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Background: Esophageal cancer is a tumor type with high invasiveness and low

prognosis. As immunotherapy has been shown to improve the prognosis of

esophageal cancer patients, we were interested in the establishment of an

immune-associated gene prognostic index to effectively predict the prognosis

of patients. Methods: To establish the immune-related gene prognostic index of

esophageal cancer (EC), we screened 363 upregulated and 83 downregulated

immune-related genes that were differentially expressed in EC compared to

normal tissues. Bymultivariate Cox regression andweighted gene coexpression

network analysis (WGCNA), we built a prognostic model based on eight

immune-related genes (IRGs). We confirmed the prognostic model in both

TCGA and GEO cohorts and found that the low-risk group had better overall

survival than the high-risk group. Results: In this study, we identified

363 upregulated IRGs and 83 downregulated IRGs. Next, we found a

prognostic model that was constructed with eight IRGs (OSM, CEACAM8,

HSPA6, HSP90AB1, PCSK2, PLXNA1, TRIB2, and HMGB3) by multivariate Cox

regression analysis and WGCNA. According to the Kaplan–Meier survival

analysis results, the model we constructed can predict the prognosis of

patients with esophageal cancer. This result can be verified by the Gene

Expression Omnibus (GEO). Patients were divided into two groups with

different outcomes. IRGPI-low patients had better overall survival than

IRGPI-high patients.

Conclusion: Our findings indicated the potential value of the IRGPI risk model

for predicting the prognosis of EC patients.
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Introduction

Esophageal cancer is a type of tumor with a very high

mortality rate worldwide, with an increasing incidence rate in

Western countries over the past few decades (Chen et al.,

2021). EC patients have poor prognosis, with a 5-year

survival rate lower than 15% (Jackie Oh et al., 2016),

although clinical treatments have advanced rapidly (Kakeji

et al., 2021). Chemoradiation is an optional treatment for

resectable esophageal cancer to preserve the esophagus for

patients who cannot tolerate surgery. Moreover, the

combination of chemoradiotherapy and salvage surgery

could extend the survival of patients (Kakeji et al., 2021).

Esophageal carcinoma (EC) consists of two subtypes:

esophageal adenocarcinoma (EAC) and esophageal

squamous cell carcinoma (ESCC) (The Cancer Genome

Atlas Research Network, 2017). In 2020, four clinical

trials, CheckMate 649, ATTRACTION-4, KEYNOTE-590,

and CheckMate 577, verified anti-PD-1 therapy as a first-

line treatment for ESCC patients (Smyth et al., 2021).

According to these latest results, esophageal

adenocarcinoma cancer (EAC) may not be as sensitive to

anti-PD-1 therapy as esophageal squamous cell carcinoma

(Kelly, 2019). Immune infiltrating cells have been shown to

be important to the response to immunotherapy. Previous

studies have established IRG-based prognostic models for

non-squamous non–small-cell lung cancer (Sun et al., 2020),

ovarian cancer (Sun et al., 2020), breast cancer (Shen et al.,

2019), colorectal cancer (Wang et al., 2020), osteosarcoma

(Xiao et al., 2020), and bladder cancer (Li et al., 2021a). In this

study, we established an IRGPI prognostic model and

validated its role in different molecular features and

prognoses in EC.

Materials and methods

Data source

RNA-seq data of 171 EC samples, including 160 cancer

samples and 11 paracancer samples, and the matched clinical

information were downloaded from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). The GEO

cohort (GSE53625) included 358 EC samples. The RNA-seq

data and clinical information were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/).

The list of immune-related genes was downloaded from the

ImmPort (https://www.immport.org/home) and InnateDB

(https://www.innatedb.ca/) databases.

The regulatory relationships between mRNAs, transcription

factors (TFs), and miRNAs were downloaded from the

vBioPortal database (http://www.cbioportal.org/). The immune

scores were computed using TIDE tools (http://tide.dfci.harvard.

edu/).

Differential expression analysis

Differentially expressed genes (DEGs) in cancer tissues

compared to normal tissues were identified by the R package

limma, with a false discovery rate < 0.05 and log2fold change >1.

Enrichment analysis of immune-related
genes

In functional enrichment analysis, the gene is selected

between differentially expressed genes and immune-related

genes. Gene Ontology (GO) and Kyoto Encyclopedia of

Genomes (KEGG) enrichment analyses are run using the

“clusterprofile” R package.

Identification of immune-related hub
genes

WGCNA was performed to identify hub genes that were

significantly associated with EC (12). The simulation matrix was

constructed by calculating Pearson’s correlation coefficients between

two genes using RNA-seq data. Next, the similarity matrix was

transformed into an adjacency matrix with a signed network type,

and soft threshold β was set to 3 and then into a topology matrix,

where topological overlap measure (TOM) was used to describe the

degree of association between genes. The genes were clustered at a 1-

Tom distance, and the dynamic pruning tree pair module was

established for identification. Finally, the genes of the top 25%

variance were filtered for further analysis in five modules (Chen

et al., 2019). We chose two modules with p values lower than 0.05 to

construct the network, and the genes in the network were hub genes.

The maxstat R package was used to obtain the optimal cutoff value

for each central gene to achieve overall survival (OS), and we

obtained 21 genes that were significantly survival-associated,

immune-related hub genes and thus selected for further analysis

(p < 0.05, log-rank test).

Establishment of the IRGPI model

The IRGPI model was established based on multivariate Cox

regression analysis. Eight genes associated with overall survival were

obtained from 21 immune-related hub genes. By summing the

expression levels of the eight genes weighted by their Cox regression

coefficients, we obtained an IRGPI model by which a risk score

could be computed for each patient. Based on the IRGPI model,

patients were stratified into high- and low-risk subgroups bymedian
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risk score. Through the calculation of multivariate Cox regression

analysis, we can get the model formula of both the training group

and the test group. By sorting out the clinical data set of the

GES53625 data set, we can get two key pieces of information:

survival time and survival state. Next, we extract the expression

of model genes and obtain the risk score of the test group. Then, we

can divide the test group into high- and low-risk groups according to

the median value of the risk score. Kaplan–Meier (KM) survival

analysis was used to evaluate the prognostic capacity of the IRGPI in

TCGA and GEO cohorts.

The molecular immune characteristics
and ICI treatment of different IRGPI
subgroups were comprehensively
analyzed

To identify the immune microenvironment of 171 samples of

EC, we used

CIBERSORT (https://cibersort.stanford.edu/) to estimate

the relative proportion of 21 types of immune cells. Next,

further analysis was conducted for the relative proportions of

FIGURE 1
Overall analysis workflow and selected IRGs. (A) Schematic flowchart of the workflow performed to build and validate the EC prognostic model.
(B) Heatmap of DEGs; red plots: cancer sample; green plots: normal sample; black plots: normally expressed mRNAs. (C) Volcano plot of DEGs; red
plots: upregulation. Green plots: downregulation. (D)Heatmap of immune-related IRGs; red plots: cancer sample; green plots: normal sample; black
plots: normally expressed mRNAs. (E) Volcano plot of IRGs; red plots: upregulation. Green plots: downregulation.
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21 immune cells and clinicopathological factors between the

two IRGPI subgroups. We performed ssGSEA for genetic

traits and compared scores between two IRGPI subgroups

to further define their immune-related functions.

Survival and Cox regression analysis

Kaplan–Meier survival analysis was performed by using the

R packages “survival” and “surviviner”. Univariate and

multivariate Cox regression analyses were conducted in order

to identify the independent risk factors for prognosis. The forest

maps were constructed by the R package “forestplot”, which

showed the p-value and HR (95% CI) of each immune-

related gene.

Statistical analysis

Significance was considered as follows: p-value < 0.05 was

considered statistically significant and highlighted by an asterisk

in the figures, while p values < 0.01 were highlighted using two

asterisks, and p values < 0.001 were highlighted using three

asterisks in the figures.

Results and discussion

Identification of immune-related
differentially expressed genes

In the TCGA cohort that included 160 cancer samples and

11 normal samples (Figure 1B), we obtained 4,534 differentially

expressed genes, including 3,519 upregulated genes and

1,015 downregulated genes, in the cancer samples compared

to normal samples (Figure 1C). Taking the intersection of the

immune genes collected from InnateDB and ImmPort, 446 IRGs

were obtained (Figure 1D), of which 363 genes were upregulated

and 83 genes were downregulated (Figure 1E).

GO and KEGG enrichment analysis of IRGs

The results of GO functional enrichment analysis are shown

in Figures 2A and 3B. The GO analysis results illustrated that

these IRGs were mostly involved in the positive regulation of

cytokine production in biological processes (BP), the external

side of the plasma membrane in cellular component (CC), and

receptor–ligand activity in molecular function (MF)

(Supplementary Figures S1A, B). The upregulated IRGs were

enriched in the regulation of cytokine production, cell

chemotaxis, myeloid leukocyte migration, and response to

lipopolysaccharide, while the downregulated IRGs were

enriched in the response to molecules of bacterial origin,

leukocyte chemotaxis, regulation of immune effector

processes, and cellular response to the biotic stimulus

(Figure 2A).

The KEGG analysis results showed that the majority of the

interactions were cytokine–cytokine receptor interactions

(Supplementary Figures S1C, D). The positively correlated

pathways included cytokine–cytokine receptor interactions,

viral protein interactions with cytokines and cytokine

receptors, the IL-17 signaling pathway, and Epstein−Barr virus

infection (Figure 2B). The negatively correlated pathways

included rheumatoid arthritis, lipids, atherosclerosis, the

chemokine signaling pathway, and the JAK-STAT signaling

pathway.

Establishment of the IRGPI risk model

Based on the WGCNA results of 446 IRGs, we obtained

21 immune-related hub genes. As shown in Figures 2C and D,

according to the correlation coefficient between each gene

module and ESCC, we chose the turquoise and blue modules

(correlation coefficient with EC > 0.6) for further analysis. The

optimal soft-thresholding power was set to 3 based on the

scale-free network (Figures 2D, E). After univariate Cox

regression, 349 genes in the blue and turquoise modules

were filtered out. Next, 21 genes significantly related to

patient prognosis were selected by K-M analysis

(Supplementary Figure S3, p < 0.05, log-rank test).

Furthermore, multivariate Cox regression analysis of the

21 immune-related genes yielded eight genes that were

finally used to build the risk model (Figure 3A). Formally,

we computed the risk score as the weighted sum of

their expression levels. Its formula is “OSM*0.50036 +

CEACAM8*2.12798 + HSPA6*0.20461 +

HSP90AB1*0.38072 + PCSK2*0.61100 + PLXNA1*-0.50040

+ TRIB2*-0.43663 + HMGB3*0.47295”, in which the

coefficients were derived from the Cox proportional hazard

model.

Validation of the IRGPI risk model

According to the median risk score as a cutoff value, the

TCGA samples were divided into high- and low-risk subgroups.

Survival analysis between the two subgroups showed that the

low-risk group had a remarkably better prognosis than the high-

risk group (Figure 3B). In the GEO GSE53625 cohort, we

confirmed the prognostic value of the IRGPI risk model

(Figure 3C).

Moreover, we compared the IRGPI risk scores and TIDE

scores (http://tide.dfci.harvard.edu/) using the timeROC R

package. The ROC curves for 1, 2, and 3 years are shown in
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Figure 3G. The ROC–AUC for 1-year OS prediction had the best

performance. Additionally, our IRGPI model obtained better

predictive power than the TIDE and TIS scores (Figure 3F).

For further study, we tested whether the IRGPI could be used

as an independent biomarker with clinical significance.

Therefore, we analyzed the clinicopathological parameters that

influenced the survival outcome of EC patients, including age,

sex, grade, and stage. The univariate Cox regression results

showed that the HR of the IRGPI risk score was 1.468

(Figure 3E). However, other clinical variables, including age,

sex, and grade, were not significant for OS. Moreover, the results

of multivariate Cox regression verified that the HR of the IRGPI

FIGURE 2
Functional enrichment analysis of differentially expressed IRGs. (A,B) Right shows significantly enriched GO or KEGG terms. Each bar on the left
represents a gene, and the depth of the color represents the logFC value of the gene. The intermediate line represents the connections between
genes and GO or KEGG terms. Identification of immune-related hub genes. (C–F) Gene dendrogram and module colors. (D) Module-trait
relationships. WGCNA of immune-related DEGs with the soft threshold β = 3. (E) Network of the genes in the blue module (Weight of edge >
0.2). (F)Network of the genes in the turquoise module (Weight of edge > 0.2). The size of the circle indicates the number of genes in the enrichment
pathway, the color of the circle indicates the approximation between different pathways, and the link indicates the genes in the enrichment pathway.
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risk score was 1.1414, apart from the stage (HR = 2.126)

(Figure 3E). These results showed that the IRGPI risk score

was an independent risk factor for EC patients.

We used the Wilcoxon test to test whether the clinical stage

was still a prognostic marker within the two IRGPI subgroups.

We found that clinical stage was a significant factor in the high-

FIGURE 3
Construction of the IRG signature as a prognostic model. (A) Forest plot of hazard ratios showing the prognostic values of genes, in which the
unadjusted hazard ratios, as well as the corresponding 95% confidence intervals, are displayed. (B–C) Survival plot of patient prognosis. (B) Survival
analysis between the high-risk group and low-risk group of the TCGA test group. (C) Survival analysis between the high-risk group and low-risk
group of the GEO training group. Forest plot of univariate and multivariate Cox regression analyses. (D–E) Uni-forest of the clinicopathological
parameters: age, sex, grade, stage, and risk score of 171 EC patients. (E)Multi-forest of the clinicopathological parameter stage and risk score of the
eight-genemodule. (F–G)Comparison of themodules we established. (F) ROC curve lines of the patient at 1 year (p=0.809), 2 years (p= 0.771), and
3 years (p = 0.763). (G) Comparison of the curve under the risk AUC (p = 0.763), TIDE AUC (p = 0.506), and TIS AUC (p = 0.561) samples.
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and low-IRGPI subgroups (Figure 4A). In addition, we checked

the clinical stage by the RColorBrewer R package and found that

stage II accounted for the largest proportion between the

subgroups of IRGPI (n = 67.48%) and stage I accounted for

the smallest proportion between the subgroups of IRGPI (n =

8.6%) (Figure 4B, p = 0.004, χ2 test).

FIGURE 4
Distribution causes that affect patient prognosis. (A,B) Heatmap and table of the EC OS prognostic (age, sex, grade, stage, T, M, and N) between the
IRGPI subgroups. (B) Heatmap and table of the stage between the IRGPI subgroups, and the distribution was compared through the χ2 test (n = 139, p =
0.004 < 0.05). Molecular characteristics of different IRGPI subgroups in GO and KEGG enrichment analyses. (C–F) GO enrichment analysis of gene sets
enriched in the IRGPI-lowand IRGPI-high subgroups (p<0.05, FDR<0.25). (F)KEGGenrichment analysis of gene sets enriched in IRGPI-lowand IRGPI-
high subgroups (p < 0.05, FDR <0.25). Pattern of the TME and characteristics of different IRGPI subgroups in esophageal cancer. (G–H) Proportion of TME
cells in different IRGPI subgroups. (H) Immune cell IRGPI subgroups. Scatter points represent the immune scores of the two subgroups. Thick lines represent
the median. The bottom and top of the box are the 25th and 75th percentiles (interquartile range), respectively. Significant differences between the two
subgroups were assessed using the Wilcoxon test (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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FIGURE 5
Kaplan–Meier survival analysis of immune-related cells in IRGPI subgroups. (A–C)Differences in follicular helper T cells between IRGPI subgroups. (B)
CD8Tcellswere different between IRGPI subgroups. (C)CD4memory-activated T cells differed between the IRGPI subgroups (p<0.05). (D)Molecular- and
immune-related functions of different IRGPI subgroups. The molecular- and immune-related gene sets of the IRGPI were analyzed by single-sample gene
set enrichment analysis (ssGSEA), and thedifferences betweendifferent IRGPI subgroupswere compared. Scatter points represent the ssGSEA scoresof
the two subgroups. Thick lines indicate median values. The bottom and top of the box are the 25th and 75th percentiles (quartile range), respectively.
Significant differences between the two subgroups were tested by the Wilcoxon test (NS: not significant, * * *p < 0.05, p < 0.01, ***p < 0.001). Analysis of
mutation loaddifference in the tumor. (E–F)Boxplot of differences in tumormutation loadbetweenhigh and low IRGPI. (F)Correlation test analysis of patient
risk score and tumormutation burden. (p = 0.023, R = 0.18) Immune escape and immunotherapy of TIDE, MSI, exclusion, and dysfunction score in different
IRGPI subgroups. (G–J) Violin plot of exclusion between the IRGPI subgroups. (H) Violin plot of dysfunction between the IRGPI subgroups. (I) Violin plot of
MSI between the IRGPI subgroups. (J)Violin plot of TIDE scoresbetween the IRGPI subgroups. The scoresbetween the two IRGPI subgroupswerecompared
through the Wilcoxon test (ns, not significant; *, p < 0.05; ***, p < 0.001).
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Immune microenvironment of IRGPI
subgroups

The gene sets enriched in different IRGPI subgroups were

detected by GSEA and analyzed by the “clusterprofile” R package

(p < 0.05 and FDR <0.25). By GO enrichment analysis, we found

that the gene sets of the low-IRGPI samples were enriched in

axon development, canonical WNT signaling pathway,

epidermis development, external encapsulating structure

organization, and skin development, while the gene sets of the

high-IRGPI samples were enriched in indigestion, hormone

transport, regulation of hormone secretion, signal release, and

hormone activity.

Next, KEGG enrichment analysis showed that the gene sets

of the low-IRGPI sample were enriched in basal cell carcinoma,

the Hedgehog signaling pathway, melanogenesis, pathways in

cancer, and the WNT signaling pathway. The gene set of the

high-IRGPI samples was enriched in complement and

coagulation cascades, maturity-onset diabetes in young people,

nitrogen metabolism, oxidative phosphorylation, and the PPAR

signaling pathway (Figures 4C–F).

To analyze the composition of immune cells in different

IRGPI subgroups, we visualized the immune microenvironment

of the two subgroups (Figure 4G). The results showed that the

proportions of infiltrating immune cells between the IRGPI

subgroups were not different (Figure 4H). Moreover, immune

cells associated with EC prognosis of the IRGPI subgroups were

assessed by Kaplan–Meier (KM) survival curves with log-rank

tests. We found that T follicular helper cells (p = 0.001),

CD8 T cells (p = 0.016), and activated memory CD4 T cells

(p = 0.001) were different between the low-IRGPI and high-

IRGPI groups (Figures 5A–C).

ssGSEA was applied to analyze immune cell infiltration in

tumors in the TCGA cohort by using immune-related genes

(Figure 5D). We used the Wilcoxon rank test to distinguish the

difference in immune cell infiltration between IRGPI subgroups.We

found that the immune-related functions of DCs, macrophages,

neutrophils, parainflammation, and T helper cells were different

between the high- and low-risk groups, and these cells were more

abundant in the high-IRGPI subgroups. By using K-M survival

analysis, B cells, checkpoints, macrophages, mast cells, neutrophils,

T-cell coinhibitory molecules, Th2 cells, TILs, and the type II IFN

response were obviously associated with prognosis in the IRGPI in

the high- and low-risk subgroups (Figures 5A–C).

There was no difference in tumor mutation load between the

high- and low-risk groups of IRGPI (p = 0.1). The correlation

tests showed that there was a positive correlation between risk

score and patient tumor mutation load (p = 0.023, R = 0.18).

The potential immunotherapy benefit was evaluated by using

the TIDE R package.

We explored the potential clinical efficacy in the IRGPI high-

and low-risk groups (Figures 5E, F). In general, a lower tide

prediction score indicated a lower possibility of immune escape

and a higher benefit from ICI treatment. Higher TIDE prediction

scores were associated with poorer outcomes. In our results,

TIDE exclusion and dysfunction scores were not significantly

different between the IRGPI high- and low-risk groups (Figures

5G–J), but the MSI score of the low-risk group was higher,

indicating that the low-risk group was more sensitive to

immunotherapy (Figure 5G).

The patient conditions would be improved.

Discussion

Esophageal cancer, as the seventh most common cancer, has

poor prognosis and higher mortality. At present, in the area of

immune-related therapy, EC patients have three research

orientations: active immunization, passive immunization, and

inhibition of immune checkpoints (ICIs). The immune

checkpoint inhibitor (ICI) in EC has been approved by the

United States Food and Drug Administration. However, the

efficacy of ICIs in low PD-L1-expressing tumors remains unclear,

and by using K-M subtraction, in low PD-L1-expressing GEAC

tumors, there was a lack of benefit from the addition of ICI to

chemotherapy (Zhao et al., 2022). The safety and efficacy of anti-

PD-1 antibodies, including pembrolizumab and nivolumab, for

esophageal cancer and the anti-CTLA-4 antibodies (ipilimumab)

and anti-PD-1 antibodies (nivolumab) in advanced CTLA-4 in late

esophageal cancer have been significantly demonstrated in recent

clinical trials (Huang and Fu, 2019). During this period, some

publications have presented that in the groups of EACs, T-cell-

rich inflammation has an outstanding prognostic correlation

(Schoemmel et al., 2021). In the area of immune-related therapy

for colorectal cancer, the immune score is a stronger predictor of

patient survival than microsatellite instability (Mlecnik et al., 2016).

The clinical prognosis of esophageal cancer is relatively unfavorable

due to lack of efficient early screening and diagnosis and limited

therapeutic options. In addition, due to limited efficacy and drug

resistance of immunotherapy, radiotherapy, and chemotherapy,

establishing an immune-related gene prognostic index is a

direction worth navigating. The prognostic model of EC we

established has been continuously updated for the eight genes we

selected by usingWGCNA. These genes, namely, OSM,CEACAM8,

HSPA6, HSP90AB1, PCSK2, PLXNA1, TRIB2, and HMGB3 have a

significant effect on patient OS. Our study takes into account the

comparison of the ROC line of the IRGPI. The results of

comparative ROC lines show that the model we constructed has

a high degree of accuracy, and we also used the GSE53625 (n = 358)

database to verify the accuracy of the model. Moreover, we also

conclude that the IRGPI could be a prognostic immune-related

biomarker for esophageal cancer since the model showed better

survival in IRGPI-high EC patients and worse survival in IRGPI-low

EC patients in both the TCGA and GEO cohorts.

Additionally, according to the clinically relevant heatmap of

IRGPI subgroups by the ComplexHeatmap package of R, we
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learned that the patient’s clinical stage was different between the

high- and low-risk groups and could be an important factor

affecting EC patient OS.

For further study, we explored the molecular characteristics of

different IRGPI subgroups through GSEA enrichment analysis.

According to a previous study, the high serum Wnt signaling

antagonist DickkopF-associated protein 1 is associated with

impaired overall survival and recurrence in patients with

esophageal cancer (Ramirez et al., 2021) and the biological

process of significant overexpression of downregulated genes in

epidermal development (Fu et al., 2015). According to recent studies,

in EC skin development, COX-2 can promote the initiation of

invasive tumor formation in tumor-prone dry/progenitor cells in

mouse skin and the formation of esophageal SCC at the squamous

junction (Moon et al., 2020). The treatment of esophageal cancer has

a hormone level of E2 that can be used to treat reflux esophagitis,

achalasia of the cardia, esophageal cancer, and other esophageal

diseases (Kim et al., 2017). Exosome incubation and

xenotransplantation experiments indicated that fMR1-AS1

exosomes might be secreted from ESCC CSCs, transferring the

dry phenotype to recipient non-CSCs in the tumor

microenvironment (Li et al., 2019a). In addition, we found a

correlation between serum levels of FMR1-AS1 and overall

survival (OS) in women with ESCC (Li et al., 2019a). Mir-135a

inhibits the invasion and migration of esophageal cancer stem cells

by targeting the Smo Hedgehog signaling pathway (Yang et al.,

2021). Radiotherapy plays an important role in the treatment of

esophageal cancer in general. In radiosensitivity studies of

esophageal cancer, circRNA_100367 silencing inhibited the

proliferation and migration of KYSE-150R cells and reduced the

expression of β-catenin (an important molecule in the Wnt

pathway) in KYSE-150R cells. In addition,

circRNA_100367 binds to miR-217, which targets Wnt3. Low

Wnt3 expression was associated with shorter survival time in

ESCC patients, and Wnt3 knockdown inhibited the proliferation

and migration of KYSE-150R cells (Liu et al., 2019). In the nitrogen

metabolism enrichment analysis, nitrotyrosine is a product of

nitrogen and is expressed in esophageal squamous cell

carcinoma, suggesting that exogenous risk factors such as tobacco

and alcohol are associated with the occurrence and progression of

esophageal squamous cell carcinoma throughNO (Kato et al., 2000).

Recent advances have revealed a novel redox homeostasis signaling

pathway that regulates the pathologic biology of ESCC and identified

IFI6 as a potential drug target in ESCC. In summary, the

LINC00184/PTEN/Akt axis mediates glycolysis and

mitochondrial OXPHOS in EC cells. This study highlights

potential intervention targets for the treatment of EC (Li et al.,

2019b; Liu et al., 2020). Moreover, the PAR signaling pathway

illustrates that PPAR gamma antagonists inhibited the invasion and

cell adhesion of esophageal carcinoma cells, probably due to

alteration of the FAK-MAPK pathway, which was unrelated to

apoptosis. The results also suggest that PPARγ plays an important

role in the invasion of cancer cells and may be a new target for the

treatment of esophageal cancer (Takahashi et al., 2006). The

underlying mechanism by which the IRGPI was enriched

remains unclear and needs further study. Therefore, studying

these identified signaling pathways may shed light on the

carcinogenic mechanisms behind EC.

Microsatellite instability is a biomarker of PD-1 blockade.

Tumor types can be classified according to the frequency of MSI,

from colorectal cancer (20%) and endometrial cancer (22–33%) to

cervical cancer (8%) and esophageal cancer (7%) to skin cancer and

breast cancer (0–2%). At present, MSI can be used as one of many

biomarkers to guide the treatment decisions of patients with

esophageal and gastric adenocarcinoma, and MSI is the cause of

neoplasms in colorectal, gastric, and endometrial cancers

(Thibodeau et al., 1993; Liu et al., 1995; Liu et al., 1996; Wirtz

et al., 1998; Halling et al., 1999; Goel et al., 2003; Boland and Goel,

2010). Microsatellite instability (MSI) due to mismatch repair

defects is present in 4–20% of gastroesophageal cancers and is

associated with favorable survival outcomes. This prognostic

advantage may be related to immune surveillance; hence, the

favorable response to immune checkpoint inhibition observed in

tumors with high MSI (MSI-H) (Dudley et al., 2016; Dhakras et al.,

2020; van Velzen et al., 2020).

In our study cohort, we found microsatellite unstable EACs in

only 0.6%, which was published previously. More evidence shows

that in order to fully understand the molecular composition of

esophageal cancer, we should pay attention not only to tumor

microscopy (TME) but also to tumor cells. Cell populations, such

as suppressor cells and regulatory T cells from bone marrow, and

immune checkpoints, such as programmed death 1, weaken

antitumor immunity (Lin et al., 2016). IRGPI was made up of

eight genes, OSM, CEACAM8, HSPA6, HSP90AB1, PCSK2,

PLXNA1, TRIB2, and HMGB3. Among the emerging targets and

biomarkers, the anticancer hormone (OSM) has attracted extensive

attention in the past few years. OSM has diagnostic, prognostic, and

therapeutic capabilities (Verstockt et al., 2019) and has been

identified as an inhibitor of tumor cell growth in a variety of

cancers, including melanoma, ovarian cancer, and glioblastoma

cancer (Brown et al., 1987; Friedrich et al., 2001; Ohata et al.,

2001; Tawara et al., 2018). Furthermore, CEACAM8 could be used

to evaluate the relationship between clinicopathological features and

prognosis of patients in the period study. For example, CEACAM8 is

used as a risk signature for inflammation and T immune cell

infiltration in colorectal cancer to predict distant metastasis and

chemotherapy efficiency (Hu et al., 2019). CEACAM6 expression

has also been implicated in bone metastasis of breast cancer, and the

coexpression of CEACAM6 and 8 inhibits the proliferation and

invasion of breast cancer cells (Iwabuchi et al., 2019). RNA

sequencing revealed that heat shock 70-kDa protein 6 (HSPA6),

a novel thymoquinone upregulation gene, inhibited the growth,

migration, and invasion of triple-negative breast cancer cells (Shen

et al., 2021). HSPA6 enhanced the inhibitory effect of garlic extract

on the proliferation, migration, and invasion of bladder cancer EJ

cells (Shin et al., 2017). Analysis of TCGA data showed that high

Frontiers in Genetics frontiersin.org10

Guo et al. 10.3389/fgene.2022.956915

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.956915


HSP90AB1 expression was also associated with poor prognosis in

breast cancer but with a better prognosis in rectal cancer patients

(Uhlen et al., 2017). Hsp90ab1 is overexpressed and associated with

poor prognosis, proliferation, and invasion of GC (Wang et al.,

2019). Some data suggest that EXO-LNCRNAPCSK2-2:1 may play

an important role in the progression of gastric cancer and can be

used as a potential marker for diagnosis of gastric cancer. In

addition, PCSK2 can also be used as an indicator to identify

follicular variants of thyroid papillary carcinoma (Weber et al.,

2005; Cai et al., 2019). The increased expression of

PLXNA1 promoted the growth of prostate tumors and

independently predicted the biochemical recurrence, metastasis,

and poor survival of prostate tumors in a multi-institutional

PCA patient cohort. Furthermore, PLXNA1 is also a promising

therapeutic target for renal clear cell carcinoma (Ren et al., 2018; Li

et al., 2021b). The characteristics of TRIB2 structure and signal

transduction and its role in many cancer subtypes focus on the

function of TRIB2 in the therapeutic resistance of melanoma,

leukemia, and glioblastoma (Mayoral-Varo et al., 2021). In some

studies, HMGB3 may be a useful prognostic indicator for patients

withGC. In addition, theHMGB3/hTERT signaling axis can be used

as a new target for radiation resistance in cervical cancer, which

provides new insights into the antiradiation mechanism of cervical

cancer and suggests that targeting the HMGB3/hTERT signaling

axis may be beneficial to patients with cervical cancer (Fang et al.,

2020; Li et al., 2020). Although there are many models associated

with the prognosis of esophageal cancer, this is the first time that the

WGCNAmethod has been used to establish an 8-gene model. This

model does not require whole-genome sequencing for EC patients

and is inexpensive and can predict patient prognosis at 1, 2, and

3 years, and the prediction effect is better when combined with

patient stage. For the accuracy of our model, we used relevant

datasets for verification and obtained good accuracy results. In

addition, the methods used in this study may also apply to other

types of malignancies.

At the same time, we recognize that there are local limitations

to the model that we built. First, the experimental data were

mainly derived from the TCGA database, and only the GEO

database was used for validation, which was not verified in other

databases or other clinical and pathological data. Second, we did

not follow up on patient outcomes. Third, this study only

proposed a preliminary prognostic model, the validity of the

gene signature model needs to be further verified by clinical trials,

and further functional studies are required to elucidate the

underlying mechanisms of these eight genes.

Conclusion

In our study, we established a novel eight immune-related

gene model, which is a promising immune-related prognostic

biomarker. Importantly, the IRGPI may help distinguish

immune and molecular characteristics and predict patient

outcomes. The IRGPI may be a potential prognostic indicator

of immunotherapy, but further studies are needed to clarify this.
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