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Abstract

Objective: To develop and validate a radiomics-based predictive risk score (RPRS) for preoperative prediction of

lymph node (LN) metastasis in patients with resectable non-small cell lung cancer (NSCLC).

Methods: We retrospectively  analyzed  717  who underwent  surgical  resection  for  primary  NSCLC with

systematic mediastinal lymphadenectomy from October 2007 to July 2016. By using the method of radiomics

analysis,  591 computed tomography (CT)-based radiomics features were extracted,  and the radiomics-based

classifier was constructed. Then, using multivariable logistic regression analysis, a weighted score RPRS was

derived to identify LN metastasis. Apparent prediction performance of RPRS was assessed with its calibration,

discrimination, and clinical usefulness.

Results: The radiomics-based classifier was constructed, which consisted of 13 selected radiomics features.

Multivariate models demonstrated that radiomics-based classifier, age group, tumor diameter, tumor location, and

CT-based LN status were independent predictors. When we assigned the corresponding score to each variable,

patients with RPRSs of 0−3, 4−5, 6, 7−8, and 9 had distinctly very low (0%−20%), low (21%−40%), intermediate

(41%−60%), high (61%−80%), and very high (81%−100%) risks of LN involvement, respectively. The developed

RPRS showed good discrimination and satisfactory calibration [C-index: 0.785, 95% confidence interval (95% CI):

0.780−0.790].  Additionally,  RPRS outperformed the clinicopathologic-based characteristics  model  with net

reclassification index (NRI) of 0.711 (95% CI: 0.555−0.867).

Conclusions: The novel clinical scoring system developed as RPRS can serve as an easy-to-use tool to facilitate

the  preoperatively  individualized  prediction  of  LN  metastasis  in  patients  with  resectable  NSCLC.  This

stratification of patients according to their LN status may provide a basis for individualized treatment.
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Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide,  with  non-small  cell  lung  cancer  (NSCLC)
accounting for approximately 85% of such deaths (1,2).

Precise  staging is  the  key  to  appropriate  prognosis  and

treatment strategy decision (3). For patients with resectable

(stage  I−IIIA)  NSCLC,  surgical  resection  remains  the

primary and preferred approach to the treatment with the
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best  chance  for  cure  (4).  As  recommended by  National
Comprehensive  Cancer  Network  (NCCN)  guidelines,
patients with resectable NSCLC should receive N1 and N2
node resection and a minimum of 3 N2 stations sampled or
complete lymph node (LN) dissection during pulmonary
resection (5). However, patients who had negative nodes by
complete mediastinal LN dissection did not have improved
survival compared with systematic LN sampling (6,7), and
patients with positive LN involvement have a higher risk of
disease recurrence. Therefore, accurate identification of
LN involvement  is  crucial  for  prognosis  and treatment
strategy decision in patients with resectable NSCLC.

Although LN sampling or dissection plays an important
role in precise nodal staging by identifying LN, they are
available only invasively and postoperatively. The accurate
preoperative  assessment  of  LN involvement  in  patients
with  resectable  NSCLC has  a  crucial  effect  on therapy
planning,  thus  aiding  in  pretreatment  decision  making
(8,9). As an alternative, imaging modalities like computed
tomography (CT), positron emission tomography (PET)-
CT and magnetic resonance (MR) are the most widely used
for  preoperative  work-up,  and  are  very  important  in
detecting LN enlargement; however, a previous study has
shown that they have limitations for their predictive value
to differentiate benign nodes from malignant ones (9).

Recent advances in radiomics, which extract quantitative
descriptors  from  routinely  acquired  medical  images
noninvasively,  has  provided deep insights  into different
fields  of  personalized  medicine  in  oncologic  practice,
including  tumor  detection,  subtypes  classification,  and
therapy response assessment (10-14). It is worth noting that
the recent studies have indicated that radiomics predictive
models have been accepted as reliable tools to quantify risk
by  incorporating  and  illustrating  important  factors  for
oncologic prognosis and prediction (15-17). Although CT-
based radiomics features assessments have been applied and
demonstrated  to  be  useful  for  prognosis  prediction  in
patients with NSCLC (14,16,18),  to our knowledge,  no
published study has  determined whether  the  individual
prediction of LN metastasis in resectable NSCLC could be
achieved by a radiomics clinical scoring system based on
preoperative CT images.

Therefore,  this  study  aims  to  develop  and  validate  a
radiomics-based  predictive  risk  score  (RPRS)  that
preoperatively predicts risk of LN metastasis in patients
with resectable NSCLC.

Materials and methods

Patients

The Institutional Review Board of Guangdong General
Hospital approved this retrospective study, with informed
consent  waived.  We  retrospectively  analyzed  medical
records  from 717  consecutive  patients  who  underwent
surgical  resection  for  primary  NSCLC with  systematic
mediastinal lymphadenectomy from October 2007 to July
2016. The patient recruitment process was presented in
Figure 1. All patients underwent contrast-enhanced chest
CT images  within  two weeks  before  surgical  resection.
Between October 2007 and December 2013, patients were
included to form the development cohort, and 423 cases
were enrolled, while between January 2014 and July 2016,
other  patients  were  evaluated  to  form  an  independent
validation cohort, and 294 cases were enrolled. Of these
717 patients in total, 277 patients additionally underwent
PET-CT before resection. We selected these patients for
subgroup analysis.

At baseline, clinical features on primary NSCLC (age,
gender,  smoking  history,  tumor  location),  and  the
acquisition date of CT imaging were recorded.
 

Figure 1  Patient recruitment process. NSCLC, non-small cell
lung cancer; CT, computed tomography.
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LN metastasis evaluation

LNs were dissected during surgical resection of NSCLC.
The  International  Association  for  the  Study  of  Lung
Cancer (IASLC) has defined adequate LN sampling as: at
least 3 mediastinal LN stations, station 7 in all case, station
5/6 with left upper lobe tumors and station 9 with lower
lobe tumors; the sampling of at least 3 hilar LN stations is
also  recommended.  The  tissue  was  examined  and  the
number  of  LNs  was  ident i f ied  by  pathologis t
postoperatively.  Note  that  LN status  in  this  study  was
defined by case.

CT image achievement

All patients underwent contrast-enhanced (reconstruction
thickness of 1.25 mm) chest CT with one of two multi-
detector row CT (GE Light-speed Ultra 8; GE Healthcare,
Hino,  Japan;  64-slice  LightSpeed  VCT,  GE  Medical
systems,  Milwaukee,  WI,  USA).  The  CT  images
acquisition parameters were as follows: 120 kV; 160 mAs;
0.5-  or  0.4-second  rotation  time;  detector  collimation:
8×2.5 mm or 64×0.625 mm; field of view, 350 mm × 350
mm; matrix, 512×512. The contrast-enhanced CT image
was  performed  after  a  25-second  delay  following
intravenous administration of 85 mL of iodinated contrast
material  (Ultravist  370, Bayer Schering Pharma, Berlin,
Germany) at a rate of 3 mL/s with a pump injector (Ulrich
CT Plus 150, Ulrich Medical, Ulm, Germany) after routine
non-enhanced  CT.  We  then  retrieved  the  images  in
DICOM  format  from  the  picture  archiving  and
communication system (PACS; Carestream, Canada).

Assessment  of  tumor  diameter  and  determination  of
conventional CT-based LN status

Tumor  diameter  of  primary  NSCLC  on  preoperative
radiologic finding was measured by the maximum diameter
of  the  primary  tumor  on  the  trans-axial  image  of  CT
image. Then, the conventional CT-based LN status was
established preoperatively according to European Society
of  Thoracic  Surgeons  (ESTS)  guidelines  (19).  In  these
guidelines, an LN with a diameter smaller than 1 cm in the
short axis is defined as negative; otherwise, it is defined as
positive.  All  these  measurements  were  done  by  an
experienced radiologist [15 years of clinical experience in
chest  CT  interpretation  (Reader  1)]  at  a  GE  AW  4.3
workstation.

Radiomics features extraction

Figure 2 showed the flowchart of radiomics analysis. The
corresponding algorithms for the region-of-interest (ROI)
settings  and  calculation  of  all  radiomics  features  were
described  in  Supplementary  Materials.  In  total,  591
quantitative radiomics features were extracted from each
patient’s contrast-enhanced chest CT images. The details
of features are summarized in Supplementary Table S1.

To ensure the reproducibility and accuracy, 80 patients
were randomly selected for reproducibility analysis. The
intra-  and  inter-  observer  agreement  of  the  radiomics
feature extraction were initially analyzed using inter- and
intra-class  correlation  coefficients  (ICCs).  For  the
assessment of the interobserver agreement of the radiomics
feature extraction, two radiologists with 15 years (Reader 1)

 

Figure 2 Flowchart of radiomics analysis pipeline. Image segmentation is performed on contrast-enhanced computed tomography (CT)
images. Region of interest (ROI) is delineated initially around the tumor outline for the largest cross-sectional area by experienced
radiologists. Radiomics features are extracted from the defined ROI of tumor on CT images, including tumor intensity, texture features,
Gabor features, and wavelet features. For the analysis, radiomics features are compared with clinical data.
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and  12  years  (Reader  2)  of  experience  in  chest  CT
interpretation performed the ROI-based radiomics feature
extraction procedure, in a blind fashion, respectively. Then,
Reader 1 repeated the procedure with an interval of 1 week
for the assessment of the interobserver agreement of the
radiomics  feature extraction.  An ICC greater  than 0.75
indicated good agreement (20).

Statistical analysis

Statistical analysis was performed by R software (Version
3.0.1;  http://www.Rproject.org).  Packages  used  in  this
study  are  listed  in  Supplementary  materials.  Two-sided
P<0.05 indicated a significant difference.

Baseline continuous variables were compared between
development  and  validation  cohort  using  the  Mann-
Whitney U test, and categorical variables were compared
using the Chi-square test. The univariate analysis of the
correlation  between  LN positive  and  LN negative  was
conducted  by  using  the  univariate  logistic  analysis.
Nonlinear  effects  of  continuous  variables  (age,  tumor
diameter)  were  evaluated  using  restricted  cubic  splines
(21,22); the relationship with LN status was not statistically
significantly  nonlinear  (Wald  P=0.049  for  age;  Wald
P<0.001  for  tumor  diameter),  of  which  age  and  tumor
diameter could be broken as dichotomous variable (age:
≤60 years old and >60 years old; tumor diameter: ≤3 cm
and >3 cm).

Radiomics-based classifier construction

To make the features values have properties of a standard
normal distribution, radiomics features were normalized
with z-score normalization (23). Then, we filtered features
based  on  their  independence  from  other  features  as
determined by Pearson’s correlation coefficient among the
features  (cut-off  value  of  0.9)  (24).  After  that,  feature
selection was done in the development cohort using the
least  absolute  shrinkage and selection operator  method
(LASSO) logistic regression analysis (25,26). The candidate
predictive features  with a  zero-fit  weight were selected.
Thereafter,  radiomics  signature  was  built  through  the
combination  of  the  selected  features  weighted  by  their
respective coefficients. The radiomics-based classifier was
constructed  with  optimal  cutoff  point  on  the  basis  of
maximum Youden index value determined by a receiver
operating characteristic (ROC) analysis, of which patients
were classified into high-risk or low-risk group according
to the score of radiomics signature.

Derivation of fitting model for RPRS

Potential predictor variables, including age group, gender,
smoking history,  tumor diameter,  tumor location,  CT-
based  LN  status,  and  radiomics-based  classifier,  were
involved  in  the  development  of  the  prediction  model.
Multivariable logistic regression analysis with a stepwise
selection procedure was  used to  develop the prediction
model  with candidate  predictors  based on development
cohort.  During  modeling,  backward-elimination
procedures were used to confirm the significant covariates
with  the  stopping  rule  of  Akaike  information  criterion
(AIC) (significance level α is set to 0.157) (27,28).

On the basis of the results of the final fitting model, a
weighted  scoring  system  (i.e.,  RPRS)  incorporating
parameters for prediction of LN metastasis was devised.
Each independent predictor was a score criterion and was
assigned a value based on the coefficients derived from the
multivariable regression coefficients, which were multiplied
by two and rounded (21).

Apparent performance assessment of RPRS

The predictive ability of RPRS was assessed in terms of
discrimination and calibration. Discrimination was assessed
with  the  C-index  (28,29),  and  calibration  was  assessed
graphically  by  plotting  observed  outcome  against  the
predicted  probability  and  tested  with  the  Hosmer-
Lemeshow goodness-of-fit  test  (P<0.05 implies that the
model does not calibrate perfectly) (29). The RPRS system
was then studied to predict LN metastasis using Chi-square
test. P<0.05 was considered to be statistically significant.

Internal and external validation of RPRS

The  RPRS  was  first  validated  using  1,000  resampled
bootstrapping  techniques  based  on  the  development
cohort. Furthermore, we also assessed the validation of the
RPRS using the independent validation cohort  with C-
index and calibration curve.

Incremental predictive value of radiomics-based classifier
in RPRS for LN metastasis

The  incremental  predictive  value  of  radiomics-based
classifier in RPRS, compared with clinical model which was
established only with clinicopathological risk factors for
predicting  LN  metastasis,  was  assessed  with  the  net
reclassification improvement (NRI) (30,31). NRI is a novel
prospective measure which quantifies the correctness of
upward  and downward  reclassification  or  movement  of
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predicted probabilities as a result of adding a new marker.
A value of negative percentage indicates a net worsening in
risk  classification  for  patients  with  LN metastases.  To
demonstrate the incremental value of RPRS to the PET-
CT node staging, conventional CT-based LN status, and
other  clinicopathological  risk  factors  for  individualized
assessment of LN metastasis, we selected those 277 patients
with  PET-CT data  for  comparing the  predictive  value.
The  discrimination  performance  was  assessed  with  C-
index.

Results

The  clinical  and  laboratory  data  of  development  and

validation cohort are listed in Table 1. In total, 423 patients
with median age of 61 (range: 21−83) years old formed the
development  cohort,  while  another  294  patients  with
median  age  of  61  (range:  19−83)  years  old  formed
independent  validation  cohort.  Median  numbers  of
resected nodes were 20 (range: 5−69) in the development
cohort and 18 (range: 7−50) in the independent validation
cohort. Positive LN metastasis was 31.0% and 32.0% in
the  development  and  validation  cohorts,  respectively.
There were no significant differences between two cohorts
in  clinical  characteristics  (P>0.05,  Table  1)  and  LN
prevalence (P=0.776).

In  univariate  analyses,  factors  that  were  significantly

Table 1 Baseline demographics and clinical characteristics of study population

Characteristics All
(N=717)

Development cohort
(n=423)

Validation cohort
(n=294) P**

All LN-positive  LN-negative P* All LN-positive  LN-negative P*

Age (year)

　Median (IQR) 61
(53, 67)

61
(54, 67)

59
(50, 65)

62
(55, 68) 0.002 61

(52, 67)
58

(52, 64)
62

(53, 69) 0.023 0.829

　>60 [n (%)] 365
(50.9)

214
(50.6)

51
(38.9)

163
(55.8) 0.001 151

(51.4)
38

(40.4)
113

(56.5) 0.010 0.839

Gender [n (%)]

　Male 425
(59.3)

258
(61.0)

79
(60.3)

179
(61.3) 0.846 167

(56.8)
59

(62.8)
108

(54.0) 0.157 0.261

　Female 292
(40.7)

165
(39.0)

52
(39.7)

113
(38.7)

127
(43.2)

35
(37.2)

92
(46.0)

Smoking history [n (%)]

　Yes 246
(34.3)

152
(35.9)

43
(32.8)

109
(37.3) 0.372 94

(32.0)
36

(38.3)
58

(29.0) 0.111 0.272

　No 471
(65.7)

271
(64.1)

88
(67.2)

183
(62.7)

200
(68.0)

58
(61.7)

142
(71.0)

Tumor diameter (cm)

　Median (IQR) 25
(18, 38)

26
(19, 37)

35
(26, 48)

23
(17, 32) <0.0001 24

(17, 38)
34

(22, 44)
23

(14, 32) <0.0001 0.146

　>3 [n (%)] 265
(37.0)

160
(37.8)

78
(59.5)

82
(28.1) <0.0001 105

(35.7)
51

(54.3)
54

(27.0) <0.0001 0.565

Tumor location [n (%)]

　Peripheral 575
(80.2)

340
(80.4)

73
(55.7)

267
(91.4) <0.0001 235

(79.9)
63

(67.0)
172

(86.0) <0.0001 0.883

　Central 142
(19.8)

83
(19.6)

58
(44.3)

25
(8.6)

59
(20.1)

31
(33.0)

28
(14.0)

CT-based LN status [n (%)]

　Negative 392
(54.7)

231
(54.6)

44
(33.6)

187
(64.0) <0.0001 161

(54.8)
21

(22.3)
140

(70.0) <0.0001 0.968

　Positive 325
(45.3)

192
(45.4)

87
(66.4)

105
(36.0)

133
(45.2)

73
(77.7)

60
(30.0)

IQR, inter-quartile range; CT, computed tomography; LN, lymph node; *, P value was derived from univariable association analyses
between each of clinicopahologic variables and LN status; **, P value was derived from comparison of patient characteristics
between development cohort and validation cohort.
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associated  with  LN  metastasis  were  age  group,  tumor
diameter,  tumor  location,  and  CT-based  LN  status
(P<0.05, Table 1), except for gender and smoking history
(both P>0.05, Table 1).

Inter-  and intra-observer  reproducibility  of  radiomics
features extraction

There were no statistically significant differences in the
radiomics  features  between  Reader  1’s  twice  features
extractions, nor between Reader 1’s first and Reader 2’s
extraction  (P  values  ranged  from 0.753  to  0.807).  The
interobserver ICCs calculated on the basis of Reader 1’s
and Reader 2’s first-extracted features ranged from 0.751 to
0.921,  and  the  intraobserver  ICCs  calculated  based  on
Reader 1’s twice feature extractions ranged from 0.773 to
0.861. Therefore, all data analysis was based on the features

extracted by Reader 1.

Radiomics-based classifier construction and corresponding
discrimination performance

After filtering by correlation, 92 radiomics features which
showed independence from other features were used for
subsequent  analysis.  A  correlation  mapping  for  this
radiomics  features  was  showed  in  Figure  3.  Then  13
radiomics features with non-zero coefficients in LASSO
logistic  regression model  were  selected.  The radiomics
signature was constructed based on the regression analysis
with a radiomics score calculated for each patient (Table 2).

After radiomics signature construction, Mann-Whitney
U test showed statistically significant association between
the  LN status  and  the  radiomics  signature  both  in  the
training  and  validation  cohort  (all  P<0.0001).  For  the

 

Figure 3  Correlation mapping for those radiomics features which were independent from other features.  All  Pearson’s correlation
coefficients among the features were not higher than 0.9.
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discrimination performance, radiomics signature yielded a
C-index  of  0.734  [95%  confidence  interval  (95%  CI):
0.729−0.739],  Additionally,  the  C-index  in  the  internal
validation was 0.734. In the independent validation cohort,
the  discrimination  performance  of  radiomics  signature
yielded a C-index of 0.734 (95% CI: 0.727−0.741).

The optimum cutoff of radiomics signature scores was
generated  by  ROC  with  value  of  −1.048,  then  the

radiomics-based classifier was constructed. We included
those patients with a score lower than the cutoff into the
low-risk  group  and  those  with  a  score  higher  than  the
cutoff into the high-risk group.

Derivation of RPRS

Table 3 shows the results of multivariate analysis performed
in  the  development  cohort.  By  multivariable  logistic
analysis, radiomics-based classifier and the following four
independent clinical variables were found to be significant
in  predicting  risk  of  LN  metastasis:  age  group,  tumor
diameter, tumor location, and CT-based LN status. These
four clinical variables remained independent factors in the
clinical model (all P<0.05).

On the  basis  of  findings  in  Table  3,  a  working  score
RPRS was devised. RPRS was the sum of scores for five
parameters: radiomics-based classifier (low-risk =0, high-
risk =3), age group (≤60 years old =1, >60 years old =0),
tumor  diameter  (≤3  cm =0,  >3  cm =1),  tumor  location
(peripheral  =0,  central  =3),  and  CT-based  LN  status
(negative=0,  positive=1)  (Table  4).  The  summary  score
corresponding to a predicted probability of LN metastasis
is shown in Figure 4A. The sum of all values yielded a score
for each patient that ranged from 0 to 9. We applied RPRS
for classifying patients into five risk categories (Table 4).
RPRSs of 0−3, 4−5, 6, 7−8, and 9 were associated with very
low (0−20%), low (21%−40%), intermediate (41%−60%),
high (61%−80%), and very high (81% to 100%) risks of
LN involvement, respectively.

Performances of RPRS

The calibration curves of RPRS and clinical model both in

Table 2 Radiomics features selected in LASSO regression analysis

Intercept and radiomics
features Coefficients

Intercept −0.893

Contrast_135_1_0 0.099

Contrast_90_2_0 0.011

Correlation_45_3_0 −0.178

Homogeneity_135_2_0 0.241

Homogeneity_90_3_0 0.076

Gln_45_0 −0.145

His_10_Mean_0 0.075

Entropy_0_3_1.0 −0.007

His_25_SD_1.0 −0.060

Correlation_0_1_1.5 −0.186

Entropy_0_3_1.5 −0.015

His_10_SD_2.0 0.091

Gabor_2_4 −0.095

Thirteen radiomics features with non-zero coefficients in the
least  absolute  shrinkage  and  selection  operator  method
(LASSO) logistic regression model were selected. The radiomics
signature was constructed based on the regression analysis
with  a  radiomics  score  calculated  for  each  patient.  The
formula to calculate the score of radiomics signature is Score =
Intercept  + Coefficient  × Radiomics features.  The details of
radiomics features were described in Supplementary Table S1.

Table 3 Logistic regression prediction models developed in development cohort

Variables
RPRS Clinical model

Coefficient OR (95% CI) P Coefficient OR (95% CI) P

Age group −0.659 0.517
(0.316, 0.846)   0.009 −0.622 0.537

(0.333, 0.866)   0.011

Tumor diameter   0.581 1.788
(1.077, 2.969)   0.025   0.750 2.117

(1.294, 3.463)   0.003

Tumor location   1.624 5.073
(2.835, 9.079) <0.001   1.742 5.710

(3.219, 10.128) <0.001

CT-based LN status   0.678 1.970
(1.184, 3.276)   0.009   0.923 2.517

(1.543, 4.107) <0.001

Radiomics-based classifier   1.514 4.546
(2.347, 8.806) <0.001 NA NA NA

CT, computed tomography; LN, lymph node; RPRS, radiomics-based predictive risk score; OR, odds ratio; 95% CI, 95% confidence
interval; NA, not applicable.
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the development and validation cohort were satisfactory
(Figure  5),  which  showed  good  agreement  between
prediction and actual observation. The Hosmer-Lemeshow
test  yielded  a  nonsignificant  statistic  both  in  the
development and validation cohort  (RPRS: P=0.622 for
development  cohort  and P=0.086 for  validation cohort;
clinical  model:  P=0.546  for  development  cohort  and
P=0.084 for validation cohort).

For  the  discrimination  performance,  RPRS  showed
improved discrimination compared with clinical model [C-
index:  0.825 (95% CI:  0.821−0.829)  vs.  0.785 (95% CI:
0.780−0.790);  P=0.005]  with  NRI  of  0.711  (95%  CI:
0.555−0.867),  which  was  confirmed  in  the  internal
validation  (C-index:  0.817  vs .  0.777).  As  for  the
independent  validation,  performance  of  RPRS  still
outperformed the clinical model [C-index: 0.810 (95% CI:

0.804−0.816) vs. 0.777 (95% CI: 0.771−0.783); P=0.001]
with NRI of 0.425 (95% CI: 0.187−0.664).

Subgroup analysis for patients with PET-CT data

Compared  with  either  the  conventional  CT-based  LN
status (C-index: 0.729; 95% CI: 0.723−0.35), clinical model
(C-index: 0.802; 95% CI: 0.796−0.808), or PET-CT status
(C-index: 0.745; 95% CI: 0.739−0.751), RPRS showed a
better discrimination capability (C-index: 0.822; 95% CI:
0.816−0.828) in cohort of 277 patients with PET-CT data
(P<0.05 for each comparison).

RPRS for application in clinical practice

For application in clinical practice, RPRS was presented as
a chart in Figure 4B. The cells of the chart were classified
into  five  groups  according  to  ranges  of  the  risk  of  LN
metastasis. For each cell of the chart, the risk for a patient
with values of each predictor was estimated. For example, a
56-year-old patient  with a  radiomics  signature  score  of
0.136, tumor diameter of 2 cm, positive value of CT-based
LN status, and central of tumor location has a 61%−80%
probability of LN involvement.

Discussion

In this study, we developed and validated a simple weighted
novel score RPRS composed of radiomics-based classifier
and  clinicopathological  variables  for  preoperative
individualized prediction of LN metastasis in patients with
NSCLC. To our knowledge, this is the first study of CT-
based  radiomics  clinical  scoring  system  using  a  novel
approach for evaluating risk of LN metastasis in NSCLC.
Patients  with  RPRSs  of  0−3,  4−5,  6,  7−8,  and  9  had
distinctly very low (0−20%), low (21%−40%), intermediate
(41%−60%), high (61%−80%), and very high (81%−100%)
risks  of  LN  involvement,  respectively.  RPRS  had
successfully stratified patients into a corresponding risk of
LN metastasis. Additionally, the RPRS outperformed the
traditional clinicopathological variables, conventional CT-
based LN status, and PET-CT status.

For the field of radiomics, intratumoral heterogeneity
has been suggested to correlate with the clinical outcomes
and the construction of a radiomics signature combining a
panel of individual features as a prognostic imaging marker
and may be a superior choice as it has now been regarded as
a  potential  powerful  method to facilitate  better  clinical
decision  making  (10,12,13,15-17,32).  In  this  study,  we

Table 4 Working RPRS for predicting risk of LN involvement

Score component Score

Age group (year)

　≤60 +1

　>60   0

Tumor diameter (cm)

　≤3   0

　>3 +1

Tumor location

　Peripheral   0

　Central +3

CT-based LN status

　Negative   0

　Positive +1

Radiomics-based classifier

　Low-risk   0

　High-risk +3
Total
(sum of score for each component) 9 (maximum)

Total RPRS Risk of LN
metastasis

　0−3 Very low (0−20%)

　4−5 Low (21%−40%)

　6 Intermediate
(41%−60%)

　7−8 High (61%−80%)

　9 Very high
(81%−100%)

Sum score is obtained by adding scores. RPRS, radiomics-
based predictive risk score; LN, lymph node; CT, computed
tomography.
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analyzed  591  radiomics  features  to  assess  intratumoral
heterogeneity  quantitatively  based  on  the  contrast-
enhanced CT image with the corresponding radiomics-
based  classifier  constructed.  The  identified  classifier
consisted  of  13  selected  radiomics  features,  which  are
consisted with results of recent studies of risk stratification
(10,15,16).  The  function  of  the  score  of  the  radiomics
signature used in our classifier  has  been investigated in
previous studies (15,16,32,33). The developed radiomics-
based classifier  showed significant  association with  LN
metastasis, which successfully stratified patients into low-
risk and high-risk group (P<0.0001).

Although  no  published  studies  found  age  to  be  an
independent factor for LN status of NSCLC, in our study,
age group was found to be significant association with LN
status in both univariate analyses and multivariate analyses.
Therefore, we kept age group as a candidate factor in the
process of model development. In addition, preoperative
CT-based LN status  which can be  easily  obtained,  was
showed to  be  associated with  actual  LN status  and was
identified as an independent risk factor for the prediction
of LN status.

The  strengths  of  this  study  are  that  the  final  RPRS
system  includes  radiomics-based  c lass i f ier  and
clinicopathological  parameters,  which stratifies  patients
into  categories  at  differing  risk  of  LN metastasis.  The
observed proportion of  LN positivity  was  satisfactorily
consisted with the predicted probability according to RPRS
in both the development and validation cohort in clinical

practices.  Unlike the traditional preoperative N staging
methods,  radiomics  approach  offers  a  robust  way  to
characterize the intra-tumor heterogeneity noninvasively.
Our result showed that the RPRS outperformed the clinical
model not only in the development cohort, but also in the
validation  cohort.  Both  physicians  and  patients  could
perform a preoperative individualized prediction of the risk
of  LN metastasis  using this  easy-to-use clinical  scoring
system.

The present study has its limitations, as even though the
analysis examines independent validation, it was performed
in a single institute in one country. Risk factors for LN
metastasis may be different in other countries because of
the heterogeneity in CT image acquisition and clinical data
collection in different institutions. However the available
development data set is sufficiently large, splitting by time
and developing a model using data from one period and
evaluating its performance using the data from the other
period (temporal validation) is a stronger approach in our
study  (28,29).  Temporal  validation  is  a  prospective
evaluation of a model, independent of the original data and
development process according to the TRIPOD statement
(Transparent  Reporting  of  a  multivariable  prediction
model for Individual Prognosis Or Diagnosis) (29), which
can be considered external in time and thus deemed as a
better alternative way to assess the generalizability of the
prediction model. Furthermore, the RPRS constructed in
our  study  was  remaining  a  satisfactory  prediction
performance in the independent validation cohort, which

 

Figure 4 Presentation and visualization of radiomics-based predictive risk score (RPRS). (A) Probability of lymph node (LN) metastasis
assessment in resectable non-small cell lung cancer (NSCLC) based on RPRS. X-axis presents the sum score; Y-axis presents the predicted
probability of LN metastasis corresponded to the sum score from Table 4. After calculating a sum score for a patient, this graph can be used
to determine the corresponding predicted probability with the 95% confidence interval (95% CI); (B) A graphical chart to obtain predicted
individual probability for LN metastasis based on RPSR. X-axis presents the values of tumor diameter, computed tomography (CT)-based
LN status, and radiomics-based classifier; Y-axis presents the values of tumor location and age group status.
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justified that  the RPRS hold great  potential  for clinical
application in prediction of LN metastasis in patients with
resectable NSCLC.

A further limitation is that whole-tumor analysis was not
performed in this study. Instead, radiomics features were
extracted from the largest cross-sectional area of tumor.
Theoretically, whole-tumor analysis may represent more
diverse  component  of  tumor heterogeneity  by avoiding
sampling errors that may result from single slice selection.
However, the 3D whole tumor analysis is computationally
more complex and time-consuming. Previous studies have
reported that there was no significant difference between
texture result of 2D and 3D analysis, with the conclusion
that a single slice analysis being adequate (34). Therefore,
we  only  delineated  the  largest  cross-sectional  area  for
features extraction. Further investigations are warranted to
exploring the potential usefulness of 3D radiomics analysis

for  the  prediction  of  LN  metastasis  in  patient  with
resectable NSCLC.

Conclusions

RPRS  integrated  radiomics-based  classif ier  and
clinicopathological factors, can serve as a novel noninvasive
and  easy-to-use  tool  to  facilitate  the  preoperatively
individualized prediction of LN metastasis in patient with
resectable NSCLC.
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 Supplementary materials

Algorithm for calculation of radiomics features

All computed tomography (CT) images were gathered for tumor segmentation. The contrast-enhanced CT image data were
retrieved from the institution archive and were loaded to personal laptop for further analysis. The radiomics features analysis
was applied to the pretreatment CT using in-house radiomics analysis software with algorithms implemented in Matlab
2014a  (Mathworks,  Natick,  USA).  Primary  tumors  of  all  eligible  patients  were  manually  segmented by  experienced
radiologists with more than 10 years of clinical experience in chest CT interpretation, thus a region of interest (ROI) was
delineated initially around the tumor outline for the largest cross-sectional area. The ROI was further refined by excluding
air area with a thresholding procedure that removed from analysis any pixels with attenuation values below -50 HU and
beyond 300 HU.

A total of 591 quantitative radiomics features were extracted from each chest contrast-enhanced CT images, which included
tumor intensity, texture features, wavelet features, and Gabor features. The features of tumor intensity and texture features
were extracted without/after a filtration of the Laplacian of Gaussian filter (filter parameter = 1.0, 1.5, 2.0, 2.5, respectively)
from the CT image. Wavelet features and Gabor features focus the features on different frequency ranges within the
tumor pixels.

Laplacian of Gaussian filtration for gray-level histogram features and texture features

r2GThe Laplacian of Gaussian filter ( ) distribution is given by

r2G (x; y) =
¡1
¼¾4

µ
1¡ x2 + y2

2¾2

¶
e¡
³
x2+y2

2¾2

´

x,y denote the spatial coordinates of the pixel and σ is the value of filter parameter.

Gray-level histogram features
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5) Skewness

skewness =
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X (i)¡ ¹X
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X(i) indicates the intensity of gray level i, N denotes the sum of pixels in the image. β indicates the top percentage of the
histogram curve, which could be 50%, 25%, and 10%, M denotes the number of pixels in the histogram on the percentage of
(1-β).

Gray-level co-occurrence matrix features

1) Contrast

contrast =
N gX
i=1

N gX
j=1

ji ¡ j j2 P (i; j )

2) Correlation
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4) Energy

energy =
N gX
i=1

N gX
j=1
[P (i; j )]2

5) Homogeneity
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1+ ji ¡ j j2

A matrix P(i,j) to indicate the relative frequency with intensity values of two pixels (i and j) at the three distances (δ=1,2,3) and
in four directions (0°，45°，90°，135°). Ng is the number of discrete intensity levels in the image;x,y denote the spatial
coordinates of the pixel. μ, μx(i), μy(j) is the mean of P(i,j),Px(i),Py(j), and σx(i), σy(j)is the standard deviation of Px(j), Py(j),
respectively.

Gray-level run-length matrix features

1) Short run emphasis (SRE)
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4) Run length non-uniformity (RLN)
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7) High gray level run emphasis (HGLRE)
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A gray level run is defined as the length in number of pixels, of consecutive pixels that have the same gray level value. In a
gray level run length matrix , the (i,j)th element describes the number of times j a gray level i appears consecutively in
the direction specified by θ (0°，45°，90°，135°), and Ng is the number of discrete gray level intensities. Nr is the number of
different run lengths, and Np is the number of pixels in the image.

Wavelet features

Wavelet transform effectively decouples textural information by decomposing the original image, in a similar manner as
Fourier analysis, in low- and high-frequencies. In this study, three-level discrete wavelet transform was to applied to each CT
image, which decomposes the original image X into 9 decompositions.

Gabor features

Gabor filter, named after Dennis Gabor, is a linear filter used for edge detection, which is usually used in the field of face
recognition. It could select valuable image information in different directions and different scales. In this study, we used four
directions and three scales to extract Gabor features. Mean was used to construct the Gabor feature group.

M ean (Gabor) =
1
N

XN

i=1
X (i)

Nindicates the sum of image pixels and the X(i) presents the intensity i of on the Gabor image.
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R packages used

The LASSO logistic regression model was done using the “glmnet” package. The multivariable logistic regression analysis
and calibration plots were done with the “rms” package. The calculation of C-index and net reclassification index (NRI) were
performed with the “Hmisc” package. Internal validation of the C-index was performed with the “rms” package.

Table S1 Radiomics features extracted

Type Detail

Gray-level histogram
skewness_σ
his_mean_σ
his_β _ mean _σ

kurtosis_σ
his_SD_σ
his_β _SD _σ

Gray-level co-occurrence matrix
contrast_α_γ_σ
energy_α_γ_σ
entropy_α_γ_σ

correlation_α_γ_σ
homogeneity_α_γ_σ

Gray-level run-length matrix

SRE_α_σ
GLN_α_σ
RP_α_σ
HGLRE_α_σ
SRHGLE_α_σ
LRHGLE_α_σ

LRE_α_σ
RLN_α_σ
LGLRE_α_σ
SRLGLE_α_σ
LRLGLE_α_σ

Wavelet wavelet_ε
Gabor gabor_γ_α

σ represents the filter value applied, which could be 1.0, 1.5, 2.0 and 2.5. When σ=0, features were extracted without filtration;
α represents the considered direction, which could be 0°, 45°, 90° and 135°; β represents the top percentage of the histogram
curve, which could be 50%, 25% and 10%; γ represents the considered distances, which could be 1, 2, 3.
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