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Abstract

Background: Ethnic differences in testicular cancer rates (TCRs) are recognized internationally. Cannabis is a known
risk factor for testicular cancer (TC) in multiple studies with dose-response effects demonstrated, however the
interaction between ancestral and environmental mutagenic effects has not been characterized. We examined the
effects of this presumed gene-environment interaction across US states.

Methods: State based TCR was downloaded from the Surveillance Epidemiology and End Results (SEER) website via
SEERStat. Drug use data for cigarettes, alcohol use disorder, analgesics, cannabis and cocaine was taken from the
National Survey of Drug Use and Health a nationally representative study conducted annually by the Substance
Abuse and Mental Health Services Administration (SAMHSA) with a 74.1% response rate. Cannabinoid
concentrations derived from Drug Enforcement Agency publications. Median household income and ethnicity data
(Caucasian-American, African-American, Hispanic-American, Asian-American, American-Indian-Alaska-Native-
American, Native-Hawaiian-Pacific-Islander-American) was from the US Census Bureau. Data were processed in R
using instrumental regression, causal inference and multiple imputation.
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Results: 1975–2017 TCR rose 41% in African-Americans and 78.1% in Caucasian-Americans; 2003–2017 TCR rose
36.1% in Hispanic-Americans and 102.9% in Asian-Pacific-Islander-Americans. Ethnicity-based scatterplot-time and
boxplots for cannabis use and TCR closely mirrored each other. At inverse probability-weighted interactive robust
regression including drugs, income and ethnicity, ethnic THC exposure was the most significant factor and was
independently significant (β-estimate = 4.72 (2.04, 7.41), P = 0.0018). In a similar model THC, and cannabigerol were
also significant (both β-estimate = 13.87 (6.33, 21.41), P = 0.0017). In additive instrumental models the interaction of
ethnic THC exposure with Asian-American, Hispanic-American, and Native-Hawaiian-Pacific-Islander-American
ethnicities was significant (β-estimate = − 0.63 (− 0.74, − 0.52), P = 3.6 × 10− 29, β-estimate = − 0.25 (− 0.32, − 0.18),
P = 4.2 × 10− 13, β-estimate = − 0.19 (− 0.25, − 0.13), P = 3.4 × 10− 9). After multiple imputation, ethnic THC exposure
became more significant (β-estimate = 0.68 (0.62, 0.74), P = 1.80 × 10− 92). 25/33 e-Values > 1.25 ranging up to 1.07 ×
105. Liberalization of cannabis laws was linked with higher TCR’s in Caucasian-Americans (β-estimate = 0.09 (0.06,
0.12), P = 6.5 × 10− 10) and African-Americans (β-estimate = 0.22 (0.12, 0.32), P = 4.4 × 10− 5) and when dichotomized
to illegal v. others (t = 6.195, P = 1.18 × 10− 9 and t = 4.50, P = 3.33 × 10− 5).

Conclusion: Cannabis is shown to be a TC risk factor for all ethnicities including Caucasian-American and African-
American ancestries, albeit at different rates. For both ancestries cannabis legalization elevated TCR. Dose-response
and causal relationships are demonstrated.

Keywords: Testicular cancer, Cannabis, Other drugs, Ethnicity, Pathways, Mechanisms, Casual inference

Background
Testicular Cancer (TC) is the commonest cancer in men
aged 15–44 years, and rates have increased two to three
times in many nations in recent decades [1]. Indeed TC
is the leading cause of individual ‘years of life lost’ of any
adult cancer [1].
Both genetic and environmental factors are believed to

be significant, with 25% of the risk ascribed to genetic
factors [1, 2]. This includes eight to ten- fold elevation
in risk of brothers of cases, and four- to six- fold elevation in
their sons [1]. 2–5% of cases are bilateral [1, 2]. Well-
described differing rates by ethnicity have also been reported
from many continents including Europe, New Zealand and
USA [3–5], with a twenty-fold variation in TC rates (TCRs)
in nationals of northern Europe (Denmark and Norway)
compared to various African nations [1, 5, 6].
Data from the US SEER*Explorer website reveals that

the all-age all-stages age-adjusted TCR in American
males rose 83.45% from 3.4415 to 6.3136 / 100,000 in
the years 1976–2017 [3]. The commonest age for TC is
in males aged 30–34 years which is represented in the
official statistics by the 15–39 year age group whose age-
adjusted rate rose 92.16% from 6.29 to 12.09 /100,000
from 1975 to 2017 across all ethnicities combined [3].
However, these US TCR trends for “all ethnicities

combined” conceal vastly different rates of TCR amongst
different ethnic groups. For example amongst the US
15–39 year age-group TCR for Caucasian-Americans vs.
African-Americans for 1975 was 7.01, and 3.09/100,000
respectively. However, this TCR for each ethnic group
has not remained static over time.
Amongst the 15–39 year age-group the TCR amongst

Caucasian-Americans rose 111.61% from 7.01 to 14.81 /

100,000 across the years 1975–2016. In contrast,
amongst African-Americans in this age group the TCR
fell 14.24% from 3.09 to 2.65/100,000. Accordingly
across this time-period the mean TCR in Caucasian-
Americans increased to a mean of 11.7 (+ 0.3374
S.E.M.), whereas in African Americans decreased to 2.82
(+ 0. 0.0737 S.E.M.) / 100,000. That is the rate of TCR
amongst African Americans was decreased to 24.05% of
the rate in Caucasian-Americans suggesting a strong
gene-environment interaction. SEER*Explorer data show
that the rate amongst Caucasian-Americans 15–39 years
rose 3.7% annually 1975–1987 and 1.0% from 1987 to
2017 [3]. No annual percent change was listed on this
site for African-American ancestry.
Interestingly the nature of the different genetic risk be-

tween African-Americans and Caucasian-Americans has
been precisely defined as being due to a differing allelic
frequency at an anomalous P53 response element on
Chromosome 9 which drives cellular proliferation rather
than the usual suppression of growth-related activities in
cells experiencing genotoxic stress which is more gener-
ally associated with P53 activation [7, 8]. This effect is
described further in the Discussion.
Curiously, international reports include documenta-

tion of very different case rates within the same ethnic
group further indicating a strong role for environmental
components in TC, with current data suggesting the
prospect of one or more gene-environment interactions
[7, 9]. For example some ethicities in neighbouring na-
tions across Europe show significantly different rates of
TC [1, 5, 6]. Similarly, geographic TC clusters amongst
some ethnic populations have also been reported in
northern Netherlands [10], while TCR in the Hispanic-

Reece and Hulse BMC Pharmacology and Toxicology           (2021) 22:40 Page 2 of 32



American community has been reported as rising
most rapidly in recent years [1]. Moreover, a man of
Caucasian descent who moves from a low to a high
incidence area assumes the risk of the high incidence
area in the following generation [1]. This is consistent
with data suggesting TC risk is 25% genetic [1, 2],
and 75% environmental [7, 9].
It is generally agreed that TC likely results from in

utero germ cell anomalies which then become activated
by the hormonal surge of adolescence. Important classi-
fication and treatment insights have flowed from the in-
creasing recent elucidation of the biology of testicular
cancer and its close relationship to disordered primor-
dial germ cell and spermatogonial development often
from antenatal germ cell neoplasia in situ (GCNIS)
[1, 11–14]. For example, on occasion immune checkpoint
inhibition with PD-L1 inhibitors is recommended in
selected patients [14].
That higher potency varieties of cannabis have been

increasingly used in many countries over the past de-
cades, couple with published data that cannabis expos-
ure is both genotoxic [15], and results in genomic and
chromosomal damage [13, 16] raises the possibility that
cannabinoid exposure in utero may be a risk factor for
TC.
However, notwithstanding the role of genetics and

likely in-utero cannabis exposure, all four studies to
examine the association of TC and cannabis have noted
that personal cannabis use is linked with rising testicular
cancer rates [17–20]. Importantly, dose-response effects
have been described [17–19] which was also confirmed
in meta-analysis [6]. Two meta-analyses have been pub-
lished on this data which found pooled odds ratios for
exposure of 2.59 (95%C.I. 1.60, 4.19) for chronic, current
and frequent cannabis use [6] and 1.71 (1.12, 2.60) [21].
Thus while TC may have an genetic component and is

believed to arise a result of in utero germ cell anomalies
in which cannabis exposure may be a factor, all four
studies linking testicular cancer with cannabis use de-
scribe personal use in the preceding twenty years. This
suggests both that exposure through personal use may
be an important environmental component and that the
usual pathophysiological processes of testicular cancero-
genesis are greatly accelerated by personal cannabinoid
exposure. Multiple pathways and mechanisms for canna-
bis damage to the primordial germ cell are reviewed in
the Discussion section.
This evident temporal compression of the natural

history of testicular carcinogenesis by cannabis exposure
may offer further pathogenetic insights into the acceler-
ated development of this tumour type.
As cannabis use has been linked with TCR in all four

studies to examine the association [17–20], and as
several reviews of TC epidemiology have noted its likely

significance [1, 9, 13, 14, 22], it seemed important to
examine the association between cannabis and testicular
cancer across both space and time, along with ethnicity
and other drug and cannabis exposures. It was also
important to determine if any potential relationship
satisfied the quantitative criteria for causality in all
ethnicities. As data on known risk factors such as crypt-
orchidism, inguinal herniae, industrial pollution and sed-
entary lifestyles across space and time was not available
to the present investigators it was not possible to include
these covariates in the present analysis. The USA formed
a suitable setting for this epidemiological investigation as
the required data on TCR and other drug and cannabis
use by State and different ethnicities over time is readily
publicly available.

Methods
Data
National data on age-adjusted TCR, age-specific TCR and
ethnic TCR were downloaded from the SEER*Explorer
website [3]. State based data both as overall age-adjusted
TCR and by ethnicity was downloaded using the SEERStat
software from the National Program of Cancer Registries
(NPCR) and Surveillance Epidemiology and End Results
(SEER) Incidence File from the US Cancer Statistics Public
Use Database, Submission 2001–2017 [23]. Drug use data
for the years 2003–2017 was taken from the Restricted
Use Data Analysis System (RDAS) of the Substance Abuse
and Mental Health Data Archive (SAMHDA) of the
National Survey of Drug Use and Health (NSDUH) from
the Substance Abuse and Mental Health Services Admin-
istration (SAMHSA) [24]. The major drugs of interest
were last year cocaine use (Cocaine), last year non-
medical use of pain relievers (Analgesics), last month
cigarette use (Cigarettes) and last year abuse or depend-
ence on Alcohol (Alcohol Use Disorder, AUD). Data was
supplemented by median household income and state-
based ethnicity data from the US Census bureau focussing
on Caucasian-American, African-American, Hispanic-
American, Asian-American, American Indian / Alaskan
Native (AIAN) -American and Native Hawaiian / Pacific
Islander (NHPI) -American ethnicities. This ethnicity data
was paired as closely as possible with the ethnicity data
from the SEER database which sometimes used a slightly
different categorization system. Cannabinoid concentra-
tion data was obtained from publications of Drug Enforce-
ment Agency listing the various concentrations found in
Federal seizures [25–27]. Data relating to the legal status
of cannabis in US states was derived from an internet
search [28].

Derived data
Data on intensity of use of cannabis was taken from a
variable called “mrjmdays” denoting the number of days
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in the past month for which cannabis had been used.
The responses to this variable are categorized as 0, 1–2,
3–5, 6–19 and 20–30 days per month. For each ethnicity
and for each year of the NSDUH the percentage
responding in each category was multiplied by the mean
number of days in that category and summed to provide
an ethnic cannabis use score for that year. This ethnic
cannabis use intensity score was then multiplied by the
percent of cannabis used last month in that state and
the concentration for that year of THC in Federal
seizures to provide an estimate of ethnic-specific THC
exposure. State-based cannabinoid concentrations were
estimated as the product of the concentration of various
cannabinoids in Federal seizures multiplied by the last
month cannabis use in each State.

Statistics
Data was processed using R version 4.0.2 and R-Studio
1.3.1093 in October 2020. Data was read in and reconfi-
gured using dplyr from the tidyverse suite [29]. Maps
were drawn in ggplot2, sf and RColorBrewer [30–32].
Graphs drawn in Microsoft Excel, ggplot2 and lattice
[30, 33]. Data was log transformed as indicated by the
results of the Shapiro-Wilks test. All regression models
were manually serially reduced by elimination of the
least significant term as is performed in the classical
technique of model reduction. Mixed effects was con-
ducted using the nlme package [34]. Two-step instru-
mental variable regression was conducted using the
ivreg function from the AER package [35].
Inverse probability weighting was calculated from the

ipw package [36] and was used to control for cannabis
exposure across all the groups by other substance expos-
ure. This was applied in mixed effects repeated mea-
sures, two-step instrumental variable regression and
robust regression. Each of these forms of multivariable
regression was used for different purposes. Mixed effects
and instrumental variable models all provided model
standard deviations from which e-Values could be
calculated. Robust generalized linear regression from the
survey package was used to perform robustified regres-
sion [37]. Mixed effects models with state as the random
effect were used to account for the repeated measures
nature of the data. Instrumental variable regression was
used to test directly for cannabinoid effects underlying
the effects of the primary covariates as described in the
Results section.
SEER data is suppressed for cell counts less than 15 or

very low rates. Hence a high rate of missing data was
noted particularly for TCR by ethnicity. The problem
was most marked for ethnic minorities. This issue was
addressed by multiple imputation by chained equations
using the mice package in R [38]. In view of the size of
the missing data problem 256 imputations were used

each with 20 iterations. The initial seed used was 59.
The imputation method was by the classification tree
(“cart”) method which provided the best fit for the eth-
nically grouped data. Linear models were used to investi-
gate this data. The results from models were pooled
appropriately using Rubin’s rules. Using these techniques
the fraction of missing information obtained in simple
linear models regressing TCR against ethnic THC expos-
ure was reduced to 2.6%.
e-Values were calculated using the e-Value algorithms

of the EValue package [39].
All t-tests were two sided. P < 0.05 was considered

significant.

Data sharing and availability
Data has been deposited in the Mendeley data repository
along with the software programming code in R and
may be found at URL https://doi .org/10.17632/
yxy3dg2wt6.1.

Ethics
All methods were carried out in accordance with rele-
vant guidelines and regulations. This study was approved
by the Human Research Ethics Committee of the
University of Western Australia on 7th January 2020
RA/4/20/7724.

Results
The outline plan for the results section is as follows. We
first present the univariate ethnic and testicular cancer
rate data upon which the analysis rests. We then exam-
ine various bivariate relationships including different
ethnic time trends. Various forms of multivariable re-
gression are used to determine the impact of multivari-
ate adjustment on the bivariate relationships described.
All multivariable models are inverse probability weighted
and E-Values are freely used to allow formal causal in-
ferences to be drawn both qualitative and quantitatively.
Multiple imputation is employed to complete ethnic
TCR data where missing data is severely problematical.
Finally the effects of legal status on the TCR in various
ethnicities is considered and investigated by the tools of
causal inference. Each of these steps in this procedure
has several component steps which are included along
the way as is mandatory in a formal presentation of such
analyses.

Univariate data
Figure 1 shows map-graphically the distribution of
the age-adjusted TCRs across USA states over time
2001–2017 across all ages. The maps are notable
because cases seem to be most concentrated in the
upper midwest and northeast and to be negatively
associated with the south-eastern corner.
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Figure 2 sets out in a similar format the ethnic com-
position of USA states as the log (Caucasian-American)
population.
Figure 3 does the same for the African-American

population.
When the colour coding for Fig. 3 is reversed, as

shown in Fig. 4, the map resembles Fig. 1 of the TCRs
rather closely. This is consistent with the above de-
scribed preponderance of cases in the Caucasian-
American community. One presumes that in these maps
ethnicity is acting as a surrogate marker for TC
incidence.
Figure 5 presents the log of the Asian-American ethnicity.
Figure 6 presents the log of the Asian-Pacific

Islander -American ethnicity. Hawaii is noted to be a
particular hot spot.

Figure 7 shows the log of the Hispanic-American
population density. It seems to be concentrated along
the southern border states.
Bivariate Relationships and Ethnic Differentials.
Figure 8A shows the observed age-adjusted TCRs 15–60

years for the Caucasian-American and African-American
populations. Figure 8B shows the linear projections of this
data.
Table 1 sets out the observed and predicted values

from which these graphs were drawn.
Table 2 shows the relative long term rises for all

ages by ethnicity and the applicable periods for which
they have been monitored. Only nine cancer registries
contribute to long term cancer data in the SEER data-
base. More recent data 2001–2017 is contributed by
21 registries.

2013 2014 2015 2016 2017

2007 2008 2009 2010 2011 2012

2001 2002 2003 2004 2005 2006

0.6

1.0

1.4

Log
Testicular
Cancer
Rate /
100,000

Log (Testicular Cancer Rates) US States 2001−2017

Fig. 1 Choropleth map of log(testicular cancer incidence rates) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer

2013 2014 2015 2016 2017

2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−1.5

−1.0

−0.5

Log
Caucasian
Ethnicity

Log (Caucasian Ethnicity) US States 2003−2017

Fig. 2 Choropleth map of log(Caucasian-American Population) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer
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Table 2 is notable for marked ethnic disparities in the
rate of rise of the TCR. For example across the period
cited the Non-Hispanic Caucasian American population
TCR grew only 0.4% compared to the growth in the
Hispanic-American TCR of 36.11% and in the Asian-
Pacific Islander -American population where it grew
103.87% albeit from a lower starting point. This may
imply differing exposures to some environmental
intoxicant.
The long term data appears at the bottom of this table.

One notes that the growth of the TCR in the African-

American community of 41.27% was only 52.82% of the
growth of the Caucasian-American community which
was 78.13%.
Figure 9 sets out these trends by ethnicity across all

ages.
Figure 10A again sets out the ethnic trends and the

bar chart in Panel B shows the relative rises in each of
the four groups.
Figure 11 shows four scatterplots of the cannabis use

intensity index by ethnicity (Panels A and C) and the
TCRs by ethnicity (Panels B and D) as loess curves (A,

2013 2014 2015 2016 2017

2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−5

−4

−3

−2

−1

Log
African−
American
Ethnicity)

Log (African−American Ethnicity) US States 2003−2017

Fig. 3 Choropleth map of log(African-American Population) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer

2013 2014 2015 2016 2017

2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−5

−4

−3

−2

−1

Log
African−
American
Ethnicity)

Log (African−American Ethnicity) US States 2003−2017 − Reversed Color Scale

Fig. 4 Choropleth map of log(Caucasian-American Population) across USA by Year – Reversed Colouring. Maps were drawn in ggplot2, sf
and RColorBrewer
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B) and regression lines of best fit (C, D). One notes a
very striking resemblance between the two sets of
graphs.
Figure 12 sets out these data as boxplots in panels A

and B and time-dependent regression lines in panels C
and D. One reads the boxplot graphs by noting that
groups which do not have overlapping notches are sta-
tistically significantly different from each other. The
broad parallels between the two sets of plots is again
apparent.
Figure 13 sets out the relationship of the TCR to the

ethnic THC exposure index by ethnicity. Whilst each of

these six plots look similar careful comparison shows
that the scales on the horizontal axis are very different.
These data are therefore re-plotted with comparable

axis scales in Fig. 14. Now two striking trends appear.
Firstly the much higher THC exposure in the
Caucasian-American and AIAN-American groups is very
apparent. Also the slope of the regression lines in each
case is very different. Hence the regression line for the
Asian-American group is very short in horizontal scope,
but very steep. This graph is very thought-provoking
and has far reaching implications indeed. These differ-
ences clearly indicate major impacts of cannabis

2013 2014 2015 2016 2017

2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−5

−4

−3

−2

−1

Log
(Asian/PI−
American
Ethnicity)

Log (Asian−Pacific Islander American Ethnicity) US States 2003−2017

Fig. 5 Choropleth map of log(Asian-American Population) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer
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2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−4

−3

−2

−1

Log
(Hispanic−
American
Ethnicity)

Log (Hispanic−American Ethnicity) US States 2003−2017

Fig. 6 Choropleth map of log(Asian-Pacific Islander-American Population) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer
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exposure by ethnic background and may potentially be
related to one or several genomic or epigenomic pro-
cesses acting in concert.
Although this paper focusses on the ethnic disparities

it should be pointed out that each ethnicity is not one
homogenous block. The heatmap in Fig. 15 shows the
log (TCR) in the Caucasian-American community and
notes an obvious hotspot in Hawaii which has rates in
each of the nominated years of 9.4, 11.2, 12.7, 8.8, 10.4
and 9.4 (10.32 + 0.59 mean + S.E.M.) which is much
higher than the comparable rates for the Caucasian-
American ethnicity in all other states which is 5.351 +
0.033 (t = 115.12, df = 738.37, P = 0.0000; for comparison
t = 67, df = 738.37, P = 2.44 × 10− 316).

We now turn to the formal analysis of the state-based
data for ages 15–60 years derived from the most recent
datafiles held in the National Program of Cancer Regis-
tries and the SEER Incidence – US Cancer Statistics
Public Use Database 2019 submission 2001–2017 which
includes data for the whole country.
Inverse probability weights may be calculated for this

data which control for the effect of cannabis exposure as
a function of the other substance exposures.
Table 3 presents the results of linear regressions of the

TCR against ethnicity and the ethnic THC exposure in
both wide and long datasets. In the latter all the ethnici-
ties are collated into one column and the data-table be-
comes longer by a factor of the number of ethnicities.

2013 2014 2015 2016 2017

2008 2009 2010 2011 2012

2003 2004 2005 2006 2007

−5

−4

−3

−2

Log
(Asian−
American
Ethnicity)

Log (Asian−American Ethnicity) US States 2003−2017

Fig. 7 Choropleth map of log(Hispanic-American Population) across USA by Year. Maps were drawn in ggplot2, sf and RColorBrewer
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Fig. 8 (A) Observed and (B) Predicted Incidence rates of testicular cancer for two ethnicities
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Table 1 Long Term Testicular Cancer Rates by Ethnicity

Year Caucasian-American - Observed African-American - Observed NH Caucasian-American Predicted NH African-American Predicted

1975 4.1621 4.4103 1.1457

1976 3.7714 4.4924 1.1570

1977 4.879 4.5744 1.1682

1978 3.9667 4.6565 1.1795

1979 4.3295 4.7385 1.1908

1980 4.8836 4.8205 1.2020

1981 4.7748 4.9026 1.2133

1982 5.0104 4.9846 1.2245

1983 5.2268 5.0667 1.2358

1984 5.0458 5.1487 1.2470

1985 5.1316 5.2307 1.2583

1986 5.567 5.3128 1.2696

1987 5.7151 5.3948 1.2808

1988 5.444 5.4769 1.2921

1989 6.306 5.5589 1.3033

1990 6.0005 5.6410 1.3146

1991 5.7543 5.7230 1.3258

1992 6.0864 5.8050 1.3371

1993 5.9933 5.8871 1.3484

1994 6.305 1.2295 5.9691 1.3596

1995 5.2299 1.4628 6.0512 1.3709

1996 6.2072 1.3649 6.1332 1.3821

1997 6.3764 1.267 6.2152 1.3934

1998 6.5804 1.573 6.2973 1.4046

1999 6.3472 1.7145 6.3793 1.4159

2000 6.7535 1.5164 6.4614 1.4272

2001 6.5388 1.7943 6.5434 1.4384

2002 6.9373 1.3865 6.6254 1.4497

2003 6.4961 1.1416 6.7075 1.4609

2004 7.3667 1.16 6.7895 1.4722

2005 7.2916 1.0217 6.8716 1.4834

2006 6.7774 1.6811 6.9536 1.4947

2007 7.2126 1.4774 7.0357 1.5060

2008 7.399 1.4451 7.1177 1.5172

2009 7.2871 1.6959 7.1997 1.5285

2010 6.9299 1.6984 7.2818 1.5397

2011 7.2031 1.4834 7.3638 1.5510

2012 7.3214 1.3336 7.4459 1.5622

2013 7.4551 1.6739 7.5279 1.5735

2014 7.5153 1.9154 7.6099 1.5848

2015 7.0112 1.3706 7.6920 1.5960

2016 7.4819 1.7396 7.7740 1.6073

2017 7.6552 1.5911 7.8561 1.6185
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In each case ethnicity and the ethnic THC exposure is
noted to be a highly significant covariate of TCR.

Multivariable adjustment
Table 4 presents the results of inverse probability
weighted mixed effects regression all from the long data-
set. Many terms involving ethnicity and ethnic THC ex-
posure are highly significant. In an additive model with
the other four drugs ethnic THC exposure is significant
(β-estimate = 0.05 (0.04, 0.06), P = 5.80 × 10− 31). In a
four-way interactive model with other drugs ethnic can-
nabis exposure is significant (β-estimate = 0.64 (0.17,
1.10), P = 0.0072).
Table 5 presents the results of an inverse probability

weighted two-step instrumental variable regression
model on the long dataset. The table is very interesting.
When race alone is considered in the first model with
African-American race as the comparator, no significant

changes are seen. However when ethnic THC exposure
is considered it is very highly significant. When race and
ethnic THC exposure are considered in an additive
model all parameters are significant and ethnic THC ex-
posure is the most significant.
When Race and ethnic THC exposure are considered

in an interactive model Caucasian-American and
Hispanic-American races both in interaction with ethnic
THC exposure are highly significant (β-estimate = 1.48
(1.38, 1.59), P = 5.62 × 10− 214 and β-estimate = 1.22 (1.16,
1.27), P = 65.86 × 10− 128 respectively).
However, when the same regression is performed with

THC, cannabigerol and cannabinol as instrumental vari-
ables significance amongst both the terms and the model
is lost and adjusted R-squared falls from 0.9430 to −
0.0000108.
Similarly when all substances and income are consid-

ered along with ethnic THC exposure, two interactive

Table 2 Long Term Testicular Cancer Incidence Trends by Ethnicity

Ethnicity Start Year End Year Initial Rate End Rate Change Rise

Observed Rates

NH_Caucasian-American 2001 2017 5.0632 5.0834 0.0203 0.40%

Hispanic-American 2003 2016 3.3823 4.6036 1.2213 36.11%

NH_African-American 2002 2017 1.1420 1.1571 0.0151 1.32%

Asian-Pacific Islander-American 2003 2017 0.9368 1.9098 0.9730 103.87%

Modelled Rates

NH_African-American 1975 2017 1.1457 1.6185 0.4728 41.27%

NH_Caucasian-American 1975 2017 4.4103 7.8561 3.4457 78.13%

Relative Elevation of Rates 3.8495 4.8539 7.2879 1.8932

Fig. 9 Testicular cancer rates by selected ethnicities
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Fig. 10 Testicular cancer rates derived from state data by selected ethnicity. (A) Over time. (B) Rises across periods
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Fig. 11 Cannabis use and testicular cancer rates by time and by aggregate time. (A and C) cannabis use, (B and D) testicular cancer rates. (A and
B) loess curves of best fit. (C and D) Least squares regression lines
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terms including ethnic THC exposure are positive and
highly significant.
However when THC, cannabigerol and cannabinol are

included as instrumental variables again there is a
marked collapse of significant findings, adjusted R-
squared falls from 0.9962 (which is very high) to 0.0138
(quite low) and the model Wald coefficient falls from 20,
000 to 20.04.
In the final model in this table using a different inter-

action structure the ethnic THC exposure is again inde-
pendently highly statistically significant (β-estimate =
0.32 (0.20, 0.43), P = 4.7 × 10− 8).
Table 6 presents the results of inverse probability

weighted robust regressions in the long dataset. Ethnic
THC exposure is clearly highly significantly prominent.
As model complexity increases so the significance of
terms including the cannabinoids increases.

Multiple imputation of missing ethnicity data
It would be useful to study these ethnic effects in further
detail. However if one simply considers the Caucasian-
American and African-American datasets it is noted that
1782 of 2700 datapoints are absent, or 66.0%. This is a
severe limitation on further detailed analysis.

For this reason formal data imputation by multiple im-
putation of chained equations was performed using the
R-package mice [38].
Table 7 shows the impact of missing data by ethnicity.

Mean and median data and missing data rates are indicated.
Following [40] 256 imputations were performed with

20 iterations each. Figure 16 shows the density plot of
the multiply imputed data. One notes the obvious peaks
in the lower areas corresponding to the smaller values of
the ethnic minorities.
Figure 17 is a strip plot illustrating how the imputed

values nicely follow the values of the known observed
data including their distribution pattern.
Figure 18 demonstrates the manner in which the first

100 imputations nicely converge.
Multiple imputation in this manner allows the calcula-

tion of various regression equations from the data with
pooling of the final models into a meaningful outcome
by applying Rubin’s rules for pooling of such chained
models.
Table 8 shows the result of various linear model for-

mulae performed in this way on the imputed long data-
set. Ethnic cannabis exposure is noted to continue to be
highly significant. Quintile effects are also demonstrated.
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Fig. 14 Testicular cancer rates by ethnic exposure to THC. Note fixed scales on horizontal-axis and variable slope of regression lines
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Causal inference
Table 9 sets out the e-Values relating to the various cal-
culations presented above. Minimum e-Values are set
out in Table 10 listed in descending order. One notes
that 29/37 e-Values are > 1.25 which is said to be the
cut-off for causal attribution [41].

Cannabis legal status
It was of interest to determine if cannabis legalization
had an effect on the TCR by ethnic background. This
data is presented in Fig. 19 as scatterplots for Caucasian-
Americans (A, C) and African-Americans (B, D). Panels
A and B present the TCR by legal status and in panels B
and D legal status is dichotomized into liberal regimes v.
illegal paradigms.
These data are assessed quantitatively in Table 11A

and B where the effect of cannabis legalization is noted
to be highly significant and deleterious in both ethnic

backgrounds by linear regression (β-estimate = 0.09
(0.06, 0.12), P = 6.5 × 10− 10 and (β-estimate = 0.22 (0.12,
0.32), P = 4.4 × 10− 5 in Caucasian-Americans and
African-Americans respectively) and by mixed effects re-
gression (Medical cannabis: β-estimate = 0.62 (0.43,
0.80), P = 2.5 × 10− 11 and Liberal cannabis (not illegal)
paradigm: β-estimate = 0.48 (0.34, 0.62), P = 5.8 × 10− 11).
The applicable e-Values for this data is presented at

the foot of Table 9.
These data are aggregated by time and shown in Fig. 20.

These data are significant for legal status in both races
(Caucasian-Americans: ChiSqu.Trend = 179.2, df = 162, P =
0.0310; African-Americans: ChiSqu.Trend = 44.45, df = 30,
P = 0.0434). When the data are dichotomized contrasting
states where cannabis is illegal against those where it is not
illegal these results become more significant (Caucasian-
Americans: t = 6.1915, df = 538.95, P = 1.1820 × 10− 9; and
African-Americans t = 4.50, df = 57.931, P = 3.327 × 10− 5).
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Table 6 Robust Inverse Probability Weighted Regression

Parameter Estimate (C.I.) P-Value

Additive Model with State Cannabis

svyglm(TestCaRt ~ Cigarettes + Cannabis + + AUD + Analgesics + Cocaine)

AUD 64.55 (56.89, 72.22) < 2.2E-16

Analgesics 11.01 (6.24, 15.77) 5.7E-05

NHWhite 5.44 (2.36, 8.53) 0.0013

Hispanic 4.63 (1.54, 7.71) 0.0055

Cannabis −9.38 (−12.76, −5.99) 3.4E-06

Cocaine −131.14 (− 138.96, − 123.33) < 2.2E-16

Additive Model with Ethnic THC Exposure

svyglm(TestCaRt ~ Cigarettes * Ethn_THC_Exposure * + AUD + Analgesics + Cocaine)

Cigarettes 28.96 (27.87, 30.05) < 2E-16

Hispanic 2.55 (2.05, 3.04) 1.8E-12

Asian 4.89 (1.08, 8.69) 0.0160

Ethn_THC_Exposure 2.9 (0.41, 5.38) 0.0281

Cocaine −56.03 (−110.14, − 1.93) 0.0492

Interactive Model with Ethnic_THC_Exposure

svyglm(TestCaRt ~ Cigarettes * Ethn_THC_Exposure * + AUD + Analgesics + Cocaine + Race + Income)

Ethn_THC_Exposure 4.72 (2.04, 7.41) 0.0018

Asian 3.93 (1.64, 6.22) 0.0022

Cigarettes 11.09 (3.77, 18.42) 0.0060

Cigarettes: NHWhite 109.87 (24.24, 195.5) 0.0177

Cigarettes: Ethn_THC_Exposure: Asian 17.32 (1.64, 33.01) 0.0388

NHWhite −19.53 (−39.11, 0.05) 0.0603

Ethn_THC_Exposure: Asian −4.45 (−8.41, −0.5) 0.0352

Cocaine −88.11 (−161.51, − 14.7) 0.0257

Cigarettes: Ethn_THC_Exposure −20.11 (− 32.44, −7.78) 0.0034

Cigarettes: Asian −16.35 (−26.11, −6.6) 0.0027

Interactive Model with State Cannabis

svyglm(TestCaRt ~ Cigarettes * Cannabis * + AUD + Analgesics + Cocaine + Race + Income)

AUD 13.58 (7.69, 19.47) 0.0001

Cigarettes: Cannabis: NHWhite 398.68 (214.58, 582.79) 0.0002

Cigarettes: NHWhite 933.24 (493.05, 1373.44) 0.0003

Cigarettes: Hispanic 1372.45 (672.78, 2072.11) 0.0007

Cigarettes: Cannabis: Hispanic 635.8 (305.36, 966.24) 0.0008

Analgesics 19.88 (9.19, 30.57) 0.0011

Cannabis 42.63 (18.65, 66.61) 0.0017

Cigarettes: Cannabis −199.68 (− 315.91, −83.44) 0.0023

Cigarettes − 578.67 (− 907.11, − 250.23) 0.0018

Cocaine −75.51 (− 117.23, −33.78) 0.0015

Cannabis: Hispanic − 144.06 (− 218.53, −69.59) 0.0008

Hispanic − 308.36 (− 466.63, − 150.09) 0.0007

NHWhite −214 (− 315.14, − 112.87) 0.0003

Cannabis: NHWhite −93.06 (− 135.37, −50.75) 0.0002
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Discussion
Main results
The present study assessed cannabis and other drug use
as risk factors for testicular carcinogenesis and their po-
tential to explain the well described ethnic differentials,
and changes in TCR’s amongst ethnic populations across
time. Data showed that exposure to THC and cannabi-
gerol are risk factors for TC for all ethnicities investi-
gated, and fulfil the criteria of causal relationships in all
ethnicities studied. Data also confirmed the previously
described four-fold elevation of TCR amongst
Caucasian-Americans compared to African-Americans.
We confirm that time-based scatterplots and boxplots

of intensity of cannabis use tend to follow TCR and the
two are shown to be closely associated at multivariable
regression by several different techniques. Different eth-
nicities demonstrate different sensitivities to the testicu-
lar oncogenic action of cannabinoids, and the pattern of
TCR within each ethnicity is not necessarily constant
e.g. Hawaii where it is much higher than elsewhere.

Since the relationships persist after inverse probability
weighting and are accompanied by high e-Values, find-
ings fulfil the quantitative criteria for causal relation-
ships. These relationships were greatly strengthened
when missing data are multiply imputed by chained
equations. Legalization to make cannabis more available
was also associated with higher TCRs. In that pro-
cannabis legalization is associated with higher cannabis
use and exposure [42] cannabis legalization may be said
to exacerbate and contribute to higher TCRs.

Biological and mechanistic considerations
Description of biology of NSGCT
TC is believed to arise due to genotoxic and epigen-
otoxic insults incurred during utero life on the germ
stem cells which then become activated postnatally by
the hormonal surge of puberty [1, 11–14]. Rising rates
therefore may imply a rising incidence of some in utero
genotoxic or epigenotoxic insult which becomes appar-
ent only later in life.

Table 6 Robust Inverse Probability Weighted Regression (Continued)

Parameter Estimate (C.I.) P-Value

Interactive Model with State Cannabinoids

svyglm(TestCaRt ~ Cigarettes * THC * Cannabigerol * + AUD + Analgesics + Cocaine + Race + Income)

Cigarettes: NHWhite 127.24 (92.37, 162.1) 4.7E-07

Cigarettes: THC: Cannabigerol: NHBlack 13.87 (6.33, 21.41) 0.0017

Cigarettes: NHBlack 53.77 (18.14, 89.41) 0.0075

Cigarettes: THC: NHBlack 49.95 (14.93, 84.96) 0.0108

Cigarettes: Cannabigerol: NHBlack 14.62 (3.67, 25.57) 0.0161

Cigarettes: THC: Cannabigerol: NHWhite 35.97 (7.97, 63.97) 0.0200

Cigarettes: THC: Hispanic 214.68 (31.83, 397.53) 0.0317

Cigarettes: Hispanic −310.38 (− 540.45, −80.31) 0.0152

Cigarettes: Cannabigerol: Hispanic −89.37 (−155.46, −23.28) 0.0150

AUD −43.07 (−68.76, −17.38) 0.0035

THC: Cannabigerol: NHWhite −8.18 (−11.39, − 4.96) 6.2E-05

NHWhite −16.98 (−23.16, − 10.81) 2.4E-05

Table 7 Missing Data Considerations

Ethnicity Mean Rate Overall Median Rate Overall Mean Rate from Population Totals Mean Rate from Population Rates

NHWhite 5.37 5.40 5.39 5.39

NHBlack 1.09 1.00 1.23 1.24

Hispanic 3.31 3.35 3.63 3.70

Asian-PI 1.26 1.20 1.92 2.03

Ethnicity Observations Total Missing Values % Missing

NHWhite 644 675 31 4.59%

NHBlack 63 675 612 90.67%

Hispanic 177 675 498 73.78%

Asian-PI 34 675 641 94.96%
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The four cohort studies of the cannabis - TGCT rela-
tionship all described adult / adolescent cannabis expos-
ure [6, 17–21]. This implies a very significant truncation
of the usual time course of TGCT by excluding the
period of in utero exposure. It is not explicit in our data

whether the major aetiological exposure occurs in utero
or in later life – or indeed if both may be implicated. In
the case of NSGCT which is oncogenically de-
differentiated backwards this implies significant and rela-
tively rapid genomewide demethylation [14].

Fig. 16 Density plot for imputed values for ethnicity data. Note lower peaks for ethnic minority rates

Fig. 17 Stripplot for multiply imputed data. Note that the imputed values are all taken from the values of the available data
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Ethnic differential
P53 is known as the “guardian of the genome” since it is
widely connected across the genomic machinery to strongly
shut down aberrant DNA replication in the presence of any
form of genotoxic stress [43]. In this context it is worth de-
scribing the genomic elucidation of the above-mentioned
ethnogenomic variability. Investigators intersected 62,567
genomewide association study (GWAS) cancer-associated
single nucleotide variations (SNP’s) with 17,118 unique
positive signals for P53 activation response elements
(P53-RE’s) in four different cell lines using seven P53
activators [7]. The base sequences surrounding the 86
positive hits were compared to assess their fit with
the two canonical decameric DNA recognition se-
quences in P53. At position rs4590952 in the kit P53-
RE on chromosome 9 the position weight matrix
value dropped from 15.6 to 11.1 (median = 13.8) with
guanine to adenosine substitution. Three nearby sites

have been identified in three previous GWAS screens
as being associated with TCR and to have a three-
fold elevation per allele in TCR risk amongst Cauca-
sians [44–46]. The Kit - Kit-ligand dimer is the key
nearby receptor ligand pair which acts as the master
transcription factor for primordial germ cell, controls
their specification and prevents differentiation, and is
highly and uniquely expressed in seminomas rather
than other TGCT’s. Kit also plays a key controlling
role in haemopoietic stem cells and melanoblasts [7].
This mutation has been identified as a risk factor for

both seminomas and non-seminomatous germ cell tu-
mours [7]. This site is unique as it is activated by P53
activation rather than suppressed as is more usual [43].
In a subsequent assay in testicular tumour cell lines the
per allele activation of the P53-RE by P53 activation was
188-fold (range 93 to 373- fold) [7]. This allele was posi-
tively selected for in seminomas (21.7-fold) and also

Fig. 18 Imputation convergence. Note increasing convergence of data with increasing iterations of imputation algorithm
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amongst Caucasian-Americans. It was thought that the
allele was positively selected for in light skinned races
as its effect to stimulate melanoblast activation and
proliferation in the tanning response to UV radiation
was protective of the skin from UV induced carcino-
genesis [7]. This was thought to explain is relative
prevalence amongst light skinned races.
Other similar loci have also been described including

rs995030 and research in this area is on-going at the
present time [8].

Cannabinoid pathophysiology
High dose marijuana smoking has been shown to grossly
disturb human sperm morphology with shrunken and
bent sperm heads, bent tails, multiple tails, bilobed
heads, tangled tails, multiple heads, pyknotic heads and
polymorphonuclear pus cells all described [47].
In mice exposure to Δ9THC was shown to induce

ring and chain chromosome formation with chains up
to four chromosomes long due to end-to-end fusion
formation [48].

Table 8 Linear Regressions on Multiply Imputed Data

Parameters Model

Parameter Estimate (C.I.) P-Value No. Imputa- tions S.D. Lambda FMI

Ethnic_THC_Exposure Alone

lm(TestCaRt ~ Ethnic_THC_Exposure)

Ethnic_THC_Exposure 0.68 (0.62, 0.74) 1.80E-92 256 1.7000 0.0292 0.0299

Ethnic_THC_Exposure * Race

lm(TestCaRt ~ Ethnic_THC_Exposure + Race)

NHWhite-American 4.17 (4.08, 4.26) << 9.8E-324 256 0.8183 0.0560 0.0568

Hispanic-American 2.63 (2.53, 2.73) << 2.4E-315 0.1681 0.1690

Asian-American 1.1 (0.98, 1.21) 2.45E-70 0.1018 0.1026

Ethnic_THC_Exposure 0.19 (0.14, 0.24) 7.99E-15 0.1521 0.1530

Additive - Drugs

lm(TestCaRt ~ Cigarettes + AUD + Ethnic_THC_Exposure + Analgesics + Cocaine)

Ethnic_THC_Exposure 0.72 (0.66, 0.79) 9.10E-99 256 1.6893 0.0313 0.0321

AUD 12.64 (8.37, 16.91) 7.28E-09 0.0391 0.0399

Interactive Full Model

lm(TestCaRt ~ Cigarettes + AUD + Ethnic_THC_Exposure + Analgesics + Cocaine
+ 5_Races +MHY + Cigarettes.AUD + Cigarettes.EthnTHCExpRt + EthnTHCExpRt.AUD)

NHWhite-American 4.2 (4.11, 4.29) << 3.1E-322 256 0.8017 0.0636 0.0644

Hispanic-American 2.59 (2.5, 2.69) << 8.9E-323 0.1727 0.1737

Asian-American 0.99 (0.87, 1.11) 1.99E-52 0.1129 0.1138

AUD 6.45 (4.21, 8.68) 2.01E-08 0.1491 0.1500

Ethnic_THC_Exposure 0.12 (0.07, 0.18) 1.89E-05 0.1658 0.1667

Analgesics −5.31 (−8.82, −1.8) 3.04E-03 0.1167 0.1175

Cigarettes −3.72 (−4.64, −2.8) 3.55E-15 0.1336 0.1345

Quintiles

lm(TestCaRt ~ Quintile)

Quintile 2 0.02 (−0.2, 0.24) 0.8801 256 1.8379 0.0261 0.0268

Quintile 3 0.1 (−0.12, 0.32) 0.3566 0.0295 0.0302

Quintile 4 0.2 (−0.02, 0.42) 0.0755 0.0247 0.0255

Quintile 5 0.29 (0.06, 0.51) 0.0118 0.0331 0.0338

Dichotomized Quintiles

lm(TestCaRt ~ Dichotomized_Quintiles)

Upper_2_Quintiles 0.2 (0.06, 0.35) 0.0058 256 1.8375 0.0309 0.0316
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Table 9 e-Values

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

LINEAR MODELS

lm(TC_Rate ~ EthnTHCExp * Race)

Ethnic_THC_Exposure 0.06 (0.04, 0.08) 1.31 (1.18, 1.45) 1.95, 1.66

In Ethnic Dataset, Long

(lm(Rate ~ Race)

Cannabis 0.47 (0.41, 0.52) 2.04 (1.68, 2.47) 3.05, 2.76

lm(Rate ~ Time * mrjmon)

Cannabis 0.49 (0.44, 0.55) 2.19 (1.95, 2.32) 3.68, 3.31

MIXED EFFECTS MODELS

lme(TestCa ~ Ethnic_THC_Exposure)

Ethnic_THC_Exp 0.05 (0.04, 0.06) 1.23 (1.19, 1.28) 1.78, 1.68

lme(TestCa ~ Race + Ethnic_THC_Exposure)

Ethnic_THC_Exp 0.24 (0.15, 0.32) 1.21 (1.13, 1.30) 1.72, 1.50

lme(TestCa ~ Race * Ethnic_THC_Exposure)

Hispanic-Am.: Ethnic_THC_Exp 0.58 (0.4, 0.77) 1.67 (1.27, 2.26) 2.74, 1.85

lme(TestCa ~ Year * Ethnic_THC_Exposure)

Ethnic_THC_Exp 1.39 (1.25, 1.53) 1.82 (1.72, 1.93) 3.05, 2.83

Additive Model - Drugs

Ethnic_THC_Exp 0.05 (0.04, 0.06) 1.29 (1.23, 1.34) 1.89, 1.77

Interactive Model - 3-Way

Cigarettes: Ethnic_THC_Exp 0.44 (0.31, 0.57) 949 (4.86, 18.54) 18.8, 9.20

Interactive Model - 4-Way

Ethnic_THC_Exp: Analgesics 0.22 (0.07, 0.37) 3.14 (1.45, 6.79) 5.74, 2.28

Ethnic_THC_Exp 0.64 (0.17, 1.1) 26.50 (2.44, 287.17) 52.52, 4.33

IV-REGRESSION

ivreg(TestCa ~ Ethnic_THC_Exposure)

Ethnic_THC_Exposure 1.03 (0.89, 1.17) 1.07 (1.06, 1.07) 1.33, 1.30

ivreg(TestCa ~ Ethnic_THC_Exposure)

Ethnic_THC_Exposure 0.89 (0.88, 0.91)

ivreg(TestCaRt ~ log(EthnTHCExp): Race)

Ethnic_THC_Exp: Asian-Am. 2.72 (0.84, 4.61) 1.21 (1.06, 1.38) 1.72, 1.31

Ethnic_THC_Exp: NHCaucasian-Am. 0.44 (0.3, 0.59) 1.03 (1.02, 1.04) 1.21, 1.17

ivreg(TestCa ~ Ethnic_THC_Exp * Race)

NHCaucasian-Am.: Ethnic_THC_Exp 1.22 (1.16, 1.27) 1.01 (1.01, 1.02) 1.12, 1.12

Hispanic-Am.: Ethnic_THC_Exp 1.48 (1.38, 1.59) 1.01 (1.01, 1.02) 1.14, 1.13

ivreg(Rate ~ Cigarettes * AUD + Analgesics + Cocaine + MHY + * Ethnic_THC_Exposure)

Ethnic_THC_Exp 0.32 (0.2, 0.43) 1.04 (1.03, 1.06) 1.25, 1.19

ivreg(Rate ~ Ethn_THC_Exposure + Race)

Ethn_THC_ExposureNHCaucasian-Am._THC_Exposure 0.08 (0.02, 0.13) 1.01 (1.00, 1.01) 1.10, 1.05

ivreg(TestCa ~ Cigarettes * AUD * Cannabis + + Cocaine + MHY + Analgesics)

AUD: Ethnic_THC_Exp 312.53 (290.54, 334.53) 1.22E+ 05 (5.36E+ 04, 2.77E+ 05) 2.43E+ 05, 1.07E+ 05

Cigarettes: Ethnic_THC_Exp 150.41 (139.67, 161.15) 280.39 (187.63, 419.03) 560.29, 374.76

ivreg(TestCa ~ Cigarettes * AUD * Ethnic_THC_Exp * + Cocaine +MHY + Analgesics)

Ethnic_THC_Exp 0.55 (0.05, 1.05) 1.03 (1.00, 1.06) 1.21, 1.06
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These authors also showed that when mouse sperm
were exposed to the cannabinoids Δ9THC, cannabinol
and cannabidiol there was a dramatic increase in
chromosomal translocations from about 1% at control
levels, to 4.95–6.48% comparable to the positive
control which was the cytotoxic drug mitomycin C at
6.73% [48].
Cannabinoids have been shown to have marked

effects on sperm function including reduction of
sperm concentration in seminal fluid, induction of
DNA fragmentation, defective sperm maturation, dis-
orders of DNA packing within sperm and protamine-
histone replacement, DNA nicking in sperm by Tnp2,
defective DNA repair, defects of nuclear size and
incomplete DNA packing by failure of the histone-
protamine transition [49–51].
Cannabinoids induce collapse of the inner mitochon-

drial membrane potential by several routes [50, 51].
THC exposure has been shown to lead to marked de-

methylation of the genome of human sperm [52] a
change which makes genes more susceptible to genomic
damage and chromosomal rearrangements [13, 16].

Cannabis exposure of both lymphocytes and oocytes
has been shown to induce 20% cell death with a single
division and marked chromosomal bridging and nuclear
bleb formation in surviving cells [53]. Cannabinoid ex-
posure has also long been known to be associated with
micronucleus formation and comet tail formation, which
are two of the major genotoxicity assays implicating
chromosomal mis-segregation and single- and double-
stranded DNA breaks respectively [15].
Moreover low micromolar doses of cannabidiol and its

propyl analogue cannabidivarin have been shown to
cause micronucleus formation and prominent comet
tails on formal testing, changes which are greatly exacer-
bated in an oxidizing environment [15].
Downs syndrome has been linked with cannabis

exposure in Hawaii, Colorado, Canada and Australia
[54–57] and early termination of pregnancy for anomaly-
corrected rates of Downs syndrome, trisomies 18 and 13,
Turners syndrome and Deletion 22q11.2 in a space time
and odds ratio analysis in the USA [58].
Prenatal cannabis use has been linked with acute

lymphoid leukaemia which is primarily a disease

Table 9 e-Values (Continued)

Parameter Estimate (C.I.) R.R. (C.I.) E-Values

MULTIPLE IMPUTATION

Ethnic_THC_Exposure Alone

Ethnic_THC_Exposure 0.68 (0.62, 0.74) 1.44 (1.39, 1.49) 2.35, 2.13

Ethnic_THC_Exposure * Race

Ethnic_THC_Exposure 0.19 (0.14, 0.24) 1.24 (1.17, 1.30) 1.77, 1.62

Additive - Drugs

Ethnic_THC_Exposure 0.72 (0.66, 0.79) 1.48 (1.43, 1.53) 2.31, 2.20

Interactive Full Model

Ethnic_THC_Exposure 0.12 (0.07, 0.18) 1.14 (1.08, 1.22) 1.56, 1.37

Quintiles

Quintile 5 0.29 (0.06, 0.51) 1.15 (1.03, 1.28) 1.57, 1.21

Dichotomized Quintiles

Upper_2_Quintiles 0.2 (0.06, 0.35) 1.10 (1.03, 1.18) 1.44, 1.21

LEGAL STATUS

Whites

Liberal 0.09 (0.06, 0.12) 1.57 (1.36, 1.81) 2.51, 2.07

Blacks

Liberal 0.22 (0.12, 0.32) 2.83 (1.78, 4.84) 5.10, 2.96

Both_Races

Medical 0.62 (0.43, 0.8) 1.79 (1.51, 2.13) 2.99, 2.39

Decriminalized 0.33 (0.15, 0.51) 1.36 (1.15, 1.62) 2.07, 1.56

Legal 0.61 (0.24, 0.98) 1.78 (1.25, 2.55) 2.97, 1.82

Dichotomized_Status

Liberal 0.48 (0.34, 0.62) 1.58 (1.38, 1.81) 2.54, 2.11
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characterized genetically by chromosomal translocations
(unpublished data).
Adult cannabis exposure is linked with TC [17–20]

and present study, which is itself caused by whole gen-
ome duplication, isochromosome 12 formation, deletion
and augmentation of many chromosomal arms, over
1200 micro-RNA’s [13, 14] and genomewide DNA
demethylation.
Formation of ring and chain concatenation of chromo-

somes in rodents was mentioned above [47].

This list implicates cannabinoids in major chromosomal
toxicity by many mechanisms including chromosomal de-
letion, reduplication, megabase scale reduplications, longi-
tudinal and transverse duplications and gene amplification
and oncogenic cellular de-differentiation.
All of this demonstrates that cannabinoid-exposed

cells are clearly genomically stressed.
In the context of genomic stress P53 is activated – and

the ethnogenomic differential mechanism described
above becomes activated as a stimulus to tumour cell
proliferation in light skinned races, and to an onco-
protective block to mitosis and meiosis in darker
skinned races.
Given the aforementioned, it is possible that cannabis

exposure causes in utero germ cell damage which is as-
sociated with TC, suggesting that cannabis use during
pregnancy should be cautioned. This is consistent with
recommendations by both the American College of Ob-
stetrics and Gynaecology (ACOG) and the American
Academy of Pediatric (AAP) [59–63]. Notwithstanding
this advice, a significant number of American women
are reported as using cannabis whilst pregnant, perhaps
explaining part of the rise in TC across many communi-
ties. In Colorado 69% of cannabis dispensaries contacted
by a group of researchers recommended cannabis use
to pregnant women [64], while in California 24% of
pregnant teenagers either self-admitted to cannabis
use whilst pregnant or tested positive for it during
their gestation [65]. Nationwide it was estimated in
2017 that 161,000 pregnant women used cannabis
whilst pregnant [24].
It is however important to stress that while TC is gener-

ally believed to arise as a result of in utero germ cell
anomalies which may be impacted on by maternal canna-
bis use, all published studies on the association have iden-
tified an association between TC and personal cannabis
use, suggesting that one or more likely gene / epigenome -
environment interactions are at play whereby postnatal
and adult cannabinoid exposure contribute to underlying
genetic risk as environmental causal and exacerbating fac-
tors. Since the epigenetic state of the primordial germ cells
/ gonocytes is a key determinant of the differentiation
block experienced by all NSGCT tumour cells, it follows
that part of the effect of postnatal cannabinoid exposure
must be to de-differentiate susceptible cells into a more
immature foetal-like and pro-oncogenic state.

Generalizability
We feel that study findings are generalizable for many
reasons. The SEER Cancer data is registry controlled
and comes from most USA states and thus represents
the great preponderance of the data from the popula-
tion. The NSDUH survey has a good response rate at
74.1%. Moreover the effects we describe are often very

Table 10 Ordered Minimum e-Value List

No. Minimum E-Value

1 1.07E+ 05

2 374.76

3 9.20

4 4.33

5 3.31

6 2.96

7 2.83

8 2.76

9 2.39

10 2.28

11 2.20

12 2.13

13 2.11

14 2.07

15 1.85

16 1.82

17 1.77

18 1.68

19 1.66

20 1.62

21 1.56

22 1.50

23 1.37

24 1.31

25 1.30

26 1.21

27 1.21

28 1.19

29 1.17

30 1.13

31 1.12

32 1.06

33 1.05
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strong. There is great internal consistency across results
within this study with similar results being found for all
ethnicities studied, and also good external consistency with
all the published literature in this field. Moreover since data
fulfil the criteria for causality we would expect that this
causal relationship to hold widely across space and time.

Strengths and limitations
This study has a number of strengths and limitations. Its
strengths include the use of a large population dataset
and registry controlled data, and a variety of advanced
statistical methods including inverse probability weight-
ing, mixed effects models, robust regression, two-step
instrumental variable regression, multiple imputation of
missing data by chained equations and e-Values. Further,
many levels of significance are very high as are their cor-
responding e-Values. Since the relationships described
amply fulfill the quantitative criteria for causality we feel
that the relationships described herein are transportable
to other situations and other times. The main limitation

of the present work is the absence from this dataset of
individual exposure data which is a limitation commonly
shared with most epidemiological studies. Also spatio-
temporal data on known risk factors such as crypt-
orchidism, inguinal herniae, industrial pollution and
sedentary lifestyles was not available to the present in-
vestigators. It would be a useful advance if future studies
could be repeated with these factors included in the
multivariable analysis.

Conclusion
Data analysis indicate that exposure to THC and canna-
bigerol is a risk factor for TC for all ethnicities. We have
confirmed the four-fold elevation of TCR amongst
Caucasian-Americans compared to African-Americans
and data indicate that a likely gene-environment inter-
action is at play with cannabis the most likely environ-
mental causal factor. In view of the high e-Values
demonstrated we feel that the place of cannabis and can-
nabinoids is unlikely to be supplanted by other
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covariates with further research. All ethnicities are sub-
ject to an increase in testicular oncogenesis under a
paradigm of increasing cannabinoid exposure with some
ethnicities demonstrating marked differences in their ap-
parent sensitivities. Time based plots and box pots of
cannabis use and TCR generally move in parallel. Effects
of cannabis, ethnic THC exposure and cannabinoid ex-
posure are statistically highly significant, confirmed with
a variety of multivariable techniques, and are independ-
ently significant. These relationships are strengthened by
multiple imputation of missing ethnicity data. Findings
fulfil the criteria of causal relationships in all ethnicities
studied. Cannabis legalization significantly elevates the
TCR for both African-American and Caucasian-American
patients. In short, we feel that these findings are robust,
fulfil the criteria for causal relatoinships and add an im-
portant transgenerational dimension to the present canna-
bis debate which applies to the major ethnic groups
identified within the USA for which data is available.
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