MRN1 Implicates Chromatin Remodeling Complexes and Architectural Factors in mRNA Maturation

Louis Düring ${ }^{1 \times a}$, Michael Thorsen ${ }^{1}$, Darima Sophia Njama Petersen ${ }^{1}$, Brian Køster ${ }^{1 \times b}$, Torben Heick Jensen ${ }^{2}$, Steen Holmberg ${ }^{1 *}$
1 Department of Biology, Copenhagen BioCenter, University of Copenhagen, Copenhagen, Denmark, $\mathbf{2}$ Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus, Denmark

Abstract

A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp644 mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp644 cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts 16 nhp644 cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp644) as a growth suppressor of rsc nhp644 synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between $2 \mu \mathrm{~m}$-MRN1 and the splicing deficient mutants snt3094, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing.

Citation: Düring L, Thorsen M, Petersen DSN, Køster B, Jensen TH, et al. (2012) MRN1 Implicates Chromatin Remodeling Complexes and Architectural Factors in mRNA Maturation. PLoS ONE 7(9): e44373. doi:10.1371/journal.pone. 0044373
Editor: Sue Cotterill, St. Georges University of London, United Kingdom
Received December 22, 2011; Accepted August 6, 2012; Published September 18, 2012
Copyright: © 2012 Düring et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: L.D. was supported by a Ph.D. stipend from the Faculty of Natural Sciences, University of Copenhagen, T.H.J. was supported by the Danish National Research Foundation (Grundforskningsfonden), and S.H. was supported by grants from the Danish Research Councils, The Carlsberg Foundation and Manufacturer Vilhelm Pedersen and Wife Memorial Legacy (this support was granted on recommendation from the Novo Nordisk Foundation). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: This study was funded in part by Manufacturer Vilhelm Pedersen and Wife Memorial Legacy. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials.

* E-mail: gensteen@bio.ku.dk
a current address: Evolva Biotech A/S, Copenhagen, Denmark
ab Current address: Danish Cancer Society, Copenhagen, Denmark

Introduction

In eukaryotes, DNA is packaged into chromatin, which can inhibit the accessibility of DNA binding factors to their cognate sites in vivo. Thus, chromatin structural changes play a central role in controlling gene transcription as the formation of transcripts must contend with the repressive chromatin [1]. For active transcription to take place nucleosomes, the basic units of chromatin, need to be remodeled. ATP-dependent remodelers containing a catalytic subunit belonging to the Swi2/Snf2 family of ATPases, induce conformational changes in nucleosomes by altering histone-DNA interaction. In the Swi2/Snf2 family four different subclasses of remodelers are recognized: SWI/SNF, ISWI, CHD and INO80, that are all conserved from yeast to metazoans [2]. The yeast Saccharomyces cerevisiae contains the founding family member, SWI/SNF, and the highly related RSC (remodels the structure of chromatin) complex. RSC is abundant and holds fifteen-subunits with central roles in transcription [3,4], DNA repair [5] and chromosome segregation [6]. Moreover, a genome-wide location analysis indicated that RSC is recruited to both RNA polymerase II (RNAPII) and RNA polymerase III (RNAPIII) promoters [7] and recently it was shown that RSC regulates nucleosome positioning at RNAPII genes and nucleosome density at RNAPIII genes [8].

The S. cerevisiae chromatin architectural factors and histone modifiers Nhp6A/B are related to the high-mobility group 1 (HMG1) family of small, abundant chromatin proteins that lack sequence specificity of DNA binding, but bend DNA sharply and modulate gene expression [9]. Nhp6 is encoded by two genes, NHP6A and NHP6B, which are functionally redundant. Consequently, only the $n h p 6 A$ nhp $6 B$ double deletion mutant (nhp64 Δ mutant) is temperature sensitive for growth [10]. Nhp6p is important for activation and repression of transcription of several RNAPII genes [11] and promote transcriptional elongation as part of the FACT complex [12]. Of significance in the context of this paper, Nhp6 is important for expression of the SNR6 gene, encoding the U6 snRNA transcribed by RNAPIII [13,14].

The human SWI/SNF subunit BAF57 contains a HMG box domain similar to the one present in Nhp6, which is not found in the yeast complex [15] and the Drosophila BRM component Bapl11 is also a HMG-domain protein [16]. In yeast, NHP6 interacts genetically with both SWI/SNF and RSC [17], both RSC and Nhp6 have a repressive effect on the expression of CHA1 [3,11] and data from transcriptome analysis of swi/snf and nhp6 4 mutants, partly overlap [11]. Furthermore, RSC components interact with Nhp6A in vitro and facilitate the loading of Nhp6A onto nucleosomes [17].

A connection between chromatin dynamics and mRNA processing has previously been suggested [18]. The SWI/SNF complex has been linked to alternative pre-mRNA splicing [19,20]. In higher eukaryotes pre-mRNA splicing is suggested to be a co-transcriptional event [21,22]. In yeast splicing mainly occurs post-transcriptionally, but initiation of spliceosome assembly and removal of introns from genes with long second exons are probably co-transcriptional events [23,24]. The spliceosome consists of 5 snRNPs (small nuclear ribonucleoprotein particles (U1, U2, U4, U5, U6)) as well as non-snRNP proteins [25,26]. Brgl, a subunit of the mammalian orthologue of the yeast SWI/ SNF complex interacts with hPrp4, a U5 snRNP-associated kinase [27]. Brm, also a subunit of the mammalian orthologue of the yeast RSC (SWI/SNF) complex, was found upon over-expression to favor inclusion of variant exons in the mRNA and to associate with both U1- and U5-snRNP as well as with coding regions of intron-containing genes [20]. Brm in insect cells was shown to be associated with nascent pre-mRNA's and to regulate the type of alternative transcripts produced [19]. $\mathrm{Brm}, \mathrm{Brg} 1$ and additional SWI/SNF-related polypeptides associate with chicken supraspliceosomes [28]. Included in the supraspliceosome is the NineTeen Complex (NTC), which functions in spliceosome activation by specifying the interaction of U5 and U6 with pre-mRNA for their stable association with the spliceosome after U1 and U4 dissociation [29,30].
Here we take a genetic approach and discover an interplay between HMG proteins, chromatin remodeling factors and mRNA maturation. We show that rsc nhp644 triple mutants accumulate pre-mRNA and demonstrate that rsco-ts16 nhp644 cells display low levels of the U4/U6 snRNA dimer and of total U6 snRNA. Thus, a link between chromatin remodelers, architectural factors and mRNA maturation is established.

Results

Chromatin remodeling complexes and Nhp6 interact genetically

In Saccharomyces cerevisiae, the remodeling complex RSC and the architectural factors Nhp6 have a repressive effect on the chromatin structure at the CHA1 locus [3,11]. Release of both RSG- and Nhp6-dependent repression results in increased transcript levels of CHA1 mRNA, suggesting that RSC and Nhp6 co-operate in CHA1 repression [3,11]. To identify further relationships between RSC and Nhp6, we tested whether NHP6 genetically interacts with RSC or SWI/SNF and found that the swi24 nhp644 and rsco-ts 21 nhp64 4 triple mutants exhibited a synthetic sickness phenotype compared to their cognate single and double mutants (Figure 1A and Figure 1B). The combination of $r s c$ mutations rsco-ts16, sfh1-1, sth1-3ts, rsc14 or rsc24 and swi/snf mutations swi34, snf54 or snf64 with nhp644 also resulted in reduced growth (Table 1). Thus, the architectural factor Nhp6 shares functionality with RSC and SWI/SNF.

Multi-copy growth suppression screen of rsc8-ts16 nhp644 yields MRN1

Next we performed a suppression screen of the rsco-ts 16 nhp644 synthetic sickness phenotype. Using a Yep24-based ($2 \mu \mathrm{~m}$) genomic library [31] we isolated YPL184c as a multi-copy suppressor (Figure 1C) and named it MRN1 for multi-copy suppressor of $\underline{r} s c \underline{n} h p 6$. Western blot analysis of Myc-tagged $2 \mu m$ MRN1 confirmed increased levels of the Mrn1 protein (Figure 1D). Multi-copy MRN1 was able to suppress the growth defect of all tested rsc nhp6 and swi/snf nhp 6 triple mutants except rsc24 nhp64
(Table 1). The latter result is likely indicative of the inability of the $r s c 2 \Delta$ mutant to maintain $2 \mu \mathrm{~m}$ plasmids [32].

The Mrnl protein is predicted to be 612 amino acids long and to contain as many as five RNA Recognition Motifs (RRMs, Figure 1E). Four of these are arranged in pairs and within each pair the RRMs are separated by a short linker (~ 23 amino acids, Figure 1E). Present in all kingdoms of life, and most abundantly in eukaryotes, RRM domains are able to bind RNA and also DNA and protein(s) [33]. In addition to the predicted RRM domains, Mrnl contains an N-terminal region rich in asparagine (91% between amino acids 6 and 28, Figure 1E), a region rich in glutamine (44% between amino acids 98 and 125, Figure 1E) and two regions rich in alanine ($40-55 \%$ between amino acids $171-$ 189 and amino acids 407-422 respectively, Figure 1E).

Cellular location of Mrn1

The cellular location of Mrnl-GFP expressed from its genomic location has been reported to be cytoplasmic [34] (http://yeastgfp. ucsf.edu/)). Using the same Mrnl-GFP tagged strain we also observed Mrnl located primarily in the cytoplasm both at $25^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ (Figure 2A). However, in these cells we estimated that approximately 5% of Mrnl is nuclear (M. Lisby, personal communication). To unambiguously detect Mrnl in the nucleus, we analyzed Mrn1 localization in the temperature-sensitive mex675 mRNA export deficient mutant [35]. In the mex67-5 genetic background we detected Mrn1-GFP accumulation in the nucleus at $37^{\circ} \mathrm{C}$ in approximately 95% of the cells (Figure 2A and Figure 2B). This demonstrates that Mrn1 is located both in the nucleus and the cytoplasm.

Genetic link between chromatin, MRN1 and mRNA processing

To substantiate the genetic link between MRN1 and chromatin remodeling complexes, we combined mm14 with swi2d or $n h p 6 \Delta \Delta$, respectively. We found that the mm14 swi24 combination resulted in synthetic sickness on plates containing 3% formamide (Figure 3A), which is known to cause transcriptional stress, and that the mm1 $1 \Delta n h p 6 \Delta \Delta$ triple deletion was sick at $37^{\circ} \mathrm{C}$ (Figure 3B). In contrast, the mrn14 snf54 or mm14 rsc24 combinations did not reveal enhanced growth defects (data not shown).

The presence of RRM domains in Mrnl could suggest a possible role of the protein in mRNP maturation. Interestingly, an ongoing Synthetic Genetic Array (SGA) screen with mrn14 as query linked MRN1 genetically to several splicing deficient mutants (SGA screen to be published elsewhere). Thus, combining $m m 14$ and the snt 3094 mutant deleted of the NineTeen Complex (NTC) subunit Snt309 resulted in synthetic sickness (Figure 3C). Snt309 associates with the spliceosome simultaneously with or immediately after dissociation of U 4 [36] and the snt3094 mutant has a splicing defect that results in the accumulation of introncontaining pre-mRNA at the non-permissive temperature in vivo [36]. Also, we found that $2 \mu m-M R N 1$ interacted genetically with snt3094 as $2 \mu m-M R N 1$ suppressed the ts-phenotype of the snt3094 mutant strain (Figure 3D). The synthetic sickness of mm14 snt3094 indicated that multi-copy MRN1 suppression of the ts-phenotype of snt3094 mutant reflects relevance for endogenous MRN1 function. Constanzo et al. recently reported that mm14 interacts genetically with prp4-1, prp22, and snt3094 [37]. Interestingly, $2 \mu m-M R N 1$ also suppressed the ts-phenotype of $p r p 22$ (Figure 3E), $p r p 4-1$ (Figure 3F) and $p r p 3-1$ (data not shown). As $2 \mu m-M R N 1$ suppressed the swi/snf and the rsc nhp644 triple mutants as well as snt3094 mutant, we examined whether rsc, swi/ snf or nhp644 interacted genetically with snt3094 and found that both snf54 snt3094 and rsc24 snt3094 double mutants were

Figure 1. Synthetic sickness of swi/snf nhp64A and rsc nhp64A triple mutants is suppressed by $2 \mu m-M R N 1$. (A) and (B) Cells ten-fold serially diluted, spotted on SC plates and incubated for four days. Wild type: SG632; swi24: SG418; nhp644: SG727; swi24 nhp644: SG759; wild type: SG358; rsc8-ts21: SG359; nhp644: SG394; rsc8-ts21 nhp644: SG658. Colony rows compared in the same panel derives from one plate. (C) Ability of $2 \mu m-M R N 1$ to suppress rsc8-ts16 nhp644. Cells streaked on SC-His plates and incubated for four days. Shown on the plates are two transformants containing $2 \mu m$-vector and four transformants containing $2 \mu m-M R N 1$. rsc8-ts16 nhp644: SG657; $2 \mu m$-vector: pTK839; $2 \mu m-M R N 1$: pTK1395. (D) Western blot analysis to visualize levels of endogenously expressed and $2 \mu \mathrm{~m}$ expressed Mrn1-Myc. Rpb3-HA serves as a loading control. Untagged strain TG694 and tagged strain SG640 containing either pTK839 or pTK1423. Two $\mu \mathrm{g}$ of whole cell extract was separated on a SDS-PAGE and transferred to a mixed cellulose ester membrane and immunoblotted with anti-HA or anti-Myc antibody as indicated. (E) A schematic representation of the predicted domains and identified regions in Mrn1 (See text for details).
doi:10.1371/journal.pone.0044373.g001
synthetic sick (Figure 3G). In agreement with this, Cairns and coworkers reported genetic interaction between snt3094 and rsc74 [38]. We also revealed a synthetic lethal interaction between snt 3094 and nhp644 by tetrad analysis. Out of 21 tetrads 12 did not contain the triple mutant and the remaining 9 each had 3 viable spores and the missing spore would have been the triple mutant (data not shown). To establish that snt3094 and nhp644
indeed are synthetic lethal, an snt3094 nhp644 heterozygous diploid was transformed with a URA3 containing plasmid expressing $N H P 6$. After dissection, genotype verification, and spot assay we found that snt3094 nhp644 spores were unable to grow on 5-FOA (Figure 3H). However, Snt309p and Mrnlp are not functionally redundant as high-copy SNT309 did not suppress the growth defect of the rsco-ts16 nhp 64Δ triple mutant (data not

Table 1. $2 \mu m-M R N 1$ Suppresses rsc nhp6 and swi/snf nhp6 Synthetic Sickness.

Complex	Genotype	Synthetic sick	$2 \mu m-M R N 1$ suppression	Restrictive temperature
RSC				
	rsc14 nhp644	Yes	Yes	36°
	rsc24 nhp644	Yes	No	36°
	rsc8-ts16 nhp644	Yes	Yes	34°
	rsc8-ts21 nhp644	Yes	ND	31°
	sfh1-1 nhp64	Yes	ND	32°
	sth1-3ts nhp644	Yes	Yes	35°
SWI/SNF				
	swi24 nhp644	Yes	Yes	35°
	swi34 nhp644	Yes	ND	35°
	snf5 4 nhp644	Yes	ND	36°
	snf64 nhp644	Yes	ND	31°

[^0]

Figure 2. Mrn1-GFP accumulates in the nucleus in a mex67-5 mutant at $37^{\circ} \mathbf{C}$. MRN1-GFP and mex67-5 MRN1-GFP cells were harvested after growth in SC medium at $25^{\circ} \mathrm{C}$ or after 30 min incubation at $37^{\circ} \mathrm{C}$. For each genotype and growth condition, 100-200 cells were inspected. Error bars indicate 95\% confidence intervals. SG1008: mex67-5 MRN1-GFP ADH1p-NLS-yEmRFP::URA3 and SG1010: MRN1-GFP ADH1p-NLS-yEmRFP::URA3. doi:10.1371/journal.pone.0044373.g002
shown). In addition, Mrnl does not share genetic functionality with the RRM-containing Prp24 which mediates the re-annealing of the U4/U6 dimer [39] as high-copy MRN1 did not complement a prp24D mutant: dissection of 15 tetrads of a prp244 heterozygous diploid harboring $2 \mu m$-MRN1 (pTK1395) all segregated 2:0 for viability. In conclusion, the genetic interactions shown in Figure 3 suggest a role for Mrn1, RSC, SWI/SNF and architectural factors in mRNA maturation.
rsc8-ts16 nhp64 Δ cells accumulate intron-containing premRNA

To analyze if the rsc nhp 6 mutation influences the amounts of intron-containing pre-mRNA in vivo we isolated total RNA from rsco-ts16 nhp64 4 and snt3094 (as control) mutant strains grown at $25^{\circ} \mathrm{C}$ and after a two-hour incubation at $37^{\circ} \mathrm{C}$. A Northern blot was probed for the intron-containing ECM33 pre-mRNA and the ECM33 3' exon mRNA (Figure 4A - see Figure Sl for position of probes). Increased levels of pre-mRNA were observed in both mutants at $25^{\circ} \mathrm{C}$ and this increase was exacerbated after a two hour incubation at $37^{\circ} \mathrm{C}$. We also observed that the amount of mature ECM33 mRNA at $37^{\circ} \mathrm{C}$ was strongly decreased in the two mutant strains as compared to wild type. The same analysis of the RPS11B pre-mRNA and mRNA also revealed that pre-mRNA levels in both mutants at $30^{\circ} \mathrm{C}$ were increased compared to the wild type and the levels of both pre-mRNAs were further increased after two hours incubation at $37^{\circ} \mathrm{C}$. Again, the increase in RPS11B pre-mRNA were accompanied by a decrease in mature mRNA (Figure 4B). To extend the analysis we measured the ratio of premRNA to 3^{\prime} exon mRNA by Reverse Transcriptase quantitativePCR (RT-qPCR) of ECM33 transcripts. Indeed, the rsco-ts 16 nhp604 triple mutant had increased in vivo pre-mRNA/3'exon ratio of the ECM33 transcript already at $25^{\circ} \mathrm{C}$ and this effect was dramatically enhanced after two hours at $37^{\circ} \mathrm{C}$ (Figure 4C). Although a small (1.5-fold) increase in overall transcription of ECM33 in the reco-ts 16 nhp6 6Δ mutant was seen, the 55 -fold relative increase in the unspliced ECM33 pre-mRNA at $37^{\circ} \mathrm{C}$ is 36
times higher than that of the relative increase in total ECM33 mRNA (compare Figure 4D and Figure 4E). Interestingly, the premRNA accumulation phenotype at $37^{\circ} \mathrm{C}$ of $r s c 8-t s 16$ nhp $6 \Delta \Delta$ cells was partly suppressed by $2 \mu m-M R N 1$ (Figure 4C). Similarly, RTqPCR analysis of the three intron-containing genes $A C T 1, A S C 1$ and $R P S 11 B$ in the $r s c o-t s 16$ nhp64D mutant revealed an accumulation of their pre-mRNA's at $25^{\circ} \mathrm{C}$ and exceedingly more so after incubation at $37^{\circ} \mathrm{C}$ for 2 hours (Figure 4C). Again, the relative increase in total RNA levels at $37^{\circ} \mathrm{C}$ was lower (2-5-fold) than the relative increase in pre-mRNA levels (14-60-fold) (compare Figure 4D and Figure 4E). Furthermore, overexpressed Mrnl modestly suppressed the accumulation of ACT1, ASC1, and $R P S 11 B$ pre-mRNA at $37^{\circ} \mathrm{C}$ (Figure 4C). Analyses of all four intron-containing transcripts in the rsc14 nhp64D and snt3094 mutants revealed a similar accumulation of pre-mRNA at $25^{\circ} \mathrm{C}$ and exceedingly more so after incubation at $37^{\circ} \mathrm{C}$ for two hours (Figure S2). Importantly, accumulation of ECM33, ACT1, ASC1, RPS11B pre-mRNAs did not generally occur in single rsc mutants or in the double $n h p 6$ deletion strain (Figure S3). Thus, rsc nhp6 triple mutants exhibited an mRNA maturation deficiency, which was aggravated after a two hour incubation at $37^{\circ} \mathrm{C}$. In addition to suppression of the temperature sensitivity of the rsc nhp 6 triple and snt3094 strains, Mrnl over-expression also modestly suppressed the pre-mRNA accumulation exhibited by the mutants.

Reduced U4/U6 dimer snRNA levels in rsc nhp64 4 cells

In wild type cells U6 snRNP is in excess of U4 snRNP, but reduced levels of U6 is a common phenotype in strains with mutations in genes encoding U6, U4/U6, or tri-snRNP components including Prp3, Prp4, Prp19, Prp24, Prp38 and Lsm proteins [40,41,42,43,44,45,46]. Apparently, in these mutant strains the U4/U6 complex is destabilized. Specifically, in snt3094 mutant cells the U4/U6 dimer is destabilized, resulting in accumulation of free U4 and decreased levels of total U6 and in failure of spliceosome recycling due to impaired U4/U6 biogenesis [47]. This is underscored as over-expressed U6 suppresses the tsphenotype of snt3094 [47]. In addition, we found that $2 \mu m-S N R 6$

Figure 3. Genetic interactions linking MRN1 and chromatin mutants to pre-mRNA splicing. (A) mrn14 is synthetic sick with swi24. Cells ten-fold serially diluted, spotted on SC plates or SC plates
containing 3% formamide and incubated for four days at 30°. swi24: SG418; mrn14: SG520; wild type: SG632 and mrn14 swi24: SG766. (B) $m r n 14$ is synthetic sick with nhp644. Cells ten-fold serially diluted, spotted on SC plates and incubated for four days at the indicated temperatures. mrn14: SG520; wild type: SG632; nhp644: SG727 and mrn14 nhp644: SG762. (C) mrn14 snt3094 cells are synthetic sick. Cells ten-fold serially diluted, spotted on SC plates and grown at the indicated temperatures for four days. mrn14: SG912; wild type: SG632; snt3094: SG648; mrn14 snt3094: SG920. (D) The temperature sensitivity of snt3094 is suppressed by $2 \mu m-M R N 1$. Cells ten-fold serially diluted, spotted on SC-His plates and incubated for four days at the indicated temperatures. Wild type: SG632; snt3094: SG648; $2 \mu m$-vector: pTK839; $2 \mu m-M R N 1:$ pTK1395. (E) The temperature sensitivity of prp22 is suppressed by $2 \mu m-M R N 1$. Cells ten-fold serially diluted, spotted on SCHis plates and incubated for four days at the indicated temperatures. Wild type: SG682; prp22: SG840; $2 \mu \mathrm{~m}$-vector: $\mathrm{pTK} 839 ; 2 \mu \mathrm{~m}$-MRN1: pTK1423. (F) The temperature sensitivity of prp4-1 is suppressed by $2 \mu m-M R N 1$. Cells ten-fold serially diluted, spotted on SC-Ura plates and incubated for four days at the indicated temperatures. prp4-1: SG845; $2 \mu m$-vector: pTK51; $2 \mu m-M R N 1:$ pTK1386. (G) snf54 and rsc2A genetically interacts with snt3094. Cells ten-fold serially diluted, spotted on SC plates and incubated for four days at the indicated temperatures. rsc24: SG417; snf54: SG420; wild type: SG632; snt3094: SG729; rsc2A snt3094: SG773 and snf54 snt3094: SG774. (H) snt3094 is synthetic lethal with nhp644. Cells ten-fold serially diluted, spotted on SC-Ura plates or 5-FOA plates and incubated for four days at $30^{\circ} \mathrm{C}$. Wild type: SG865; nhp644: SG867; snt3094: SG868; snt3094 nhp644: SG869; $2 \mu \mathrm{~m}$ -NHP6B-URA3: pTK1382. Colony rows compared in the same panel derives from one plate.
doi:10.1371/journal.pone.0044373.g003
restored growth of the rsco-ts16 nhp644 triple mutant (data not shown). To determine the levels of the U4/U6 dimer, free U4 and total U6 in rsco-ts 16 nhp 644 cells total RNA was fractionated both on non-denaturing and denaturing polyacrylamide gels for Northern analysis with U4 and U6 specific probes, respectively. The rsco-ts 16 nhp644 cells had decreased amounts of the U4/U6 dimer and accumulated free U4 at $25^{\circ} \mathrm{C}$ (Figure 5A). Interestingly, the amount of U4/U6 dimer was further decreased after a twohour incubation at $37^{\circ} \mathrm{C}$. In the mutant total U6 snRNA levels were also reduced after two hours at $37^{\circ} \mathrm{C}$ (Figure 5B). To quantify the snRNA levels we performed five independent experiments and normalized the U4 and U6 data to the same blots re-probed for U1 snRNA. First, the rsc 8 -ts 16 nhp 64Δ strain showed a more than 5 -fold increase in free U 4 ; second, at $25^{\circ} \mathrm{C}$ the mutant strain had a 2-fold decrease in the levels of U4/U6 and total U6; third, a twohour shift to $37^{\circ} \mathrm{C}$ resulted in a further, significant $1-2$-fold reduction in U4/U6 and total U6 levels (Figure 5C). We conclude that rsco-ts 16 nhp 644 cells contain low levels of $\mathrm{U} 4 / \mathrm{U} 6$ dimer snRNA, of total U6 snRNA and accumulate free U4 snRNA at $25^{\circ} \mathrm{C}$ and that the low levels of $\mathrm{U} 4 / \mathrm{U} 6$ dimer and of total U 6 is further aggravated after a two-hour shift at $37^{\circ} \mathrm{C}$.

U4/U6 dimer and total U6 snRNA levels are unchanged

 after a two-hour transcriptional shutdownBoth RSC and Nhp6 are involved in transcriptional regulation of RNAPIII transcribed genes and high-copy SNR6 suppresses the growth defect of $n h p 6 \Delta \Delta$ double mutants [14,48]. Therefore, it was important to determine if the observed reduction in U4/U6 dimer and total U6 snRNA levels in the triple mutant was an effect of the rsc nhp6 mutations to reduce SNR6 transcription. In this case the drop in U4/U6 and total U6 snRNA content would just reflect SNR6 RNA turnover. We addressed this question by determining U4/U6 dimer, free U4 and total U6 stability in rsco-ts16 nhp64 Δ cells after growth for two hours in the presence of thiolutin. The antifungal agent thiolutin efficiently inhibits all three yeast polymerases both in vivo and in vitro $[49,50]$. Total RNA was

A
ECM33

Figure 4. rsc8-ts 16 nhp6 4Δ cells accumulate unspliced transcripts. (A) Northern blot analysis was done with total RNA isolated from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after a two hour shift at $37^{\circ} \mathrm{C}$. Total RNA was electrophoresed in a 0.25 M formaldehyde agarose gel, blotted and hybridized with specific ${ }^{32}$ P-labeled probes. The probe was either intron-specific or 3' exon-specific, respectively, for the ECM33 RNA (see Figure S1). Ethidium bromide staining of the 18 S and 25 S rRNA is shown as a loading control. (B) Northern blot analysis was done with total RNA isolated from logarithmically SC-His growing cells at $30^{\circ} \mathrm{C}$ or after a two hour shift at $37^{\circ} \mathrm{C}$. The probe was specific for both the $R P S 11 B$ pre-mRNAand for the RPS11B mRNA (see Figure S1). Ethidium bromide staining of the 18 S and 25 S rRNA is shown as a loading control. (C), (D) and (E) Total RNA isolated from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after a two-hour shift at $37^{\circ} \mathrm{C}$ amplified by RT-qPCR with ECM33-, $A C T 1-$, $A S C 1-, R P S 11 B-$ or RDN25-specific primers. (C) The ratio intron-3'exon junction RT-PCR-amplificate/3'exon RT-PCR-amplificate. (D) The ratio 3'exon RT-PCRamplificate/RDN25 RT-PCR-amplificate. (E) The ratio intron-3'exon junction RT-PCR-amplificate/RDN25 PCR-amplificate. The ratio in wild type cells at $25^{\circ} \mathrm{C}$ was arbitrarily set to 1 . Wild type: SG632; rsc8-ts16 nhp644: SG657; 2μ-vector: pTK839; 2μ-MRN1: pTK1423. doi:10.1371/journal.pone.0044373.g004

Figure 5. U4/U6 dimer, free U4 and total U6 snRNA levels in rsc8-ts 16 nhp6 14 cells. Total RNA prepared from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after a two-hour shift at $37^{\circ} \mathrm{C}$. (A) RNA was fractionated on a non-denaturing 6% polyacrylamide gel, blotted and hybridized with a U4 specific probe. After analysis the membrane was stripped and re-probed with a U1 specific probe. (B) RNA was fractionated on a denaturing 6% polyacrylamide gel, blotted and hybridized with a U6 specific probe. After analysis the membrane was stripped and re-probed with a U1 specific probe. (C) Quantification of U4/U6 dimer, free U4 and total U6 snRNA amounts relative to U1 snRNA based on quantification of Storm Images from at least five individual experiments. Wild type: SG632; rsc8-ts16 nhp644: SG657.
doi:10.1371/journal.pone.0044373.g005
isolated from cells treated with thiolutin for two hours and the levels of U4/U6, free U4, and total U6 was determined by Northern blotting. The amount of U4/U6 dimer, free U4 and total U6 was unchanged after two hours of incubation with thiolutin both in the wild type and more importantly, also in the rsco-ts 16 nhp644 strain (Figure 6A and Figure 6B). Quantification of four independent experiments confirmed this result (Figure 6C). In contrast, as expected the levels of three tested mRNA's were drastically reduced under the same growth conditions (Figure 6D). Thus, efficiently shutting down RNA polymerase III transcription by the polymerase inhibitor thiolutin for two hours did not influence the levels of U4/U6 dimer or total U6 snRNA neither in the wild type nor in the $r s c 8$-ts 16 nhp 644 strain indicating that the decrease in snRNA levels is not due to impaired transcription of the SNR6 gene, but only observed in cells with specific splicingdeficient conditions.

Discussion

In this study we have utilized a genetic approach to study the functional interplay between the chromatin remodeling complexes RSC or SWI/SNF and the architectural factors Nhp6. We found that rsc- or swi/snf mutations in combination with nhp6 double deletion results in synthetic sickness. Interestingly, we found that rsc nhp 6 triple mutants accumulate pre-mRNA, strongly suggesting a defect in pre-mRNA maturation. The defect in pre-mRNA maturation is underscored as rsc 8 -ts 16 nhp 644 cells contained low levels of U4/U6 dimer and total U6 snRNA as well as high amounts of free U4 snRNA. Further, incubation at $37^{\circ} \mathrm{C}$ for two hours dramatically enhanced the accumulation of pre-mRNA in
rsc nhp644 cells. This is substantiated as rsco-ts 16 nhp 644 cells contained significantly reduced amounts of U4/U6 dimer and total U6 after two hours incubation at $37^{\circ} \mathrm{C}$. The reduction in U4/ U6 dimer and total U6 was not due to deficient SNR6 transcription as a two-hour shutdown of SNR6 transcription induced by thiolutin did not result in reduced amounts of U4/U6 dimer or total U6 indicating that these RNAs are very stable. In agreement with this result, U6 snRNA have previously been reported to be very stable unless in a splicing deficient mutant background [40]. For example, temperature inactivation of the known U6 (or U4/ U6) snRNP associated factors $\operatorname{Prp} 3$, $\operatorname{Prp} 4, \operatorname{Prp6,~Prp24~or~the~}$ NTC or Prp38 splicing factors lead to a decrease in U6 snRNA levels [$40,43,44,45,46,47]$. Apparently, in these mutant strains the U4/U6 complex is destabilized, perhaps exposing the U6 snRNA to intracellular nuclease attack. Furthermore, Moenne et al. [51] observed only a slight decrease in total U6 snRNA level after a five hour inactivation of a temperature-sensitive RNAPIII mutant. Accordingly, a two-hour shift to $37^{\circ} \mathrm{C}$ reduces U4/U6 dimer and total U6 snRNA levels in rsco-ts 16 nhp 64Δ cells as a consequence of their mRNA processing defect and not as a consequence of deficient transcription of SNR6. We did not see a general accumulation of unspliced mRNA for the tested transcripts after a two hour incubation at $37^{\circ} \mathrm{C}$ in the rsc14 or rsco-ts16 single mutants, or in the nhp644 double mutant. However, the rsc and swi/snf single mutants, and the nhp644 double mutant might harbor potential splicing defects. In support of this notion we observed that combining rsc24 or snf54 with the NTC splicing mutant snt3094 resulted in synthetic sickness and that a snt3094 nhp644 triple mutant is synthetic lethal. In conclusion, the

Figure 6. U4/U6 dimer, free U4 and total U6 snRNA levels remain stable after two hours of transcriptional shutdown. Total RNA prepared from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after two hours growth in the presence of $5 \mu \mathrm{~g} / \mathrm{ml}$ Thiolutin at $25^{\circ} \mathrm{C}$. (A) RNA was fractionated on a non-denaturing 6\% polyacrylamide gel, blotted and hybridized with a U4 specific probe. After analysis the membrane was stripped and re-probed with a U1 specific probe. (B) RNA was fractionated on a denaturing 6% polyacrylamide gel, blotted and hybridized with a U6 specific probe. After analysis the membrane was stripped and re-probed with a U1 specific probe. (C) Quantification of U4/U6 dimer, free U4 and Total U6 snRNA amounts relative to U1 snRNA based on quantification of Storm Images from at least four individual experiments. (D) Total RNA was isolated from logarithmically SC-His growing rsc8-ts 16 nhp64 4 cells at $25^{\circ} \mathrm{C}$ and electrophoresed in a 0.25 M formaldehyde agarose gel or in a denaturing 6% polyacrylamide gel, blotted and hybridized with gene-specific ${ }^{32}$ P-labeled probes. rsc8-ts16 nhp644 : SG657.
doi:10.1371/journal.pone.0044373.g006
combination of mutations in RSC and chromatin architectural factors results in a severe defect in pre-mRNA maturation.
We identified the RNA-binding protein Mrnl as a multi-copy suppressor of the synthetic sickness of the rsco-ts 16 nhp $6 \Delta 4$ mutant. Mrnl is predicted to contain five RRM domains present in many RNA-binding proteins taking part in all mRNA co- and posttranscriptional processing events [33]. Recently, Hogan et al. [52] reported that Mrnl is an RNA-binding protein and interacts with 378 RNAs including ECM33 and ACT1. Our genetic interaction analysis of MRN1 and $2 \mu \mathrm{~m}-\mathrm{MRN1}$ lead to the discovery that rsc nhp644 cells display a splicing deficient phenotype as discussed above. In addition, the genetic analysis might also suggest a role of Mrnl in pre-mRNA maturation. Over-expression of Mrnl suppressed the ts-phenotype of the rsc nhp 6 triple mutants as well as that of the NTC subunit mutant snt3094. Combining mm14 with snt3094 resulted in synthetic sickness, but Mrnl and Snt309 are not functionally redundant as only $2 \mu m-M R N 1$, and not $2 \mu m$ SNT309 suppresses the rsco-ts 16 nhp $6 \Delta 4$ triple mutant phenotype. Additionally, Mrnl does not share genetic functionality with the RRM-containing $\operatorname{Prp} 24$. Prp24 mediates the re-annealing of the U4/U6 dimer [39], but $2 \mu \mathrm{~m}$-PRP24 does not suppress the tsphenotype of snt3094 cells [47] and $2 \mu m$-MRN1 does not suppress lethality of a prp244 mutant. However, the suppression is specific, at least to a certain degree, as over-expression of either Publ or human PTB, two RNA binding proteins with two pairs of RRM domains arranged as those of Mrnl, does not suppress the growth defect of the rsc $\delta-t s 16$ nhp $6 \Delta \Delta$ triple mutant (J. Christiansen and S . Holmberg, unpublished data). Work in progress in our lab is trying to identify a specific event in the mRNA processing pathway where Mrnl functions.

The observed pre-mRNA accumulation in the rsc nhp6 triple mutants can be explained in several ways. The lack of RSC/Nhp6 activity concomitantly might influence transcription of splicing factor-encoding genes leading to the observed pre-mRNA accumulation and U4/U6 destabilization. It is also possible that the primary splicing block imposed by the rsco-ts 16 nhp644 mutant results from the failure of splicing complexes to assembly or function properly. Thus, RSC and Nhp6 might be required for generating the correct chromatin state required for proper spliceosome assembly thereby affecting mRNA processing. Recent studies document connections between chromatin and splicing. The mammalian orthologue of the RSC complex, hSWI/SNF subunit Brm, was found to associate with several components of the spliceosome as a regulator of alternative splicing in several mammalian cell types [20]. Likewise, Brm and several hSWI/SNF subunits were shown to associate with chicken supraspliceosomes [28]. In yeast only very few genes contain more than one intron, and although it has been reported that most splicing is posttranscriptionally, recruitment of U 1 is a co-transcriptional event at probably all genes [24]. One possibility is that rsc nhp6 and swi/snf nhp6 cells are deficient in the process of co-transcriptional recruitment of the pre-spliceosome. Batsché et al. [20] showed that Brm interacts in vivo with both U 1 and U 5 snRNPs and suggested that hSWI/SNF is involved in recruitment of the splicing machinery. Tyagi et al. [19] recently showed that Brm interacts directly with nascent pre-mRNP's and suggest that Brm post-transcriptionally regulates the type of alternative transcript produced. Whether RSC, SWI/SNF and/or Nhp6 factors can be loaded onto pre-mRNA in yeast remains to be elucidated.

Table 2. Yeast Strains Used in This Study.

Strain	Genotype	Source or reference
SG304	RJY6009: MATa ura3 leu2 his3 trp1 lys2 Unhp6A::URA3 $^{\text {a }}$ (nhp6B::LEU2	[58]
SG306	RJY6012: MATa ura3 leu2 his3 trp1 lys2 4 nhp6A::ura3 $4 n h p 6 B:$:LEU2	[58]
SG312	CY332: MATa snf64 ura3-52 leu2-41 his3-4200 trp1-41 lys2-801 ade2-101	Craig Peterson
SG350	BLY49: MATa sth1-3ts his3-4200 ura3-52 ade2-101	[59]
SG358	MCY3839: MAT α his3 leu2 ura3 lys2	[60]
SG359	MCY3888: MATa his3 leu2 ura3 lys2 rsc8-ts21	[60]
SG360	MCY3890: MATa his3 leu2 ura3 ade2 trp1 can1 rsc8-ts 16	[60]
SG394	MATa his3 leu2 ura3 trp1 nhp6A::URA3 nhp6B::LEU2	José Moreira
SG416	BY4741 MATa leu240 his341 ura340 met1540 rsc 1::KANMX	Euroscarf
SG417	BY4741 MATa leu240 his341 ura340 met1540 rsc2::KANMX	Euroscarf
SG418	BY4741 MATa leu240 his341 ura340 met1540 swi2::KANMX	Euroscarf
SG420	BY4741 MATa leu240 his341 ura340 met1540 snf5::KANMX	Euroscarf
SG462	MAT ${ }^{1}$ his3 leu2 ura3 snf5::KANMX nhp6aa::URA3 nhp6b::LEU2	This study
SG476	MAT ${ }^{1}$ his3 leu2 ura3 rsc2::KANMX nhp6A.:URA3 nhp6B::LEU2	This study
SG485	DY7103 MAT 1 ade2 can1 his3 leu2 trp1 ura3 RPB3-HA(3)::KANMX	David J. Stillman
SG518	MAT ${ }^{1}$ his3 leu2 ura3 rsc1::KANMX nhp6A::ura3 nhp6B::LEU2	This study
SG520	BY4742 MATa his3 leu2 ura3 lys2 mrn1::KANMX	Euroscarf
SG605	MATa his3-11,15 leu2-3,112 ura3 ade2-1 trp1can1-100 MRN1-13Myc::KANMX	This study
SG632	BY4741 MATa leu240 his 341 ura3 40 met 1540	Euroscarf
SG633	BY4742 MATa leu240 his 341 ura3 40 lys 240	Euroscarf
SG640	MATa ade2 his3 leu2 trp1 ura3 lys RPB3-HA::KANMX MRN1-MYC::KANMX	This study
SG648	BY4741 MATa leu240 his341 ura340 met1540 snt309::KANMX	Euroscarf
SG657	MATa his3 leu2 ura3 lys2 trp1 ade2 rsc8-ts16 nhp6A::ura3 nhp6B::LEU2	This study
SG658	MAT ${ }^{1}$ his3 leu2 ura3 lys2 trp1 rsc8-ts21 nhp6A::URA3 nhp6B::LEU2	This study
SG659	MAT ${ }^{1}$ trp1 leu2 his3 ura3 sfh1-1::HIS3 nhp6A::URA3 nhp6B:: LEU2	This study
SG661	MAT ${ }^{1}$ his3 leu2 ura3 sth1-3ts nhp6A::URA3 nhp6B::LEU2	This study
SG662	MAT ${ }^{1}$ trp1 leu2 his3 ura3 ade2 lys2 snf64 nhp6A.:URA3 nhp6B::LEU2	This study
SG682	W303 MATa his3 leu2 ura3 ade2 trp1 can1	Brad Cairns
SG727	MATa leu240 his 341 ura340 met1540 nhp6A.:URA3 nhp6B::LEU2	This study
SG729	MATa leu240 his341 ura340 lys240 snt309::KANMX	This study
SG736	MATa leu2 his3 ura3 mex67-5 MRN1-GFP::HIS3	This study
SG737	MATa leu2 his3 ura3 MRN1-GFP::HIS3	This study
SG742	MAT ${ }^{1}$ his ura leu trp lys swi3::KANMX nhp6A::URA3 nhp6B::LEU2	This study
SG759	MATa leu240 his 341 ura340 met1540 swi2::KANMX nhp6A::URA3 nhp6B::LEU2	This study
SG762	MATa leu240 his341 ura340 mrn1::KANMX nhp6A::URA3 nhp6B::LEU2	This study
SG766	MAT ${ }^{1}$ leu240 his341 ura340 lys240 mrn1::KANMX swi2::KANMX	This study
SG773	MAT ${ }^{1}$ leu240 his341 ura340 lys240 snt309::KANMX rsc2::KANMX	This study
SG774	MAT ${ }^{1}$ leu240 his341 ura340 lys240 snt309::KANMX snf5::KANMX	This study
SG840	MATa prp22 ade2-101 his34200 ura3-52 tyr1	[61]
SG845	MATa prp4-1 leu2 ura3-52	J. Beggs
SG865	MAT ${ }^{1}$ leu2 40 his341 ura3 40 met1540+pTK1382	This study
SG867	MAT ${ }^{1}$ leu240 his 341 ura340 met1540 lys240 nhp6A::KANMX nhp6B::KANMX+pTK1382	This study
SG868	MAT ${ }^{1}$ leu240 his 341 ura340 met1540 snt309::KANMX+pTK1382	This study
SG869	MAT ${ }^{1}$ leu240 his341 ura340 met1540 lys240 nhp6A::KANMX nhp6B::KANMX snt309::KANMX+pTK1382	This study
SG912	BY4742 MATa his3 leu2 ura3 lys2 mrn1:: ClonNAT	This study
SG920	MAT1 leu240 his 341 ura340 lys240 mrn1::ClonNAT snt309::KANMX	This study
SG1008	MATa leu2 his3 ura3 mex67-5 MRN1-GFP::HIS3 ADH1p-NLS-yEmRFP::URA3	This study
SG1010	MATa leu2 his3 ura3 MRN1-GFP::HIS3 ADH1p-NLS-yEmRFP::URA3	This study
TG693	MATa his3 leu2 ura3 trp1 ade2 can1 sfh1-1::HIS3	[62]
TG694	BLY46-2: MAT α his3 leu2 ura3 trp1 ade2 can1	[62]

$M A T^{1}$: The mating type has not been determined.
doi:10.1371/journal.pone.0044373.t002

Name	Genotype	Source or reference
pTK51	Yep24: 2μ m-URA3-Amp ${ }^{\text {r }}$	[63]
pTK839	pRS423: $2 \mu \mathrm{~m}$-HIS3-Amp ${ }^{\text {r }}$	[64]
pTK1259	pFA6a: 13Myc-KANMX6	[65]
pTK1382	$2 \mu m$-URA3-Amp ${ }^{\text {r }}$-NHP6B	This study
pTK1385	$2 \mu m$-URA3-AmP ${ }^{\text {r }}$-MRN 1	This study
pTK1386	$2 \mu \mathrm{~m}$-URA3-Amp ${ }^{\text {r }}$-MRN 1	This study
pTK1395	$2 \mu \mathrm{~m}$-HIS3-Ampr'MRN1	This study
pTK1423	$2 \mu \mathrm{~m}$-HIS3-Amp ${ }^{\text {r }}$-MRN1-MYC	This study
pML96	URA3-Amp ${ }^{\text {r }}$-NLS-yEmRFP	M. Lisby

Materials and Methods

Media, strains and genetic methods

Yeast extract-peptone-dextrose (YPD) medium, synthetic minimal (SD) medium, synthetic complete (SC) and SC lacking specific amino acids were prepared as described previously [53]. Standard yeast methods were used for dissection, sporulation, mating and replica plating. Lithium acetate transformation was employed [54]. Yeast strains are listed in Table 2, plasmids in Table 3, and oligonucleotides in Table 4.

Multi-copy suppressor screen

Strain SG657 (rsco-ts16 nhp644) was transformed with a Yep24 based yeast genomic library [31]. Colonies able to grow at the non-permissive temperature $\left(34^{\circ} \mathrm{C}\right)$ were selected. In total $\sim 2 \times 10^{7}$ transformants were screened. Plasmids from ~ 40 colonies were rescued in Escherichia coli and 17 different plasmids were identified as suppressors. Sixteen contained either NHP6A or NHP6B. One plasmid, pTK1385, contained the genomic sequence from 190959 to 198486 of chromosome XVI. Subcloning revealed that plasmid pTK 1386 (pTK 1385 digested with NheI and SacI, blunt ended and re-ligated) containing the genomic sequence from 194878 to 198486 of chromosome XVI was a suppressor of rsco-ts16 nhp644 synthetic sickness. pTK1386 contained YPL184c as the only complete ORF. pTK1386 was digested with SnaBI and EcoRI and the 2357 bp fragment containing YPL184c, from 198277 to 195919 of the genomic sequence, was cloned into SmaI and EcoRI digested pRS423 (pTK839) resulting in plasmid pTK1395. pTK1395 was transformed into strain SG657 and was able to suppress its growth defect, and accordingly, we concluded that $2 \mu m-$ YPL184c is a suppressor of the synthetic sickness of the rscots 16 nhp644 triple mutant.

Construction of MRN1-MYC

The endogenous MRN1-MYC was constructed by inserting a Myc-Tag C-terminally on the MRN1 gene by transformation and homologous recombination in yeast strain TG694 with two PCR fragments using $K A N M X 6$ as the selection marker. DNA was amplified with oligonucleotides MYCa, sfh1d, sfhle and MYCab using pTK1259 as the template. The manipulated region was subsequently sequenced to verify correct insertion.
$2 \mu m-M R N 1$ was Myc-tagged by inserting a Myc-tag Cterminally in the MRN1 gene using SacI-linearized plasmid pTK1395 and transformation and homologous recombination in yeast with a Myc-Tag containing PCR fragment. DNA was amplified with oligonucleotides MYCc and MYCab using
pTK1259 as the template. Plasmid pTK1423 was rescued in Escherichia coli from His ${ }^{+}$yeast transformants and sequenced to verify correct insertion. $2 \mu \mathrm{~m}$-MRN1-MYC suppresses the synthetic sickness of the rsco-ts16 nhp644 triple mutant (data not shown).

Protein sequence analysis

Identifications and predictions based on the protein sequence of Mrnl using the NCBI homepage searching for conserved domains (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), the Robetta server [55] (http://robetta.bakerlab.org) and our own observations.

Immuno blotting

Whole-cell extracts were prepared from 50 ml of cells growing exponentially in SC-His medium. Cells were collected and washed twice in lysis buffer (50 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}$, 0.1 mM EDTA, $5 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ dithiothreitiol (DTT), 0.25% NP-40) supplemented with Complete protease inhibitor cocktail (Roche). Cells were re-suspended in 400μ l lysis buffer and then lysed with glass beads (SIGMA) in a bead mill for $3 \times 20 \mathrm{sec}$ at $4^{\circ} \mathrm{C}$. The cell debris was eliminated by centrifugation twice at $4^{\circ} \mathrm{C}$ ($10 \times \mathrm{g}$, 5 min and 25 min , respectively). Protein concentration was measured with Bio-Rad Dc Protein Assay. Proteins were separated by SDS-PAGE and transferred to a mixed cellulose ester membrane and immuno-blotted with primary anti-Myc antibody (C3956-Sigma) or anti-HA antibody (12CA5 Roche). Proteins were visualized with anti-Rabbit or anti-Mouse Immuno-globulins/HRP (DAKO) and ECL Plus (GE Healthcare) with Hyperfilm ECL (GE Healthcare).

Fluoroscence microscopy

Flouroscence microscopy was done with a Zeiss Imager Z1 using the channels for GFP, RFP and DIC. Logarithmically SC growing cells at $25^{\circ} \mathrm{C}$ or after a 30 min incubation at $37^{\circ} \mathrm{C}$ was harvested for microscopy. Strains SG1008 (MRN1-GFP ADH1p-NLS-yEmRFP::URA3) and SG1010 (mex67-5 ADH1p-NLS-yEmRFP ::URA3) were constructed by integrating plasmid pML96-Int-ADHlp-NLS-yEmRFPrv-1 in the ura3 locus in strains SG737 and SG736 (Table 2), respectively, after digestion with $\mathcal{N s i I}^{\text {. For }}$ quantification of each genotype and growth condition, 100-200 cells were inspected. Error bars indicate 95% confidence intervals.

Northern protocol

RNA was electrophoresed in a 0.25 M formaldehyde agarose gel, transferred to a Hybond-NX (GE Healthcare) membrane by blotting overnight. RNA was cross-linked to the membrane in a Stratalinker ($1200 \mu \mathrm{~J} / \mathrm{cm}^{2}$). Radioactively (${ }^{32} \mathrm{P}$) random primed labeled probes were produced with Prime-It ${ }^{\circledR}$ II Random Primer Labeling Kit (Stratagene) and purified with ProbeQuant G-25 Micro Colums (Amersham), utilizing gel purified PCR product as the template. The templates were produced with specific primers (Table 4) utilizing genomic yeast DNA as the template. Membranes were hybridized over night in a Hybaid oven at $42^{\circ} \mathrm{C}$ with Ultrahyb hybridization buffer (Ambion) and the membranes were washed as recommended by the manufacture. Hybridized probe were visualized and quantified using a Storm 840 Phosphorimager (Molecular Dynamics) and also visualized with Kodak BioMax MS Film when needed.

Measurement of pre-mRNA accumulation by RT-qPCR

RNA was purified from exponentially growing cells with RNeasy Mini Kit (Qiagen). QuantiTect SYBR Green RT-PCR Kit (Qiagen) supplied with Fluorescein Calibration Dye (10 nM)

Table 4. Oligonucleotides Used in This Study.

Oligonucleotides for RT-PCR and RT-qPCR

Name	Sequence
ACT1 (intron-exon2): Act1c	5' GGTCCCAATTGCTCGAGAGATTTC 3'
ACT1 (intron-exon2): Act1d	5' CGGCTTTACACATACCAGAACCG 3'
ACT1 (3'exon): Act1e	5' GCCTTCTACGTTTCCATCCAAGCC 3'
ACT1 (3'exon): Act1f	5' GGCGTGAGGTAGAGAGAAACCAGC 3'
ASC1 (intron-exon2): Asc1a	5^{\prime} CTCTGCTCTTCTCTTTACTCG 3^{\prime}
ASC1 (intron-exon2): Asc1b	5' GTTGATGTTGGAGTTGTGACC 3'
ASC1 (3'exon): Asc1c	5' CCCAGACGGAACTTTGATTGC 3'
ASC1 (3'exon): Asc1d	5' GCAGCAGCCAACCAGTATCTG 3'
ECM33 (intron-exon2): Ecm33a	5' TACATGTATAAATCGATCGGG 3'
ECM33 (intron-exon2): Ecm33b	5^{\prime} CCAACAATGGTACTACAACCG 3'
ECM33 (3'exon): Ecm33c	5^{\prime} GGTGGTGGTTTCATCATTGC 3'
ECM33 (3'exon): Ecm33e	5^{\prime} GCACCACCTCTAACAGACTTC 3'
RPS11B (intron-exon2): Rps11a	5' AACCGCCACGACACAGTTAACG 3'
RPS11B (intron-exon2): Rps11b	5^{\prime} CTTGGAAGTCTTGACCTTTGG 3'
RPS11B (3'exon): Rps11c	5' CCGTGGTAAGATCTTGACCG 3'
RPS11B (3'exon): Rps11d	5' GGAATGTAATGCAAGTAAGC 3'
RDN25: Rdn25-1a	5' CGACGTAAGTCAAGGATGCTGGC 3'
RDN25: Rdn25-1b	5' CATCAGGATCGGTCGATTGTGC 3'

Oligonucleotides used in PCR amplification of a template for Northern blot probes

Name	Sequence
ECM33 (intron): Ecm33g	5' CCTCACAAATCTCGAGTAGATTC 3'
ECM33 (intron): Ecm33h	5' TTAGTATTCCCGATCGATTTATACATG 3'
ECM33 (3'exon): Ecm33c	5' GGTGGTGGTTTCATCATTGC 3'
ECM33 (3'exon): Ecm33f	5' CGACACCCATGAATGAAGTGGCTGG 3'
RPS11B: oMiT138	5^{\prime} AGCAGCAGAGACCTTGACGA 3^{\prime}
RPS11B: oMiT138	5^{\prime} AGCAGCAGAGACCTTGACGA 3'
U1: Snr19a	5' GCGGAAGGCGTGTTTGCTGACG 3'
U1: Snr19b	5' GGCAACG AGCAAAGTTGAGACTGC 3'
Cha1op	5' CCCCGGAAAGGCTTCTGC 3'
Cha1ned	5' GAGGAGCCGCCACAAGC 3'
Hta1e	5' GGTGGTAAAGGTGGTAAAGCTGG 3'
Hta1f	5^{\prime} TTGAGAAGCCTTGGTAGCCTTGG 3^{\prime}
Cyc1a	5' ATGACTGAATTCAAGGCCGGTTC 3'
Cyc1b	5^{\prime} GTAGGTAATTAAGTCGTTTCTGTC 3'

Oligonucleotides used directly as template for Northern blot probes

Name	Sequence
U4: Snr14	5'CCGAGATTGTGTTTTTGCTGGTTGAAAATTTAATTATAAACCAGACCGTCTCCTCATGGTCAATTCGGTGTTCG 3'
U6: Snr6a	5'GTTCGCGAAGTAACCCTTCGTGGACATTTGGTCAATTTGAAACAATACAGAGATGATCAGCAGTTCCCC 3'
Oligonucleotides used in the amplicification of Myc-Tagged DNA fragment	
Name	Sequence
MYCc	5'TGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTACCTCACTCCGGATGTGATGTGAGAACTGTATCCTAGC 3'
MYCab	5'CTTTGGCAAGGATAGATGTGGTAACGTCCCCCACCAATCACGTCGGATCCCCGGGTTAATTAACGG 3'
MYCa	5'CGATGATAAAGATGATAATGTTGCTAACGGTGAGAAACTTGCAGATCGCAGTGGACGAATCGACAGCAGTATAGCGACC 3'
Sfh1d	5' CCATGAGTGACGACTGAATCCGG 3'
Sfh1e	5'CGCGATAATGTCGGGCAATCAGG 3'

doi:10.1371/journal.pone.0044373.t004
(BIO-RAD) was used for the RT-qPCR amplifications done with the iGycler iQ (BIO-RAD). Data was analyzed with the iCycler iQ software (BIO-RAD). Standard deviations were calculated as suggested by Simon [56]. The sequence of used oligonucleotides is shown in Table 4.

U4/U6 Assay

To visualize U4/U6 dimer, U4 Free and total U6 exponentially growing cells were harvested and resuspended in $250 \mu \mathrm{l}$ of RNA extraction buffer ($100 \mathrm{mM} \mathrm{LiCl}, 1 \mathrm{mM}$ EDTA, 100 mM Tris-Cl (pH 7.5), 0.2% SDS) and transferred to a tube containing $250 \mu \mathrm{l}$ glass beads and $250 \mu \mathrm{l}$ Phenol-chloroform-isoamyl alchohol (25:5:0.2). Then the cells were lysed in a bead mill for $3 \times 15 \mathrm{sec}$ at $4^{\circ} \mathrm{C}$. For non-denaturing gels the aqueous phase containing the RNA was mixed with one-third volume of loading dye (50% glycerol, 0.02% bromophenol blue) and loaded on a 6% nondenaturing polyacrylamide (29:1) Tris-borate-EDTA gel containing 5% glycerol with 0.5 TBE as running buffer. The gel was run over night at 80 V at 4°. The gel was then soaked twice in 20 mM $\mathrm{NaPO}_{4}(\mathrm{pH} 6.5), 8.3 \mathrm{M}$ urea, $0.1 \% \mathrm{SDS}$ at 37°, for 45 min and once in 20 mM NaPO 4 (PH 6.5) at 4° for 1 hour. RNA was electrotransferred to a nylon membrane (Hybond-NX (GE Healthcare)) followed by UV cross-linking to the membrane in a Stratalinker ($1200 \mu \mathrm{~J} / \mathrm{cm}^{2}$). For denaturing gels the aqueous phase was mixed with one volume of $2 \times$ RNA loading dye (Fermentas), denatured (70° for 10 min , on ice for 3 min) and loaded on a 6% denaturing polyacrylamide (29:1) Tris-borate-EDTA gel containing 5% glycerol with $0.5 \times \mathrm{TBE}$ as running buffer. Then the same protocol was used as for non-denaturing gels except the gel was only washed once in $20 \mathrm{mM} \mathrm{NaPO} 4(\mathrm{pH} 6.5), 8.3 \mathrm{M}$ urea, 0.1% SDS. Radioactively $\left({ }^{3} \mathrm{P}\right)$ random primed labeled probes were produced with Prime-It ${ }^{\circledR}$ II Random Primer Labeling Kit (Stratagene) and purified with ProbeQuant G-25 Micro Colums (Amersham) with single stranded oligonucleotides Snr14 or Snr6a as templates (Table 4). The template for the U1 probe was generated by PCR using genomic yeast DNA and primers Snr19a and Snr19b (Table 4). Hybridization was at 42° with Rapid-Hyb buffer (GE Healthcare) in a Hybaid oven over night followed by $2 \times 5 \mathrm{~min}$ washes in $6 \times \mathrm{SSC}, 0.2 \% \mathrm{SDS}$ and one 15 min wash in $2 \times$ SSC, 0.2% SDS at 42°. Hybridized probe were visualized and quantified using a Storm 840 Phosphorimager (Molecular Dynamics) and also visualized with Kodak BioMax MS Film when needed. This protocol was modified from Lygerou et al. [57].

References

1. Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20: 2009-2017.
2. Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71: 247-273.
3. Moreira JM, Holmberg S (1999) Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. Embo J 18: 2836-2844.
4. Angus-Hill ML, Schlichter A, Roberts D, Erdjument-Bromage H, Tempst P, et al. (2001) A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell 7: 741-751.
5. Chai B, Huang J, Cairns BR, Laurent BC (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656-1661.
6. Hsu JM, Huang J, Meluh PB, Laurent BC (2003) The yeast RSC chromatinremodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 23: 3202-3215.
7. Ng HH, Robert F, Young RA, Struhl K (2002) Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 16: 806-819.
8. Parnell TJ, Huff JT, Cairns BR (2008) RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. Embo J 27: 100-110.
9. Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19: 5237-5246.

Supporting Information

Figure S1 Schematic representation of RPS11B, ASC1, ACT1, and ECM33 probes and qPCR primers. The relative position of the DNA fragments used as RPS11B and ECM33 Northern probes as well as the relative position of the primers used for the qPCR analyses are depicted.
(TIF)
Figure S2 rsc14 nhp644 and snt3094 cells accumulate unspliced transcripts. Total RNA isolated from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after a 2 hour shift at $37^{\circ} \mathrm{C}$ amplified by RT-qPCR with ECM33-, ACT1-, $A S C 1$ - or RPS11B-specific primers. The ratio intron-3'exon junction RT-PCR-amplificate/ 3^{\prime} exon RT-PCR-amplificate. The ratio in wild type cells at $25^{\circ} \mathrm{C}$ was arbitrarily set to 1 . ND: Not determined. Wild type: SG632; rsc14 nhp644: SG518; snt3094: SG648.
(TIF)
Figure S3 rsc14 and rsc8-ts16 or nhp644 mutants do not generally accumulate unspliced mRNA at $37^{\circ} \mathrm{C}$. Total RNA isolated from logarithmically SC-His growing cells at $25^{\circ} \mathrm{C}$ or after a 2 hour shift at $37^{\circ} \mathrm{C}$ amplified by RT-qPCR with ECM33-, ACT1-, ASC1- or RPS11B-specific primers. The ratio intron3'exon junction RT-PCR-amplificate/3'exon RT-PCR-amplificate. The ratio in wild type cells at $25^{\circ} \mathrm{C}$ was arbitrarily set to 1 . Wild type: SG632; rsc14: SG416, rsco-ts16: SG360 and nhp644: SG306.
(TIF)

Acknowledgments

We are very grateful to Birgith Kolding and Pernille Roshof for excellent technical assistance, Christophe Concalves for help with the Robetta Server and Michael Lisby for providing the ADH1p-NLS-yEmRFP:: URA3 construct and for critical reading of the manuscript. Soo-Chen Cheng is thanked for providing high copy SNT309 plasmids.

Author Contributions

Conceived and designed the experiments: LD MT DP BK SH. Performed the experiments: LD MT DP BK SH. Analyzed the data: LD MT DP BK SH. Contributed reagents/materials/analysis tools: LD BK THJ SH. Wrote the paper: LD THJ SH.
10. Costigan C, Kolodrubetz D, Snyder M (1994) NHP6A and NHP6B, which encode HMG1-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Mol Cell Biol 14: 23912403.
11. Moreira JM, Holmberg S (2000) Chromatin-mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B. Embo J 19: 6804-6813.
12. Brewster NK, Johnston GC, Singer RA (2001) A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 21: 3491-3502.
13. Lopez S, Livingstone-Zatchej M, Jourdain S, Thoma F, Sentenac A, et al. (2001) High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase III SNR6 gene. Mol Cell Biol 21: 3096-3104.
14. Kruppa M, Moir RD, Kolodrubetz D, Willis IM (2001) Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol Cell 7: 309-318.
15. Wang W, Chi T, Xue Y, Zhou S, Kuo A, et al. (1998) Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/ SNF-related complexes. Proc Natl Acad Sci U S A 95: 492-498.
16. Papoulas O, Daubresse G, Armstrong JA, Jin J, Scott MP, et al. (2001) The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo. Proc Natl Acad Sci U S A 98: 57285733.
17. Szerlong H, Saha A, Cairns BR (2003) The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. Embo J 22: 3175-3187.
18. Morillon A, Karabetsou N, O'Sullivan J, Kent N, Proudfoot N, et al. (2003) Iswl chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115: 425-435.
19. Tyagi A, Ryme J, Brodin D, Ostlund Farrants AK, Visa N (2009) SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 5: el000470.
20. Batsche E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13: 22-29.
21. Allemand E, Batsche E, Muchardt C (2008) Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 18: 145-151.
22. Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115: 3865-3871.
23. Moore MJ, Schwartzfarb EM, Silver PA, Yu MC (2006) Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol Cell 24: 903-915.
24. Tardiff DF, Lacadie SA, Rosbash M (2006) A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol Cell 24: 917-929.
25. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12: 5-14.
26. Nilsen TW (2003) The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25: 1147-1149.
27. Dellaire G, Makarov EM, Cowger JJ, Longman D, Sutherland HG, et al. (2002) Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR deacetylase complexes. Mol Cell Biol 22: 51415156.
28. Chen YI, Moore RE, Ge HY, Young MK, Lee TD, et al. (2007) Proteomic analysis of in vivo-assembled pre-mRNA splicing complexes expands the catalog of participating factors. Nucleic Acids Res 35: 3928-3944.
29. Chan SP, Cheng SC (2005) The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J Biol Chem 280: 31190-31199.
30. Chan SP, Kao DI, Tsai WY, Cheng SC (2003) The Prp19p-associated complex in spliceosome activation. Science 302: 279-282.
31. Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5^{\prime} ends encode secreted with intracellular forms of yeast invertase. Cell 28: 145154.
32. Wong MC, Scott-Drew SR, Hayes MJ, Howard PJ, Murray JA (2002) RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 microm plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 22: 4218-4229.
33. Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. Febs J 272: 2118-2131.
34. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425: 686-691.
35. Segref A, Sharma K, Doye V, Hellwig A, Huber J, et al. (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. Embo J 16: 3256-3271.
36. Chen HR, Jan SP, Tsao TY, Sheu YJ, Banroques J, et al. (1998) Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol Cell Biol 18: 2196-2204.
37. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The genetic landscape of a cell. Science 327: 425-431.
38. Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR (2006) The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172: 795-809.
39. Raghunathan PL, Guthrie C (1998) A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science 279: 857-860.
40. Blanton S, Srinivasan A, Rymond BC (1992) PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol Cell Biol 12: 3939-3947.
41. Mayes AE, Verdone L, Legrain P, Beggs JD (1999) Characterization of Sm-like proteins in yeast and their association with U6 snRNA. Embo J 18: 4321-4331.
42. Xie J, Beickman K, Otte E, Rymond BC (1998) Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation. Embo J 17: 2938-2946.
43. Rymond BC (1993) Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A 90: 848-852.
44. Hu J, Xu Y, Schappert K, Harrington T, Wang A, et al. (1994) Mutational analysis of the PRP4 protein of Saccharomyces cerevisiae suggests domain structure and snRNP interactions. Nucleic Acids Res 22: 1724-1734.
45. Cooper M, Johnston LH, Beggs JD (1995) Identification and characterization of Uss1p (Sdb23p): a novel U6 snRNA-associated protein with significant similarity to core proteins of small nuclear ribonucleoproteins. Embo J 14: 2066-2075.
46. Anthony JG, Weidenhammer EM, Woolford JL (1997) The yeast Prp3 protein is a U4/U6 snRNP protein necessary for integrity of the U4/U6 snRNP and the U4/U6.U5 tri-snRNP. Rna 3: 1143-1152.
47. Chen CH, Kao DI, Chan SP, Kao TC, Lin JY, et al. (2006) Functional links between the Prp19-associated complex, U4/U6 biogenesis, and spliceosome recycling. Rna 12: 765-774.
48. Soutourina J, Bordas-Le Floch V, Gendrel G, Flores A, Ducrot C, et al. (2006) Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol 26: 4920-4933.
49. Herrick D, Parker R, Jacobson A (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10: 22692284.
50. Jimenez A, Tipper DJ, Davies J (1973) Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob Agents Chemother 3: 729-738.
51. Moenne A, Camier S, Anderson G, Margottin F, Beggs J, et al. (1990) The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro. Embo J 9: 271-277.
52. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System. PLoS Biol 6: e255.
53. Sherman F (1991) Getting started with yeast. Methods Enzymol 194: 3-21.
54. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-168.
55. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32: W526-531.
56. Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19: 1439-1440.
57. Lygerou Z, Christophides G, Seraphin B (1999) A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sadlp, also required for pre-mRNA splicing. Mol Cell Biol 19: 2008-2020.
58. Paull TT, Carey M, Johnson RC (1996) Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes Dev 10: 2769-2781.
59. Du J, Nasir I, Benton BK, Kladde MP, Laurent BC (1998) Sthlp, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatinassociated proteins. Genetics 150: 987-1005.
60. Treich I, Ho L, Carlson M (1998) Direct interaction between Rsc6 and Rsc8/ Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Res 26: 3739-3745.
61. Vijayraghavan U, Company M, Abelson J (1989) Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev 3: 1206-1216.
62. Cao Y, Cairns BR, Kornberg RD, Laurent BC (1997) Sfh lp, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol 17: 3323-3334.
63. Rose M, Grisafi P, Botstein D (1984) Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29: 113-124.
64. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
65. Bahler J, Wu JQ Longtine MS, Shah NG, McKenzie A, III, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943-951.

[^0]: Strains used in Table 1: SG759 (snf54 nhp644), SG469 (swi24 nhp644), SG476 (rsc24 nhp644), SG518 (rsc14 nhp644), SG657 (rsc8-ts16 nhp644), SG658 (rsc8-ts21 nhp644), SG659 (sfh1-1 nhp644), SG661 (sth1-3ts nhp644), SG662 (snf64 nhp644), SG742 (swi34 nhp644) and SG759 (swi24 nhp644). ND = Not determined. doi:10.1371/journal.pone.0044373.t001

