also mutagenic, it is crucial that, once initiated, comple-
tion of BER occurs rapidly in cells. Therefore, we explored
possible solutions for Pol b to overcome such structural
barriers by examining the effects of two yeast chromatin
remodeling complexes, ISW1 and ISW2, on Pol b DNA
synthesis in the oligonucleosome templates. Both of these
complexes significantly facilitated Pol b DNA synthesis
on the folded oligonucleosome arrays in vitro (Figure 4).
This observation may reflect a need for ATP-dependent
chromatin remodeling prior to the Pol b step of BER in
chromatin.

Different chromatin structural states may be required
for initial and latter steps of BER. Based on our results,
we propose a mechanistic model for short-patch BER
in chromatin (Figure 5). DNA glycosylases, which are
relatively abundant for frequently occurring base damage

(48), continually ‘survey’ the genome and cleave glycosyl
bonds of damaged bases (Figure 5). Subsequently, APE,
which is present at high amounts in cells (350 000–700 000
molecules/cell), will incise at AP sites (46,49). Both of
these enzymes may act directly on chromatin without
requiring significant nucleosome disruption, possibly
using the dynamic unwrapping of nucleosome DNA to
gain access to internal nucleosome sites. In contrast, Pol b
exists at lower levels in cells, �50 000 molecules (50),
and may only be able to access strand breaks in
nucleosome-free DNA, or linker DNA regions. Access
of UDG/APE-induced strand breaks within nucleosome
core particles, however, may require nucleosome sliding or
disruption prior to gap-filling synthesis. After removal of
the dRP group by Pol b, the nick is sealed by DNA ligase.
Completion of the repair process would then involve
rearrangement of the repaired DNA back to the original
chromatin structure (Figure 5).
Finally, Chambon and colleagues (51) reported that

thymine DNA glycosylase (TDG) associates with tran-
scriptional coactivators CBP and p300. Thus, acetylation
of histone tails by the CBP/p300-TDG complex may
promote local chromatin relaxation at these sites.

Figure 5. Schematic model of chromatin-remodeling during short-patch
BER in chromatin. Damaged bases in chromatin are recognized and
incised by a damage-specific DNA glycosylase and abundant APE.
Chromatin-remodeling complex then locally disrupts nucleosomes to
allow Pol b access to these single nucleotide gaps. Following gap-filling
synthesis and removal of dRP group by Pol b, the nick is sealed by
DNA ligase, and followed by nucleosome refolding.
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However, relaxation of closed chromatin structure to open
form may only be sufficient for Pol b DNA synthesis in
linker DNA regions and may not be sufficient for access of
Pol b to single-strand breaks in nucleosome core DNA.
Indeed, preliminary results do not show a marked
promotion of DNA synthesis on oligonucleosomes in the
presence of a histone acetyl transferase (HAT1)
(Nakanishi and Smerdon, unpublished results).
Therefore, complete exposure of nucleosome core DNA,
by either nucleosome sliding or disruption may be
required to allow Pol b complete access to damaged
sites. However, histone acetylation may have important
roles in recruitment of additional factors, such as
chromatin remodeling complexes, linking these two
different chromatin states.
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