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Abstract 

Background:  Urinary nitrogen leakage is an environmental concern in dairy cattle. Selection for reduced urinary 
nitrogen leakage may be done using indicator traits such as milk urea nitrogen (MUN). The result of a previous study 
indicated that the genetic correlation between MUN in Australia (AUS) and MUN in New Zealand (NZL) was only low 
to moderate (between 0.14 and 0.58). In this context, an alternative is to select sequence variants based on genome-
wide association studies (GWAS) with a view to improve genomic prediction accuracies. A GWAS can also be used 
to detect quantitative trait loci (QTL) associated with MUN. Therefore, our objectives were to perform within-country 
GWAS and a meta-GWAS for MUN using records from up to 33,873 dairy cows and imputed whole-genome sequence 
data, to compare QTL detected in the GWAS for MUN in AUS and NZL, and to use sequence variants selected from the 
meta-GWAS to improve the prediction accuracy for MUN based on a joint AUS-NZL reference set.

Results:  Using the meta-GWAS, we detected 14 QTL for MUN, located on chromosomes 1, 6, 11, 14, 19, 22, 26 and 
the X chromosome. The three most significant QTL encompassed the casein genes on chromosome 6, PAEP on chro‑
mosome 11 and DGAT1 on chromosome 14. We selected 50,000 sequence variants that had the same direction of 
effect for MUN in AUS and MUN in NZL and that were most significant in the meta-analysis for the GWAS. The selected 
sequence variants yielded a genetic correlation between MUN in AUS and MUN in NZL of 0.95 and substantially 
increased prediction accuracy in both countries.

Conclusions:  Our results demonstrate how the sharing of data between two countries can increase the power of a 
GWAS and increase the accuracy of genomic prediction using a multi-country reference population and sequence 
variants selected based on a meta-GWAS.
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Background
Urinary nitrogen leakage is an environmental concern in 
dairy cattle [1]. While measuring urinary nitrogen leak-
age directly is challenging, milk urea nitrogen (MUN) 
can be used as an indicator trait [2, 3]. Since MUN can 
be predicted from a milk sample, MUN values can be 

obtained for all the cows that go through routine milk 
recording for which mid-infrared (MIR) spectral data 
are generated, thus for a substantial dataset. However, in 
some countries, such as Australia, milk recording compa-
nies have only recently invested in machines capable of 
generating MIR spectral data, so international collabora-
tion is one way to test a larger (shared) dataset.

For many novel traits, international collaboration can 
help to increase the size of the reference population for 
genomic prediction and thereby to increase predic-
tion accuracy [4]. In a recent study, we have shown that 
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genetic correlations between MUN in Australia (AUS) 
and MUN in New Zealand (NZL) were low to moderate, 
ranging from 0.14 to 0.58 depending on the days in milk 
and breeds analysed [5]. We also found that heritabili-
ties of MUN differed between AUS and NZL. However, 
correlations for some milk traits between AUS and NZL 
range from 0.60 to 0.83 [6], which imply a likely sub-
stantial gene×environment interaction (G×E) between 
traits measured in both countries. Thus, MUN in AUS 
is unlikely to be the same trait as MUN in NZL and the 
benefits of sharing a reference population may be limited. 
Other explanations could include differences in measur-
ing equipment. Furthermore, MUN is highly influenced 
by factors such as feed intake [7], which is generally not 
routinely recorded, and thus not accounted for in the 
statistical model. In addition to the phenotypic noise, 
differences in breed composition may also contribute to 
the low genetic correlation between MUN in AUS and 
MUN in NZL. Generally, combining reference popula-
tions increases genomic prediction accuracy only when 
populations are highly related [8]. Haile-Mariam et al. [6] 
showed that for milk production traits, a joint AUS-NZL 
reference population increased prediction accuracies in 
NZL bulls by up to seven percentage points in reliability.

Several studies have shown how sequence variants 
selected from genome-wide association studies (GWAS) 
can be used to increase the accuracy of genomic predic-
tion compared to the use of standard single nucleotide 
polymorphism (SNP) chips [9–11]. Sequence variants 
can be especially beneficial for across-breed genomic 
prediction, because variants that are closer to the causal 
mutations are more likely to be consistently linked to the 
causal mutations in all populations [10–12]. Thus, select-
ing sequence variants that are associated with MUN in 
both AUS and NZL may increase genomic prediction 
accuracies compared to using variants from standard 
SNP chips. In beef cattle, Porto-Neto et al. [10] showed 
that selecting variants with the same direction of effect 
in a within-breed GWAS, can result in a stronger genetic 
correlation between the populations and increase the 
prediction accuracy of multi-breed prediction. This 
approach could have applications for other traits, espe-
cially those for which reference populations are small, 
and could be of interest for both multi-country and 
multi-breed prediction.

GWAS for MUN may help to identify quantitative trait 
loci (QTL) in addition to aiding the selection of variants 
for genomic prediction. Several GWAS have reported 
QTL associated with MUN [13–17]. However, the size 
of the datasets used in these GWAS was small, limiting 
their detection power. Combining the AUS and NZL data 
for MUN would provide a comparatively large, powerful 
dataset to detect QTL associated with MUN.

Our objectives were (1) to perform a meta-GWAS 
for MUN using records from up to 33,874 dairy cows 
and imputed whole-genome sequence data, (2) to com-
pare QTL detected in the GWAS for MUN in AUS and 
in NZL, and (3) to use sequence variants to improve the 
prediction accuracy for MUN based on a joint AUS-NZL 
reference set.

Methods
Phenotypes
Table 1 summarizes the number of phenotypes used for 
our analyses. We used the same dataset that is described 
in greater detail in van den Berg et al. [5]. Briefly, pheno-
types for milk urea nitrogen concentration (MUN) were 
available for 18,120 AUS and 15,753 NZL cows. If a cow 
had multiple records available, we only used the earli-
est record. While the majority (12,660) of the AUS cows 
were Holsteins, the majority of the NZL cows (11,959) 
were crossbreds. In spite of the small number of records 
available for Australian Reds and Ayrshires, they were 
included in the dataset because some of the crossbreds 
(987 Australian cows and 1562 New Zealand cows) were 
part Australian Red and/or part Ayrshire.

MUN in AUS was derived from milk samples using 
commercial equations based on wet chemistry from 
Bentley instruments and MUN in NZL was derived 
using a FOSS MilkOscan FT + analyser (FOSS, Hillerød, 
Denmark).

Reference and validation populations
Because of the heterogeneity of the crossbreds and the 
small number of Australian Reds and Ayrshires in the 
dataset, prediction accuracies were estimated for Hol-
stein and Jersey only. All AUS and NZL Holstein and 
Jersey cows were randomly allocated to one of five valida-
tion folds. Validation was carried out within population: 

Table 1  Number of records for milk urea nitrogen (n) per 
country and breed

Country Breed n

Australia Holstein 12,660

Jersey 1857

Australian Red 95

Ayrshire 12

Crossbred 3496

All 18,120

New Zealand Holstein 2259

Jersey 1524

Ayrshire 11

Crossbred 11,959

All 15,753
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for each of the five folds, there were four validation sets 
of 2532 AUS Holstein, 371 AUS Jersey, 452 NZL Holstein 
and 305 NZL Jersey cows. For each of these validation 
folds, a mixed breed reference population was designed 
and included all the cows that were neither pure Holstein 
nor pure Jersey, plus the Holsteins and Jerseys that were 
not in the validation population.

Genotypes
All animals used in our analyses were genotyped. We 
used SNP genotypes from the BovineHD Genotyp-
ing BeadChip (HD) as well as imputed whole-genome 
sequence data for our analyses. The NZL cows and 
most of the AUS cows were genotyped with low-density 
(~ 8500) SNP panels that had an overlap of approximately 
7000 SNPs with the Illumina Bovine 50K panel. A small 
number of the AUS cows were genotyped on the Illumina 
Bovine 50K panel. All raw genotypes underwent qual-
ity control checks based on the GenCall (GC) score and 
were mapped to the ARS-UCD1.2 reference genome [18]. 
Any animal, or SNP with more than 10% of genotype calls 
with a GC score lower than 0.6 were discarded. Then, all 
remaining genotype calls with a GC score lower than 0.6 
were set to missing, and the Fimpute v.3 software [19] was 
used with default settings to impute the sporadic missing 
genotypes. Low-density genotypes were first imputed to 
the BovineSNP50 BeadChip using a mixed breed (Hol-
stein and Jersey) imputation reference set of 14,722 ani-
mals. These 50K genotypes were then imputed to the HD 
panel (~ 700K SNP) using a reference set of 2700 animals. 
Genotypes were imputed up to the HD panel using Fim-
pute v.3 and then converted to forward sequence format 
for imputation to whole-genome sequence. The imputa-
tion reference comprised 4190 Bos taurus cattle in Run8 
of the 1000 Bulls Genome Project [20, 21]. Sequence 
imputation was implemented using the Minimac4 tool 
[22], and the Eagle v.2.4.1 software [23] was used to 
pre-phase the HD and reference sequences. The default 
Minimac settings were used, except that the window pro-
cessing lengths were increased to –ChunkLengthMb 50 
–ChunkOverlapMb 10, which allow to account for the 
longer haplotypes present in cattle genomes, compared 
to humans, and to ensure continuity in the overlapping 
segments. The Run8 reference sequences were processed 
following the 1000 Bull Genomes project pipeline (http://​
www.​1000b​ullge​nomes.​com/) and the sporadic missing 
genotypes were imputed using the Beagle v4.1 package 
[24]. Prior to imputation, the reference sequence vari-
ants were further filtered: to retain only bi-allelic variants 
with an allele count of at least 4, and those with a Beagle 
R2 higher than 0.9. The pseudoautosomal region (PAR) 
of the X chromosome was not imputed. We used only 
sequence variants with a Minimac imputation R2 ≥ 0.4 

and a minor allele frequency ≥ 0.005, which resulted in 
16,824,460 variants that were used for the GWAS and 
genomic prediction.

Principal component analysis
To account for breed effects, we used the first princi-
pal component (PC1) of a principal component analysis 
(PCA) performed with all AUS and NZL HD genotypes 
[5]. The PCA was undertaken using the genome-wide 
complex trait analysis (GCTA) software package [25].

Genome‑wide association analyses
Within-country GWAS were carried out using GCTA 
[25]. Phenotypes used for the GWAS were pre-corrected 
using fixed effects and covariates (test month, herd-
year-season, days in milk, age, and PC1), and a genomic 
relationship matrix based on the HD genotypes was fit-
ted to account for family structure. Because pedigree 
information was not available for the NZL cows, we used 
only genotypes for the analyses. A multi-country meta-
GWAS was done using the weighted Z-score model 
implemented in the METAL software [26]. We used the 
weighted Z-scores model because in a previous study 
that compared different meta-analysis methods [27], the 
weighted Z-score model results were most similar to a 
joint GWAS combining multi-country and multi-breed 
data. First, Z-scores were estimated for each within-
country GWAS as:

where Zik was the within-country Z-score for variant i in 
GWAS k , � the standard normal cumulative distribution 
function, pik the p-value estimated in the GWAS k , and 
�ik the direction of effect in GWAS k . The Z-score for 
the meta-analysis for variant i was equal to:

where wk was the square root of the number of individ-
uals in GWAS k . Finally, the p-value for variant i in the 
meta-analysis was estimated as:

To define QTL, we used a threshold of 10–6 and con-
sidered that all the variants with a p-value below this 
threshold were significant. The false discovery rate (FDR) 
corresponding to a p-value threshold of 10–6 was esti-
mated as FDR = (nVariants × 10−6)/nSignificant , where 
nVariants is the total number of variants included in the 
meta-GWAS and nSignificant the number of significant 
variants. Subsequently, significant variants located within 

Zik = �−1
(
1−

pik
2

)
×�ik ,

Zi =

∑
kzikwk√∑

k w
2
k

,

pi = 2�(−|Zi|).

http://www.1000bullgenomes.com/
http://www.1000bullgenomes.com/
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1 Mb of each other were grouped in the same QTL interval. 
In total, we repeated the within-country GWAS and meta-
GWAS six times: once using the full dataset (to maximise 
power; used for QTL detection and genetic parameters), 
and then once for each of the five reference populations 
(used for genomic prediction).

Selection of sequence variants for genomic prediction
Sequence variants were selected using the following steps:

(1)	 All variants with the same direction of effect in both 
the AUS and NZL GWAS were selected.

(2)	 Linkage disequilibrium (LD) pruning was per-
formed in this selected variant set combining the 
genotypes of AUS and NZL animals in the refer-
ence population using the PLINK sofware [28] with 
an r2 threshold of 0.9, to avoid selecting redundant 
variants associated with the same QTL.

(3)	 From the remaining variants, the 50,000 variants 
with the smallest p-value based on the meta-anal-
yses were selected, to reduce the number of vari-
ants to that comparable with commonly used com-
mercial SNP chips and to reduce computational 
demand. We refer to this set of variants as SEQ.

We selected six different sets of SEQ. The first set was 
done using the full dataset, and was only used to estimate 
genetic parameters. For genomic prediction, a new set of 
SEQ was selected for each fold, using only the reference 
population of that fold. Accuracies were then estimated for 
the validation population, which was not used for the selec-
tion of SEQ.

Heritability and genetic correlation of MUN 
between Australia and New Zealand
Genetic parameters were estimated using the AIREMLF90 
software [29]. The following bivariate model was used to 
estimate the heritability of MUN, and the genetic correla-
tion between MUN in AUS and MUN in NZL, using either 
HD or SEQ variants:

where yAUS and yNZL are vectors of MUN phenotypes for 
AUS and NZL cows, XAUS and XNZL are matrices linking 
AUS and NZL cows to the fixed effect vectors bAUS and 
bNZL with fixed effects (test month and herd-year-sea-
son) and linear covariates (days in milk, age, PC1), ZAUS 
and ZNZL are incidence matrices linking AUS and NZL 

[
yAUS
yNZL

]
=

[
XAUS 0
0 XNZL

][
bAUS
bNZL

]
+

[
ZAUS 0
0 ZNZL

][
aAUS
aNZL

]
+

[
eAUS
eNZL

]
,

cows to the vectors of additive breeding values aAUS and 
aNZL distributed as 

(
aAUS
aNZL

)
∼ N (0,G⊗ Va) , and eAUS 

and eNZL are vectors of random residuals distributed as (
eAUS
eNZL

)
∼ N (0,G⊗ Ve) , G is a genomic relationship 

matrix constructed following VanRaden’s method 1 [30], 

Va =

[
σ 2
aAUS

σaAUS,NZL
σaAUS,NZL σ 2

aNZL

]
 , σ 2

aAUS
 the additive genetic 

variance in AUS, σaAUS,NZL the additive genetic covariance 
between AUS and NZL, σ 2

aNZL
 the additive genetic vari-

ance in NZL, Ve =

[
σ 2
eAUS

0

0 σ 2
eNZL

]
 , σ 2

eAUS
 the residual vari-

ance in AUS, and σ 2
eNZL

 the residual variance in NZL. In 
the bivariate analysis, we used the algorithm for proven 
and young (APY) [31] as implemented in AIREMLF90 
[29] to stay within the memory limit of the software. We 
first estimated the number of cows required to explain 
95% of the variance of G , and then randomly selected this 
number of cows as core animals.

Genomic prediction
We estimated the accuracy of genomic prediction for 
the following scenarios:

–	 WC_HD = within-country reference population, 
using HD variants,

–	 WC_SEQ = within-country reference population, 
using SEQ variants,

–	 MC_HD = multi-country reference population, 
using HD variants,

–	 MC_SEQ = multi-country reference population, 
using SEQ variants.

The same bivariate model described above was used 
to train the five reference populations and predict 
genomic estimated breeding values (GEBV) for the 
animals in the validation populations. Genetic param-
eters were re-estimated for each of the scenarios. Then, 
prediction accuracy was calculated as the correlation 
between the GEBV of the validation populations and 

their phenotypes corrected for fixed effects. Prediction 
accuracies were first obtained for each of the five vali-
dation populations, and subsequently the average of the 
five correlations was calculated. The bias was estimated 
as the regression coefficient of phenotypes corrected 
for fixed effects on GEBV.
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Results
Principal component analysis and relationships 
between breeds
Figure 1 shows the first two principal components, PC1 
and PC2. Visually, PC1 separated Holsteins and Jerseys, 
with the crossbreds, Australian Reds and Ayrshires, 
being spread between the Holstein and Jersey clusters. 
PC1 and PC2 explained 6.6% and 1.4% of the genetic 
relationship matrix (GRM) variance, respectively.

The average within- and between-population genomic 
relationships of the GRM constructed with either the 

HD or SEQ variants were similar (see Additional file  1: 
Table S1). Within populations, the average genomic rela-
tionships were weakest in crossbreds (0.02 in AUS and 
NZL using either HD or SEQ variants) and strongest in 
Ayrshires (ranging from 0.18 in AUS Ayshire using HD 
to 0.38 in NZL Ayrshire using SEQ variants). The aver-
age genomic relationships between AUS and NZ were 
low for Holsteins (0.01 using either HD or SEQ variants) 
and crossbreds (− 0.01 using either HD or SEQ variants), 
but higher for Jerseys (0.16 using either HD or SEQ vari-
ants) and Ayrshires (0.14 using HD and 0.20 using SEQ 
variants).

GWAS for QTL detection
Figure 2 compares the AUS GWAS with the NZL GWAS. 
Both GWAS revealed a peak on chromosome 11, with 
the most significant variant located at 103,271,858  bp 
in the AUS GWAS (p = 5.4 × 10–16), and 105,135,506 bp 
(p = 4.8 × 10–8) in the NZL GWAS. However, the peak 
detected with the AUS GWAS on chromosome 14 (top 
variant at 631,698  bp, p = 1.2 × 10–21) was not present 
in the NZL GWAS. The meta-GWAS (Fig.  3), com-
bining the AUS and NZL GWAS, showed peaks with a 
p-value ≤ 10–6 on chromosomes 1, 6, 11, 14, 19, 22, 26 
and the X chromosome, with the most significant vari-
ants located on chromosomes 11, 6 and 14. In total, there 
were 1244 significant variants detected in the meta-
GWAS, corresponding to a FDR of 0.01. Table 2 provides 
more details on the QTL detected in the meta-analysis. 
The most significant variant was a synonymous variant 
located in the glycosyltransferase 6 domain containing 

Fig. 1  First (PC1) and second (PC2) principal components. AUS_XXX 
Australian crossbred, NZL_XXX New Zealand crossbred, AUS_HOL 
Australian Holstein, NZL_HOL New Zealand Holstein, AUS_JER 
Australian Jersey, NZL_JER New Zealand Jersey, AUS_AYR​ Australian 
Ayrshire, NZL_AYR​ New Zealand Ayrshire, AUS_RED Australian Red

Fig. 2  Manhattan plot of within-country GWAS for Australia and New Zealand
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1 (GLT6D1) gene, located at 103,271,858  bp on chro-
mosome 11. This variant had p-values of 1.7 × 10–20, 
5.4 × 10–16 and 8.8 × 10–7 in the meta-analysis, AUS 
GWAS and NZL GWAS, respectively. There were many 
significant variants on chromosome 11, of which 720 
were located between 100,851,568 and 104,180,090  bp, 
encompassing multiple genes including progestagen-
associated endometrial protein (PAEP). The QTL region 
detected on chromosome 6 contained 225 significant var-
iants and spanned several genes, including casein alpha 
S1 (CSN1S1), casein alpha S2 (CSN1S2), casein beta 
(CSN2) and casein kappa (CSN3). The most significant 
variant was an intergenic variant located at 85,635,311 bp 
with a p-value of 1.9 × 10–11, 5.8 × 10–7 and 7.3 × 10–6 
in the meta-analysis, AUS GWAS and NZL GWAS, 
respectively. The third most significant QTL interval 
was located between 520,394 and 633,066  bp on chro-
mosome 14. The most significant variant, at 525,863 bp, 

was a downstream variant in ENSBTAG00000053637 
with p-values of 6.6 × 10–11, 9.3 × 10–19 and 9.3 × 10–1 in 
the meta-analysis, AUS GWAS and NZL GWAS, respec-
tively. The QTL region on chromosome 14 contained 
102 significant variants and included the diacylglycerol 
O-acyltransferase homolog 1 (DGAT1) gene. Additional 
file 2: Table S2 lists all the genes that are associated with 
significant variants in the detected QTL regions.

Selection of sequence variants
Figure 4 shows the number of variants per chromosome 
selected during each of the selection steps, using the full 
dataset to select SEQ variants. Out of the 15,081,121 var-
iants included in the meta-analysis and within-country 
GWAS, 7,703,884 (51%) had the same direction of effect 
in AUS and NZL. After LD pruning, 1,106,212 vari-
ants remained, with more variants located on the larger 

Fig. 3  Manhattan plot of Australian–New Zealand meta-GWAS

Table 2  QTL detected in the meta-analysis for MUN

MUN milk urea nitrogen, chr chromosome, pos position of most significant variant associated with the QTL, bp base pair according to the ARS-UCD1.2 annotation, 
pmeta p-value in meta-analysis, pAUS p-value in Australian GWAS, pNZL p-value in New Zealand GWAS, annotation the annotation of the most significant variant, genes 
the gene in which the most significant region is located or the genes between which an intergenic variant is located, start and end start and end of QTL interval, N 
number of variants with p-values ≤ 10–6 within the QTL interval

Chr Pos (bp) pmeta pAUS pNZL Annotation Genes Start (bp) End (bp) N

1 148,821,034 8.2 × 10–10 2.1 × 10–5 8.7 × 10–6 Intergenic CLDN14-RF00001 148,009,827 149,831,239 62

6 77,564,636 8.7 × 10–7 1.1 × 10–3 2.0 × 10–4 Intron ADGRL3 77,558,465 77,564,636 2

6 81,099,934 9.3 × 10–10 5.0 × 10–6 4.5 × 10–5 Intron EPHA5 81,099,934 84,329,940 35

6 85,635,311 1.9 × 10–11 5.8 × 10–7 7.3 × 10–6 Intergenic ODAM-CSN3 85,389,494 86,548,307 225

11 103,271,858 1.7 × 10–20 5.4 × 10–16 8.8 × 10–7 Synonymous GLT6D1 100,851,568 104,180,090 720

11 105,520,434 9.6 × 10–7 3.8 × 10–4 7.4 × 10–4 Intergenic ENSBTAG00000054425-OLFM1 105,520,433 105,520,434 2

14 525,863 6.6 × 10–11 9.3 × 10–19 9.3 × 10–1 Downstream ENSBTAG00000053637 520,394 633,066 102

19 47,763,063 9.5 × 10–7 6.5 × 10–4 4.2 × 10–4 Downstream TANC2 47,763,063 47,763,063 1

22 47,184,592 5.8 × 10–8 5.8 × 10–8 – Intron CACNA1D 47,163,588 47,286,336 36

26 21,278,969 3.6 × 10–7 1.4 × 10–4 7.0 × 10–4 3ʹUTR​ SCD 21,277,195 21,284,652 10

X 16,376,624 2.2 × 10–7 7.2 × 10–7 2.2 × 10–2 Intergenic MBNL3-HS6ST2 16,366,703 16,376,624 6

X 31,227,651 6.4 × 10–7 1.3 × 10–3 1.2 × 10–4 Intron AFF2 31,175,135 31,227,651 12

X 54,324,305 7.2 × 10–7 1.6 × 10–4 1.3 × 10–3 Intergenic ENSBTAG00000009457-ENS-
BTAG00000045756

54,324,305 54,324,305 1

X 106,058,470 5.7 × 10–9 2.9 × 10–6 4.3 × 10–4 Upstream PRRG1 105,580,018 108,413,114 30
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chromosomes. SEQ variants were spread over all the 
chromosomes, with between 738 and 3047 variants per 
chromosome. Chromosomes 11, X and 6 contained the 
largest numbers of variants, with 3047, 2920 and 2494 
variants, respectively. The p-values of the selected vari-
ants ranged from 2.3 × 10–17 to 0.019.

Selecting variants within the reference populations 
designed for the cross-validation process resulted in 
five different sets of 50,000 variants each. Additional 
file 3: Figure S1 shows the overlap between these sets of 
selected sequence variants. In total, 16,041 selected vari-
ants were common to the five reference populations, and 
between 8404 to 8897 variants were unique to each of the 
reference populations.

Genetic parameters of SEQ and HD variants
Table 3 shows the heritabilities of MUN using the differ-
ent sets of variants and the genetic correlation between 
MUN in AUS and MUN in NZL. Heritabilities were 
higher when only the SEQ variants were used than when 
HD variants were used, with heritabilities of 0.26 ± 0.01 
(AUS) and 0.44 ± 0.01 (NZL) using the SEQ variants 
and 0.11 ± 0.01 (AUS) and 0.30 ± 0.01 (NZL) using the 
HD variants. The genetic correlation between MUN 

in AUS and in NZL increased substantially using the 
SEQ variants, from 0.27 ± 0.07 using the HD variants to 
0.95 ± 0.02 using the SEQ variants. Similar genetic corre-
lations were obtained in the cross-validation folds, rang-
ing from 0.30 to 0.36 for the HD variants and from 0.93 
to 1.00 for the SEQ variants.

In the bivariate analyses to estimate the genetic correla-
tion between MUN in Australia and MUN in New Zea-
land, a core set of 9157 animals was required to explain 
95% of the variance of G . Additional file 4: Table S3 pro-
vides the breed and country composition of the animals 
that were selected for the core set.

Fig. 4  Number of variants per chromosome for different sets of variants. a shows all variants used in the meta-analysis, b variants in a that had 
the same direction of effect in the Australian and New Zealand GWAS, c variants in b after pruning for linkage disequilibrium (LD) and d the 50,000 
variants in c that had the smallest p-value in the meta-analysis

Table 3  Heritability of and genetic correlation between MUN in 
Australia and in New Zealand ( rg , AUS − NZL ) using high-density 
and sequence variants

Heritabilities and genetic correlations were estimated using either the routine 
high density bovine SNP chip (HD) or 50,000 selected sequence variants (SEQ). 
Heritabilities were estimated using Australian ( h2

AUS
 ) or New Zealand ( h2

NZL
 ) data. 

Estimates are followed by their standard error

Parameter HD SEQ

h2AUS 0.11 ± 0.01 0.26 ± 0.01

h2NZL 0.30 ± 0.01 0.44 ± 0.01

rg,AUS−NZL 0.27 ± 0.07 0.95 ± 0.02
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Genomic prediction accuracy and bias
Figure  5 shows the genomic prediction accuracies aver-
aged over the five folds. The accuracies for each fold are in 
Additional file 5: Table S4. Using HD variants, the multi-
country reference population increased the prediction 
accuracy in the NZL cows compared to the within-country 
reference population, from 0.23 to 0.30 for NZL Holstein 
and from 0.25 to 0.30 for NZL Jersey. For the AUS valida-
tion cows, the multi-country reference population yielded 
slightly lower accuracies than the within-country reference 
population: the accuracy decreased from 0.18 to 0.17 in 
AUS Holstein, and from 0.16 to 0.14 in AUS Jersey.

Using the SEQ variants instead of the HD variants 
resulted only in minor changes in accuracy using the 
within-country reference populations. However, the 
SEQ variants did substantially increase the accuracy 
in all populations using the multi-country reference 
population. Averaged across populations, accuracies 
obtained with the SEQ variants were equal to 0.20 
using a within-country reference population and 0.39 
using a multi-country reference population.

The SEQ variants increased the bias substantially 
when a within-country reference population was used 
(Fig.  6). For example, the regression coefficient for 
within-country prediction in AUS Holstein was 1.01 
with the HD variants and 0.44 with the SEQ variants. 
However, for multi-country prediction the biases using 
the SEQ variants were similar to or smaller than those 
obtained with the HD variants. For multi-country 
prediction in NZL Holstein, a regression coefficient 
of 1.27 was obtained using the HD variants which 
decreased to 0.95 when using the SEQ variants.

Discussion
We detected several QTL for MUN and showed how 
sequence variants that were selected based on GWAS for 
MUN can be used to substantially increase the prediction 
accuracy for MUN in AUS and NZL when using a multi-
country reference population.

GWAS on AUS and NZL cows
Interestingly, while several peaks were present in both 
the AUS and NZL GWAS, the major peak in the AUS 
GWAS that was on chromosome 14 was not present in 
the NZL GWAS. The relatively low genetic correlations 
between MUN in AUS and in NZL [5] indicate that 
MUN in AUS and MUN in NZL may not, from a genetic 
perspective, be considered as the same trait. Hence, dif-
ferences in GWAS were expected. The peak on chromo-
some 14 included variants that are located in the DGAT1 
gene, a major QTL associated with fat yield in dairy cat-
tle [32]. MUN in AUS has a significant correlation with 
fat yield, while this is not the case for MUN in NZL [5], 
which may explain why the peak on chromosome 14 was 
present in the AUS but not in the NZL GWAS.

QTL detected for MUN
We detected 14 QTL located on eight chromosomes 
with p-values ≤ 10–6 in the meta-analysis. The largest 
three QTL intervals, on chromosomes 6, 11 and 14, all 
included well-known QTL associated with milk traits 
in dairy cattle [32–35]. The most significant QTL inter-
val detected on chromosome 6, between 85,389,494 and 
86,548,307  bp, overlaps with a QTL detected for MUN 

Fig. 5  Genomic prediction accuracy comparing reference 
populations and sets of variants. WC_HD within country reference 
population, using variants on the Illumina Bovine HD BeadChip 
(HD), WC_SEQ within country reference population, using selected 
sequence variants (SEQ), MC_HD multi country reference population, 
using HD variants, MC_SEQ multi country reference population, using 
SEQ variants, AUS_HOL Australian Holstein cows, AUS_JER Australian 
Jersey cows, NZL_HOL New Zealand Holstein cows, NZL_JER New 
Zealand Jersey cows

Fig. 6  Genomic prediction bias comparing reference populations 
and sets of variants. WC_HD within country reference population, 
using variants on the Illumina Bovine HD BeadChip (HD), WC_SEQ 
within country reference population, using selected sequence 
variants (SEQ), MC_HD multi country reference population, using 
HD variants, MC_SEQ multi country reference population, using SEQ 
variants, AUS_HOL Australian Holstein cows, AUS_JER Australian Jersey 
cows, NZL_HOL New Zealand Holstein cows, NZL_JER New Zealand 
Jersey cows
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by Ariyarathne et  al. [13]. While the most significant 
variant in this QTL was an intergenic variant, the interval 
included the casein genes CSN1S1, CSN1S2, CSN2 and 
CSN3, which are associated with milk production traits 
[33, 34]. The most significant QTL interval on chromo-
some 11 overlapped with another QTL reported by Ari-
yarathne et  al. [13]. This interval was located between 
100,851,568 and 104,180,090  bp, with a synonymous 
variant located in the GLT6D1 gene as the most signifi-
cant variant. GLT6D1 is associated with periodontitis 
in humans [36]. The QTL interval also included PAEP, 
a gene that is assumed to underlie a well-known QTL 
associated with milk production traits in dairy cattle [35]. 
Another gene in this QTL interval is alpha 1-3-N-acetyl-
galactosaminyltransferase and alpha 1-3-galactosyltrans-
ferase (ABO), which determines blood type in humans 
[37] and has been associated with protein yield in dairy 
cattle [38]. van den Berg et  al. [39] reported an overlap 
between an eQTL for ABO and a QTL for protein yield 
and protein percentage in dairy cattle. The most sig-
nificant variant on chromosome 14 was a downstream 
variant in ENSBTAG00000053637, and that QTL inter-
val included DGAT1, a major QTL for milk production 
traits in dairy cattle [32]. The most significant variant on 
chromosome 26 was located in the 3’UTR region of the 
stearoyl-CoA desaturase (SCD) gene that has previously 
been associated with MUN [15] and milk fatty acid com-
position [40].

Selection of sequence variants and genomic prediction
Several previous studies have demonstrated that sequence 
variants selected from a GWAS can be used to improve 
the accuracy of genomic prediction [9–11], as we did for 
MUN. The strategy that we used to select SEQ variants 
was very similar to that used by Porto-Neto et  al. [10], 
who selected the top 10% variants from 71,726 SNPs that 
had the same direction of effect in two beef cattle breeds 
and achieved substantial increases in the proportion of 
variance explained by the variants, in genetic correlations 
between populations and in genomic prediction accuracy. 
However, the sequence variants selected by Porto-Neto 
et al. [10] also resulted in an increase in bias using a multi-
breed reference population. MacLeod et  al. [41] showed 
that using the same set of animals for the selection of 
sequence variants and the reference set used for genomic 
prediction can lead to increases in bias. In our study, the 
SEQ variants helped to achieve increases in the propor-
tion of variance explained, in genetic correlations between 
populations and in genomic prediction accuracy for multi 
country prediction, without increasing the bias. Exclud-
ing the validation animals from the GWAS likely helped 
to limit the bias. However, using the SEQ variants did 
increase bias when used for within-country prediction. 

Given that the variants in SEQ were selected for the spe-
cific purpose of multi-country prediction and not for 
within-country prediction, the increased bias observed 
for within-country prediction may not be a concern.

Both the heritability and genetic correlation between 
AUS and NZL were substantially higher with the SEQ 
than the HD variants. A possible explanation for this 
observation could be that the SEQ variants may be closer 
to the causal mutations for MUN than the HD vari-
ants, resulting in a larger proportion of the genetic vari-
ance being captured by the SEQ variants than by the HD 
variants. Alternatively, several studies have shown that 
using genomic markers to estimate heritability can lead 
to upward biased estimates compared to heritabilities 
estimated using pedigree data [42, 43]. The observed 
increase in genetic correlation using SEQ variants may 
reflect that when prediction markers are closer to the 
causal mutations, the probability that LD is conserved 
between populations increases, resulting in a higher 
genetic correlation and prediction accuracy. However, 
estimates of the genetic correlation using genomic data 
may be biased, especially when estimating genetic cor-
relations across populations [44]. However, Wientjes 
et al. [44] found that biases in genetic correlations across 
populations were mostly downward. Furthermore, select-
ing variants with the same direction of effect in AUS and 
NZL probably caused an upward bias in the estimate of 
the genetic correlation. Hence, while the increased her-
itability and genetic correlation using SEQ variants may 
represent useful indicators for the increased prediction 
accuracy, caution should be taken when interpreting 
genomic parameters based on genomic markers.

While the genetic correlation between populations 
increased using SEQ variants, the genomic relationships 
in the SEQ GRM were largely similar using either the HD 
or SEQ variants. Larger differences were observed for 
Ayrshires and Australian Reds, but their small datasize 
makes it difficult to interpret these differences, and exclu-
sion of Australian Reds and Ayrshires in the genomic 
prediction analyses did not have a substantial impact on 
the prediction accuracy using either HD or SEQ vari-
ants (differences in accuracy < 0.01; results not shown). 
Interestingly, the genomic relationships between AUS 
and NZL populations indicated that while the genetic 
links between AUS and NZL Holsteins and crossbreds 
are small, the AUS and NZL Jerseys showed stronger 
genomic relationships.

Although the results using the SEQ variants for multi-
country prediction are promising, we tested our approach 
only for the specific purpose of combining AUS and 
NZL data for MUN. Hence, results may be different for 
other traits and when combining different populations, 
such as multiple breeds, and further testing is required 
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to investigate whether the strategy used to select SEQ 
variants can help increase prediction accuracy for a wider 
range of traits and populations.

The discovery populations used to select the SEQ vari-
ants were the same as the reference populations used for 
genomic prediction, and reference and validation popula-
tions were highly related due to the design of the cross-
validation scheme and the available data for this study. 
For example, it was possible for half sisters to be pre-
sent in both the reference and validation populations in 
the same fold, which likely resulted in higher accuracies 
compared to cross-validation designs where reference 
and validation populations are less related. The promis-
ing results that we obtained in terms of increased genetic 
correlation and genomic prediction using a meta-GWAS 
and a joint reference population of AUS and NZL cows 
need to be assessed when validation cows are selected 
based on date of birth and when validation cows that are 
less related to the reference population are used. Further-
more, it will be useful to confirm our results by selecting 
variants from a dataset that does not include animals in 
the reference population used for genomic prediction as 
recommended in [41]. We did not test different discov-
ery, reference and validation population designs because 
of the relatively small data size for MUN, especially for 
pure NZL HOL and JER cows.

Conclusions
Our results demonstrate how, in spite of the low genetic 
correlation between MUN measured in two countries 
using a standard SNP chip, sharing data from differ-
ent sources internationally can be beneficial to increase 
the power of a GWAS and to increase the accuracy of 
genomic prediction using a multi-country reference pop-
ulation and sequence variants selected based on GWAS. 
Our approach of selecting sequence variants to increase 
prediction accuracy may be useful for multi-breed and 
multi-country prediction, but first this needs to be tested 
on a wider range of traits and populations.
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