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Electroencephalogram (EEG) is an economical and convenient auxiliary test

to aid in the diagnosis and analysis of brain-related neurological diseases.

In recent years, machine learning has shown great potential in clinical EEG

abnormality detection. However, existing methods usually fail to consider

the issue of feature redundancy when extracting the relevant EEG features.

In addition, the importance of utilizing the patient age information in

EEG detection is ignored. In this paper, a new framework is proposed for

distinguishing an unknown EEG recording as either normal or abnormal by

identifying different types of EEG-derived significant features. In the proposed

framework, different hierarchical salient features are extracted using a time-

wise multi-scale aggregation strategy, based on a selected group of statistical

characteristics calculated from the optimum discrete wavelet transform

coefficients. We also fuse the age information with multi-scale features for

further improving discrimination. The integrated features are classified using

three ensemble learning classifiers, CatBoost, LightGBM, and random forest.

Experimental results show that our method with CatBoost classifier can yield

superior performance vis-a-vis competing techniques, which indicates the

great promise of our methodology in EEG pathology detection.

KEYWORDS

electroencephalography, discrete wavelet transform, multi-scale aggregation,
ensemble learning, age

Introduction

Electroencephalogram (EEG), which can monitor and record the electrical activity
of the brain over time (Wang et al., 2017), is an advanced electrophysiological technique.
EEG recordings contain an enormous amount of physiological and pathological
information, which is closely associated with the well-being of the brain, making
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it a highly valuable tool to support doctors and other healthcare
professionals in diagnosing a variety of chronic diseases.
For example, it forms a basis for diagnosing stroke in the
elderly (Choi et al., 2021), intending to reduce neural damage
through timely intervention, or alleviating the financial burden
of patients compared with other neuroimaging techniques
such as computed tomography. Furthermore, a wide range
of medical applications have been flourishing along with
advances in technology, enabling medical professionals to
utilize EEG for intelligent diagnosis of various neurological
and neuropsychiatric disorders such as depression (Jiang et al.,
2021), epilepsy (Subasi et al., 2017; Amin et al., 2020) and
Parkinson’s disease (PD) ( Lee et al., 2022).

Typically, neurologists diagnose brain diseases or possible
cerebral dysfunctions by analyzing EEG waveform in an orderly
step-wise manner, and then provide a diagnostic report to
the patient. The first significant step is to decide whether any
abnormal patterns are present in the brain activity signals;
if so, further investigation would follow suit and medical
intervention may be required. Here, it is worth noting that
a particular EEG can be considered as abnormal because of
many reasons including, for example, the presence of obvious
pathological events such as long periods of spike and wave
activity, periodic lateralized epileptiform discharges (Guerrero-
Mosquera et al., 2012; López et al., 2015). Currently, neurologists
often follow a complex decision tree to make the discrimination
(López et al., 2015). However, this process is arduous, time-
consuming, and susceptible to low inter-rater agreement (Mei
et al., 2017). Halford et al. (2015) found that the Cohen’s kappa
with estimated reliability was 0.58 for detecting seizures in
continuous EEG data, indicating moderate agreement among
neurologists. The development of automated EEG analysis
approaches could assist physicians in screening EEGs with the
potential of replacing evaluation by human altogether in the
future. They could not only reduce the physicians’ workload,
but shorten the duration of consultation for each patient
(Lahmiri, 2018). Thus, a reliable method for automatic clinical
EEG diagnosis without human intervention is highly desirable,
especially when seeking an inexpensive and remote diagnosis.

In recent years, many machine learning-based approaches
have been proposed to predict and detect brain disorders using
EEG signals. Most of them consist of two parts: extracting
and classifying EEG features, and the former is essential for
classification tasks because it can clearly influence the overall
performance. In terms of feature extraction, time-frequency
techniques like wavelet transform (WT) or its variants have
attracted more and more attention, as on the one hand it is a
more advanced and sophisticated technology that can associate
spectral information with the time domain (Padfield et al., 2019).
On the other hand, existing studies indicate that brain signals
are non-linear and non-stationary in nature. For example, Adeli
et al. (2007) pointed out that the features from the specific
frequency sub-bands obtained using discrete wavelet transform

(DWT) could provide better information than those from the
original brain signals. Once the feature sets are determined,
different types of classifiers would be designed to classify
them. The commonly used classifiers include support vector
machine (SVM), Riemannian geometry (RG) (Gemein et al.,
2020), Light Gradient Boosting Machine (LightGBM) (Ke et al.,
2017), Categorical Boosting (CatBoost) (Albaqami et al., 2021),
etc. Among them, ensemble learning methods that combine
multiple models for solving various classification problems
are a common and popular technique and, in particular,
gradient boosting-based ensemble methods have attracted great
interest, due to their outstanding performance and flexibility
( Samat et al., 2022).

Currently, plenty of studies are available in the literature
on the automatic diagnosis and detection of specific diseases
and disorders, but few of them are concerning the diagnosis
of general EEG pathology, which is considered a vital first step
in conducting EEG analysis either manually or automatically
(Sejdic and Falk, 2018; Albaqami et al., 2021). In particular, it can
effectively decrease the false alarm rate of tasks such as seizure
detection (López, 2017). Thus, we focused our investigation on
the automation of this step. Despite the remarkable progress
that has been achieved, some challenges remain that warrant
attention and further investigation in this field. First, most
existing feature-based methods only focus on feature extraction
while ignoring the feature redundancy, compromising the
classification accuracy and speed of machine learning methods.
Second, as is documented in several recent studies (Cassani
and Falk, 2020; Bodizs et al., 2021), EEG signatures are heavily
influenced by the age factor. However, the vast majority of
the previously published studies completely neglect the age
information of patients in the classification process, which may
have negatively affected their performance to a large extent.

To address the above challenges, we propose a simple
yet effective method for the detection of abnormal brain
signals, which can mine a compact set of features from
EEG data to adequately represent the most distinguishing
characteristics between target categories. Specifically, we first
utilized DWT to break down the EEG signal into several
wavelet coefficients and left out non-significant coefficients
based on certain threshold criteria, thereby restricting the
number of significant wavelet coefficients. Then, a set of features
with substantial roles in improving detection performance
were extracted from each selected coefficient. Finally, unlike
traditional feature-based approaches, we make full use of
both local and global aggregation to reduce feature dimension
and redundancy. In addition, we also attempt to fuse age
information with the extracted multi-scale features to further
enhance the overall performance of this method. Three popular
ensemble learning classifiers, i.e., RF, LightGBM, and CatBoost,
are adopted to distinguish the EEGs based on the integrated
features. Experiments are conducted on the widely accepted
benchmark dataset, which contains EEG signals of patients
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with various neurological disorders. The results show that our
proposed methodology compares favorably to other state-of-
the-art methods in performance. In addition, we also conduct
ablation studies, which demonstrate the effectiveness of our
proposal. Our main contributions are summarized below:

(1) We present a novel lightweight multi-scale aggregation
mechanism for precise EEG pathology detection, which
extracts the discriminative multi-scale features via local-
global hierarchical aggregation and fuses these features
with patients’ age as multimodal features of brain signals.
More importantly, it can significantly decrease both the
dimensionality and redundancy of the features whilst
improving the classification accuracy.

(2) We conduct extensive qualitative and quantitative
experiments on a commonly used, standard abnormal
EEG data set. The results demonstrate that our proposed
approach significantly outperforms other state-of-the-art
baselines. Besides, experiments also show that the age
information is crucial for detecting abnormality in EEGs.

The remainder of this paper is organized as follows. In
the section “Materials and methods,” we first describe the
abnormal EEG dataset being used in our study, and give an
overview of data preprocessing. We then discuss the DWT-
based feature extraction in detail and explain how we obtain
the features from EEG signals. Next, we explore how to
compress the extracted statistical features to acquire significant
representation. The section concludes with a discussion of
different ensemble learning classifiers we utilized to facilitate
classification task. In the section “Experimental results and
discussions,” we discuss the extensive experiments conducted in
this work and analyze the results, while conclusions and future
directions are presented in the section “Conclusion.”

Materials and methods

In this section, we propose a novel framework to
automatically classify EEG recordings as either normal or
abnormal. Figure 1 depicts the general workflow of our
framework, which mainly comprises the following three phases.
The first phase is the pre-processing which aims at ensuring data
consistency. The second phase is to extract important statistical
features from each optimally selected DWT coefficient and
then exploit our proposed multi-scale aggregation mechanism
to improve the discrimination of features. Finally, the fused
features are classified using three popular ensemble learning
algorithms, which can not only assess the effectiveness of the
proposed technique but also choose an appropriate classifier for
EEG abnormality detection. We will discuss each part in the
following subsections.

FIGURE 1

Block diagram of our proposed abnormal
electroencephalogram (EEG) signal detection framework.

Data description and preprocessing

The EEG data for this study are derived from the TUH
EEG Abnormal Corpus (López, 2017), which is the publicly
available dataset for the study of general EEG pathology. It is
part of the TUH EEG Corpus, the largest open-source EEG
dataset collected by Temple University Hospital. This corpus, as
a widely used benchmark, is still being updated, and the current
version is v2.0.0. To date, this dataset contains the scalp EEG
data taken from 2,329 unique patients of various ages ranging
from infants to the elderly. Seventy percent of reported patients
are male, and the mean age of patients is around 48 years with
a standard deviation of 17.89, where the maximum age was
96 and the minimum age was 7 days. The EEG data in this
corpus were acquired using the common electrodes arranged
in accordance with the international 10/20 position system (as
shown in Figure 2) and involved at least 15 min duration of
recordings for each patient, with a dominant sample frequency
of 250 Hz or more. Moreover, this corpus has been segregated
into two subsets, i.e., the training subset (2,717 recordings)
and the testing subset (276 recordings), and meanwhile each
recoding was manually labeled as either abnormal or normal by
clinical neurologists, of which 1,521 were classified as normal,
while the remaining 1,472 were categorized as pathological
recordings, as illustrated in Table 1. Figure 3 describes typical
normal and pathological EEG signals in this dataset, where the
former and latter were collected from a normal 51-year-old
woman and a 33-year-old male patient with refractory epilepsy,
respectively. It can be seen from abnormal EEG that sharp-and-
slow wave, spike- and polyspike-slow wave are present in left
central, left parietal and left occipital regions, which supports
the diagnosis of epilepsy to some extent. By contrast, abnormal
patterns are absent from all of the channels (including C3, P3,
and O1) in normal EEG. Obviously, even though neurologists
can generally follow a complex decision tree to systematically
evaluate the abnormality of EEG, it is a challenge to visually
interpret and especially difficult to perceive signal variations
(Acharya et al., 2015), due to the non-stationary and chaotic
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FIGURE 2

Distribution of the 21 EEG electrodes according to 10–20
system.

TABLE 1 Number of patients and files in TUH EEG Abnormal
Corpus (v2.0.0).

Description Normal Pathological

Files Patients Files Patients

Training 1,371 1,237 1,346 893

Testing 150 148 126 105

Total 1,521 1,385 1,472 998

properties of this physiological signals; thus, a suitable automatic
approach is highly desired.

The EEG preprocessing included channel selection,
downsampling, and signal segmentation. Specifically, the
originally acquired EEG recordings are of multi-channel
nature, where the minimum number of EEG channels used is
21, and 31 for the maximum. To ensure the standardization
across all samples, the 21 standard electrodes considered in
this paper are consistent across all recordings, as depicted in
Figure 2. After which, each EEG recording is resampled with
the common sampling rate of 250 Hz, aiming to make the
sampling frequency of all EEG signals consistent. Finally, we
segmented each channel data into 100 equal data slices of size
1250 by employing a 5-s non-overlapping sliding window and
discarded the remaining EEG signals, as illustrated in Figure 4.

Multi-resolution analysis using discrete
wavelet transform

Generally speaking, EEG features can be obtained from
time-domain analysis, frequency-domain analysis, or both of

them. However, similar to many other biomedical signals,
EEG signal is non-linear and because of its non-stationary
characteristics, there may be a weak classification effect when
only the frequency or time-domain characteristics are taken
into account. If considering the frequency-domain features
alone, while ignoring other domain characteristics, some
significant information would be lost, e.g., the potential
correlation between frequency content of the signal and
the temporal domain. Likewise, only considering the time-
domain characteristics may neglect the valuable frequency
information. Nevertheless, the time-frequency analysis can
effectively overcome the above disadvantages, since it is able
to associate spectral information of brain signals to the time
domain, thus being advantageous for EEG detection.

At present, short-time Fourier transform (STFT) and WT
are two common time-frequency analysis methods. STFT, a
windowed combination of Fourier transform, can transform
time-domain raw EEG data into a two-dimensional time-
frequency representation by utilizing a proper window that
translates or slides through the whole signal, thereby making
it capable of extracting time-varying spectral features from
EEG signal. However, it suffers from some limitations, such
as the single fixed analysis window for all frequencies which
not only is difficult to determine the size in practice but
also cannot make adaptive adjustments according to the time-
frequency properties of brain signals. As an alternative to the
STFT, the WT employs a variable sized window region when
analyzing EEG signals, namely allowing signal analysis from
coarse to fine multi-resolution perspective. Specifically, the WT
can capture either the relevant time or frequency information
by decomposing the signal into different spectral components
using multi-resolution analysis. In addition, it is found to
be a quite appropriate tool for capturing transient events of
brain signals, such as spikes and sharp waves (Subasi et al.,
2017). Up to now, the WT mainly includes continuous wavelet
transform (CWT) and DWT.

Specifically, let x(t) be the signal of the C-channel EEG
recording, the CWT is mathematically defined as follows:

CWT
(
a, b

)
=

1
√

a

∫
+∞

−∞

x (t) ψ
∗

(
t − b

a

)
dt,

here, a and b are scaling and translation parameters,
respectively, CWT (a, b) represents the wavelet coefficients,
t is the time and ψ∗ represents a complex conjugation of
scaled and translated versions of the continuous mother wavelet
function ψ . The ψ can be compressed or stretched by the
scaling parameter, and its time location can be changed using the
translation parameter (Grossmann and Morlet, 1984). The high
and low frequency components can be obtained by contracting
or dilating the wavelet function in signal analysis, respectively;
hence, it makes the CWT possible to achieve excellent time
and frequency resolutions simultaneously. Practically, when
continuous parameters a and b are defined as discrete values,

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.943258
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-943258 September 13, 2022 Time: 18:6 # 5

Wu et al. 10.3389/fnhum.2022.943258

FIGURE 3

Examples of EEG signals from C3, P3, and O1.

FIGURE 4

The flows of EEG preprocessing.

the CWT will be referred to as DWT. This means that the
wavelet’s coefficients in DWT are calculated at discrete intervals
of time and scale.

As a special case of the CWT, the DWT decomposes
the input signal into various sub-bands using filter banks
which consist of complementary low- and high-pass filters,
and then calculates the corresponding wavelet coefficients,
where the down-sampled outputs of the low- and high
pass filters correspond to the approximate and detailed
coefficients, respectively. It supports a multi-level wavelet
decomposition of EEG signals. Each level involves two filters
with two downsamplers by 2. Figure 5 illustrates the DWT
decomposition procedure, where h[n] and g[n] each denote

the high- and low-pass filters, and symbols “A” and “D”
represent the approximation and detail coefficients, respectively.
We can observe that an original input signal is successfully
divided into an approximation A1 and a detail D1, and
subsequently the generated approximation is further split into
a next-level approximation and detail, repeating this procedure
in the lower level until the desired number of levels is
reached. After n levels decomposition, the DWT will output
(n + 1) coefficients, including n detail coefficients from D1
to Dn and only one approximation coefficient; of these, Dn
corresponds to the frequency range of sf /2n+1-sf /2n Hz, where
sf is the sample frequency. These coefficients offer a compact
representation showing the signal’s energy distribution in time
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and frequency. In addition, it is worth mentioning that in
the DWT, the selection of a suitable wavelet function and
the decomposition levels have a significant impact on EEG
analysis. There are currently a number of wavelet families
available like Coiflets, Daubechies, Symlets, etc. Each of them
has different members. For the other key factor, naturally, the
more decomposition levels, the better frequency resolution,
and the more detailed information can be yielded, with
increased complexity and computation time, perhaps even
feature redundancy as the trade-offs. Literature survey indicates
the choice of decomposition level is determined by the signal’s
primary frequency components ( Raghu et al., 2019).

Salient feature extraction using
different aggregation strategies

Initially, using DWT with Symlets wavelet, the brain signal
is split into one approximation and several details. We selected
the known Symlets wavelet of order 6 (sym6) in this work;
as previously reported by authors (Chen et al., 2017; Frikha
et al., 2021), the wavelet filter sym6 is very adequate for
biomedical signal analysis because of its orthogonality nature,
in particular for abnormality detection in EEGs. As for the
decomposition level, it can be determined mainly based on
the following consideration. Since EEG signal has multi-
frequency properties, it can be commonly divided into multiple
fundamental frequency bands or rhythms which are known
as Delta (<4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta
(13–30 Hz), and Gamma (>30 Hz), respectively (Schirrmeister
et al., 2017; Rahman et al., 2021); of these, the first four
contain significantly discriminative information. For example,
the studies of Bashivan et al. (2014) and Tsipouras (2019)
indicate that the features of epileptic seizure mainly appear in
the frequency range below 30 Hz. Grin-Yatsenko et al. (2010)
found that theta, alpha, and beta rhythms show significant
differences between depressed patients and healthy controls.
Thus, it is reasonable to determine the decomposition level that
makes the final obtained wavelet coefficients correlate within the
valuable rhythms as much as possible. Considering the sample
rate of the used EEG data is 250 Hz after preprocessing, the
decomposition level was set to 5 in this work, in order to filter
out irrelevant information. As more useful frequency ranges are
required in EEG detection, one final approximation coefficient
A5 and three details i.e., D3, D4, and D5 are chosen, as shown in
Figure 6.

Although the decomposed signals can be directly
concatenated into a single feature vector as the input of
classifiers, these signals have been found to be particularly
susceptible to noise (Soman and Jayadeva, 2015). Feature
extraction is a practical and effective methodology to deal
with this problem (Lee et al., 2022). By extracting a set of
useful and discriminative statistical information embedded in

the wavelet coefficients, it will not only achieve the purpose
of characterizing EEG signals but also contribute to further
reducing the dimension of feature space. Figure 6 depicts the
statistical feature extraction process from EEG segment. Like
the studies of Amin et al. (2020) and Al Ghayab et al. (2019), six
statistical parameters used in this work are shown below:

(1) Mean of the wavelet coefficients for every sub-band (MV).
(2) Mean of the absolute deviations of the coefficients in every

sub-band (MAD). This can be expressed as:

MAD =
1
m

∑m

i
|xi − u| ,

where u represents the mean value of the wavelet coefficient
with m data points, and xi (i = 1, 2, . . ., m) represents the
i-th data point in the coefficient.

(3) Standard deviation of the coefficients in every sub-
band (SD).

(4) Mean of the absolute values of the coefficients in every sub-
band (MAV).

(5) Skewness of the wavelet coefficients in every sub-band.
(6) Kurtosis of the wavelet coefficients in every sub-band.

The MV and MAV features are extracted for evaluating
the signal frequency distribution. The SD and MAD features
are measures of the variations in the frequency distribution
of a signal. The skewness gives information about the
degree of asymmetry in the frequency distribution and the
kurtosis characterizes the sharpness of the peak of frequency-
distribution curve. Overall, 6 (# statistical parameters) × 4
(#coefficients) = 24 features are generated for every single-
channel EEG segment, based on which a feature vector is
formed, as shown in Figure 6.

After calculating features, the next steps are normalization
and to employ a new mechanism to further significantly
decrease the dimensionality and increase the separability of
the feature vector.

Feature vector normalization
Since scalp EEG signals have arbitrary positive or negative

voltage values, the statistical characteristics derived from DWT
inherently have a broad range of values. Thus, the generated
feature vector for each EEG sample needs to be standardized to
address the problem of feature scaling and eliminate the offset
effect. This can be accomplished by using Z-score normalization
so that each feature vector obtained has zero mean and unit
variance. Figures 7A,B depict an example of a characteristic
vector before and after normalizing, correspondingly. This
procedure also helps the proposed framework to reduce memory
requirements and improve efficiency.

Multi-scale feature aggregation
After a C-channel scalp EEG recording being split into

relatively short EEG segments using a standard sliding window,
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FIGURE 5

Scheme of discrete wavelet transform (DWT) decomposition.

FIGURE 6

Discrete wavelet transform feature extraction from the raw EEG signals.

the feature computation will result in a feature matrix Mi ∈

RC×S×F , where i ∈ N and N denotes the total amount of
EEG recordings, S denotes the segment number for each EEG
channel and F represents the total number of the extracted
statistical features of each channel segment. Obviously, every
EEG recording will produce a feature vector with dimension
C × S × F, when the features derived from the selected
DWT coefficients are directly flattened. In this case, if the C
and S are 21 and 100 for a sample, respectively, the resultant
feature vector is composed of 21∗100∗24 = 50,400 values.
This means that the extracted features are extremely high in
dimensionality and may even contain considerable redundant
and unreliable information. These factors have presented a
serious challenge to existing machine learning methods, e.g.,
performance degradation (Baig et al., 2019). To deal with
these factors, dimensionality reduction is a suitable option.

A small feature dimension is favorable since it produces a lower
computation burden and shorter learning time.

To further reduce the dimensionality of the constructed
feature space, a rather simple mechanism is exploited, namely
feature aggregation. The key idea is that a single output value
computed by the aggregation function is able to summarize the
information embedded in several numerical values. Considering
the variabilities of the feature data over time, we adopt the
standard deviation as the aggregation function because it is an
indispensable tool to measure the discrete degree of the data.
A large standard deviation indicates a wide distribution of the
actual feature values while a small standard deviation implies
the opposite. On the other hand, standard deviation aggregation
has been proved to be a particularly effective method for
information fusion (Corso et al., 2020). To effectively alleviate
excessive feature information loss caused by the aggregation

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.943258
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-943258 September 13, 2022 Time: 18:6 # 8

Wu et al. 10.3389/fnhum.2022.943258

A B

FIGURE 7

A feature vector with a size of 24 (A,B) before and after normalizing.

operation, this paper proposes a new multi-scale aggregation
method based on global and local aggregation strategies.
Specifically, for each sample, the local information takes the
standard deviation of the EEG segments on the front half
and rear half, respectively; the global information takes the
standard deviation of all segments, where all analyzed EEG
segments are ordered by time. Figure 8 illustrates a schematic
representation of the proposed aggregation procedure. After
feature aggregation and concatenation, the feature matrix of
each EEG recording is flattened into a one-dimensional vector
with dimension C × 3× F.

In addition, a multitude of literature reveal that the
spectral properties of an EEG signal are significantly associated
with individual age characteristics (Namazi and Jafari, 2018;
Bodizs et al., 2021). Therefore, the effect of patient age
is considered in this paper. We add age as an additional
feature to the flatten vector (as shown in Figure 8), and
finally, obtain the feature matrix as the input of a machine
learning classifier.

Ensemble learning classification
To build on the above premise, it is necessary to find

models that can effectively process the features finally obtained,
even a large amount of them. Toward this end, ensemble
learning methods have become a very important technique
for improving the performance of multiple existing models
in the last decade. In particular, the recent three ensemble
methods based on gradient boosting and its derivatives, i.e.,
XGBoost, LightGBM, and CatBoost, have been shown to
be efficient and accurate classifiers for usage in supervised
machine learning tasks. Their refinements mainly focus on
both accuracy and speed. As a member of the family of
gradient boosting decision trees (GBDT), CatBoost utilizes
ordered boosting technique to prevent prediction shift caused

by gradient bias and further improves the generalization ability.
Meanwhile, different from other gradient boosting methods,
CatBoost has a superior ability to handle categorical features
with the lowest information loss during training time, which is
often required to be completed separately at the preprocessing
phase for other supervised learning methods. It is easy to
deploy, fast to operate, and robust to noise. To date, CatBoost
has been used and validated in many different classification
tasks including EEG-based brain disorder analysis (Choi et al.,
2021; Lee et al., 2022). In this work, we have compared the
performance of different kinds of classifiers, and the CatBoost
is the best option for this task, as shown in the latter
part of this paper.

Experimental results and
discussions

In this section, we briefly summarize the experimental setup
and the evaluation criteria used. Then, we go through the results
that were obtained from testing the proposed scheme on the
benchmark dataset, and compare the performance against other
previous approaches. Finally, we elaborate on how the final
results were achieved through ablation study to explain the
contribution of this study. In the meantime, the effectiveness of
our framework was also further examined through adjusting the
number of EEG channels.

Experimental setup

All the experiments were performed on a workstation
configured with Intel(R) Core(TM) i7-8700 CPU 3.20 GHz, 64
GB RAM, and NVIDIA GeForce RTX 3090 GPU with 24 GB
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FIGURE 8

The process of the salient feature extraction for EEG pathology classification.

memory. Our scheme was implemented using the library scikit-
learn (version 0.24.2) (Pedregosa et al., 2011), together with
Python3 language on the Ubuntu 18.04 operating system.

As mentioned above, we used the TUH EEG Abnormal
database to validate the proposed methodology. The raw EEG
data were first clipped into 100 segments by sliding a 5-s
window with no overlap. Then, the detail and approximation
coefficients for each segment of each EEG channel were
obtained by using DWT with the sym6 as the mother wavelet,
where the decomposition level was 5. After that, the D3,
D4, D5, and A5 coefficients were selected from the resulting
coefficients (as shown in Figure 6), and meanwhile six statistical
parameters (i.e., MV, MAV, SD, MAD, skewness, and kurtosis)
were derived from each selected coefficient, to prepare feature
vector. Subsequently, a novel multi-scale aggregation method
was employed to decrease the dimension of the normalized
feature vectors, and appended the age of each patient to
the corresponding feature vectors after flattening. Finally, the
feature vectors were forwarded to CatBoost, LightGBM, and

RF classifiers. We trained classifiers on the complete training
set and predicted the instances on the independent test set
for model evaluation, as in most of the existing studies (Amin
et al., 2019; Albaqami et al., 2021). The hyperparameters of
each classifier use the default settings in all experiments, except
for the parameters listed in Table 2. Additionally, this work
also followed a similar experimental protocol as in Sharma
et al. (2020), that is, 10-fold cross validation was employed
to evaluate which classifier will perform better. Specifically,
the entire dataset was randomly partitioned into ten portions,
nearly equal each. Iteratively, nine portions were used for
training and the remaining one was for validation. This
process was repeated 10 times until all the portions were
tested, and then, the average performance of all iterations was
reported.

Since the external class labels are available for the
experimental dataset, four well-known metrics were adopted to
evaluate the performance of EEG pathology detection in this
article, i.e., accuracy, sensitivity, specificity and F1-score. They
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TABLE 2 Hyperparameters of the three models used in this work.

Model Hyperparameters Values

CatBoost n_estimators 680

max_depth 4

learning_rate 0.0343

LightGBM n_estimators 150

max_depth 18

learning_rate 0.0441

RF n_estimators 43

max_depth 18

criterion “gini”

max_features “auto”

are currently the main metrics to describe the effect of EEG
classification and are mathematically defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1− score =
2(TP)

2 (TP)+ FP + FN

where TP (true positive) is denoted by the number of EEG
samples correctly identified as abnormal, TN (true negative)
is denoted by the number of EEG samples correctly classified
as normal, FP (false positive) is denoted by the number of
EEG samples misclassified as abnormal and FN (false negative)
as the samples that are wrongly labeled as normal by the
classification method. Obviously, these metrics take values in
the range of between 0 and 1. The larger the value, the better
the classification effect. All these measures would be equal to 1,
when the classification result exactly matches the raw class label.

Comparison with previous studies

In this part, the extracted salient features were initially
fed to multiple classification algorithms popular in machine
learning, i.e., CatBoost, LightGBM, and RF. The purpose is
to highlight the most effective classification method. Then,
we compared our approach alongside several baseline and
state-of-the-art approaches in literatures, including BD-Deep4
(Schirrmeister et al., 2017), AlexNet + SVM (Amin et al., 2019),
the recently published methodology based on wavelet packet
decomposition (WPD) (Albaqami et al., 2021). The selected
competitive methods are representatives of machine learning
techniques for EEG abnormality detection, and follow an

analogous methodology to assess performance. We make a brief
introduction about the compared approaches in the following.
Sharma et al. (2020) proposed a WT-based methodology to
extract three discriminatory features from each decomposed
WT coefficient, and then adopted the SVM to classify them
for detecting abnormality in EEGs. Their method reached a
classification accuracy of 79.34% during evaluation. Gemein
et al. (2020) extracted massive EEG features by using discrete
Fourier transform (DFT), CWT, DWT, and connectivity
between electrodes using Hilbert transform (HT), and then
separately employed four classic machine learning classifiers to
perform classification. The authors found that the RG produced
the maximum accuracy among all classifiers. Likewise, a latest
method in Albaqami et al. (2021) extracted EEG features from
each selected coefficient after the WPD decomposition, and were
given as input to three different GBDT models to do the same
task, achieving the highest accuracy of 87.68%. In addition to
the feature-based approaches, we also compared our approach
against other deep learning methods, since such methods are
data-driven. BD-Deep4 is an end-to-end baseline approach that
uses a 4-layer convolutional neural network architecture to
detect irregular EEGs, obtaining the accuracy of 84.6%. BD-
TCN is an EEG-optimized deep learning network which resulted
in 86.2% accuracy. Amin et al. (2019) employed the popular
pre-trained model AlexNet to detect abnormality in EEGs.
After transfer learning and fine-tuning, the final output layer
in the model was replaced by SVM, achieving a classification
accuracy of 87.32%.

In the first experiment, our model with the CatBoost,
LightGBM, and RF classifiers achieved cross-validation
accuracies of 81.39, 80.78, and 79.38%, and cross-validation
F1-scores of 80.55, 79.72, and 78.18% on a widely used real-life
EEG dataset, respectively. From these results, we find that the
first two classifiers clearly outperform the best performance
of the baseline method (78.3% accuracy and 79.53% F1-score)
(Sharma et al., 2020). In the second experiment, we trained
classifiers on the complete training set, and then evaluated them
on the held back test set. The obtained results with each classifier
are given in Figure 9. Overall, our proposed salient feature
extraction technique can make the classifiers significantly better
than the feature-based and deep learning baseline methods
in multiple evaluation metrics. We also observe that the
CatBoost classifier obtained the highest performance with
89.13% accuracy among the three ensemble approaches. The
second best is the LightGBM which exhibited approximately
the same performance in accuracy. Interestingly, both methods
also performed better than our previous work, which employed
a deep learning algorithm with one-dimensional convolutional
neural networks to detect anomalous events in EEGs (Wu et al.,
2021). By contrast, the major benefit of our new approach is
that multi-scale salient features are extracted from the raw
brain signals before performing classification. Combining with
the cross-validation results, we can clearly conclude that the
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suggested method based on multi-scale features and CatBoost
classifier is a viable method for EEG pathology detection.
More details about its classification performance are depicted
in Table 3. The outcome led us to determine whether our
methodology is indeed suitable for further analysis of EEG
data. In addition, we can observe from the outcomes of each
classifier that there are distinct differences with respect to
the sensitivity and specificity indexes. The reason is that the
amount of samples per category in training set is unbalanced
(see Table 2). This effect has been demonstrated in previous
studies as well (Gemein et al., 2020; Albaqami et al., 2021).

Next, we compared our methodology against the existing
studies using the same EEG data set, as listed in Table 4. It can be
seen that our CatBoost-based methodology is obviously superior
to the other seven approaches. First, the classification accuracy
of our methodology is 9.78% higher than that of the feature-
based baseline approach and 4.53% higher than that of the initial
deep learning approach, showing a consistent improvement
compared with both of them. Second, the overall performance
of the proposed methodology also outperforms the existing
advanced approaches based on handcrafted feature. Especially
combining the results obtained in previous experiments, we find
that the classification accuracy of our method increases by 1.45%
compared to the latest approach under the same classifiers,
which further demonstrates our methodology’s effectiveness
and efficiency in overcoming the weakness of conventional
EEG pathology detection methods. Albaqami et al. (2021)
used WPD to break down the EEG signal into 8-level wavelet
decomposition and then extracted a large number of statistical
features from 16 selected components; however, it is well-
known that WPD is a generalization of the DWT and has
higher time complexity. In contrast, our method requires
fewer decomposition levels and chooses much fewer coefficients
according to domain knowledge, which greatly decreases the
number of statistical characteristics extracted. The increasing
dimension of the features usually not only produces some
redundant or irrelevant characteristics which make feature
reduction more difficult, but also can decrease the classification
accuracy. Thus, the results in Table 4 suggest that the
extracted features in this work are appropriate for abnormality
detection in EEGs.

Also, comparing the results of our methodologies with the
two latest CNN-based approaches (Amin et al., 2019; Gemein
et al., 2020), it can be observed that our approaches with the
CatBoost classifier and the LightGBM classifier achieved better
classification performance. In particular, our CatBoost-based
approach improves the classification accuracy rate by over 1.8%
and F1-score by 2.73 compared to the transfer learning-based
approach which used massive amount of additional unpublished
EEG data during training. More interestingly, even though
our method with the RF classifier is less accurate than the
latest deep learning approaches, its F1-score and sensitivity
are higher than both of them. These results demonstrate

that our proposed feature extraction technique can effectively
generate the highly discriminative features which contribute
to abnormality detection. In addition, for the deep learning
method, the complexity of the network structure, the number
of learning parameters and the duration of the model training
process will increase at the same time. So, it is worth mentioning
that compared with existing deep learning approaches, our
methodology requires much less parameters to be tuned.

Moreover, it can be seen from the analysis of results of
the experiment that compared to the benchmark methods,
the proposed methodology achieves a better sensitivity while
keeping the comparative F1-score. To our knowledge, the
high sensitivity, which can ensure the precise identification of
abnormal EEGs, is crucial in the field of medicine, especially for
automatic medical screening methods (Golmohammadi et al.,
2019; Gemein et al., 2020). Therefore, the above result suggests
that the proposed feature extraction may not only be highly
optimal but also plays an important role in constructing a more
compact and less redundant feature space which enables the
classifier to achieve better prediction performance.

In summary, the proposed methodology provides a
satisfying evaluation result in F1-score and clearly outperforms
the other state-of-the-art approaches. Meanwhile, our results are
also consistent with Gemein et al.’s (2020) findings that EEG
pathology detection accuracies are between 81 and 86%, just
like the case of RF; however, our present work increases the
limit by more than 3%. And beyond that, our work is obviously
different from existing studies in literature. For example, Al
Ghayab et al. (2019) extracted 10 feature types including first
quartile, second quartile and range to differentiate the epileptic
EEG signals. Similarly, Gemein et al. (2020) extracted 50 feature
types in six domains for detecting abnormality in EEGs. In
addition, we can observe from Table 4 that even though deep
learning networks have an impressive performance in other
fields (e.g., computer vision) and are expected to improve the
capability of EEG abnormality detection, many studies still use
traditional feature engineering techniques. To our knowledge,
methods based on the features and conventional classification
algorithms, such as CatBoost, are more appropriate to deal
with the scarcity of data, and yet deep learning methods
generally require large volumes of labeled training data to
ensure their normal capacity for discrimination, as well as
the generalization power and robustness of the models. This
is one of the main reasons why we adopt the feature-
based technique to solve the binary classification problem of
EEGs in this work.

Ablation study

The core idea of our methodology lies in integrating salient
EEG features and patient age. In this subsection, we provide
three additional experiments in the real-life EEG abnormal
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FIGURE 9

Performances of different classifiers over independent final testing set.

TABLE 3 Confusion matrix for the proposed CatBoost-based method.

Predicted label

10-fold cross validation The default test set

Normal EEG Pathological EEG Normal EEG Pathological EEG

Actual label Normal EEG 1282 (TN) 239 (FP) 139 (TN) 11 (FP)

Pathological EEG 318 (FN) 1154 (TP) 19 (FN) 107 (TP)

TABLE 4 Performance comparison of our proposed approach with previous approaches.

References Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Architecture Features

Sharma et al., 2020 79.35 69.84 87.33 75.53 SVM WD

Gemein et al., 2020 85.86 77.77 92.66 83.40 RG DFT CWT DWT HT

Albaqami et al., 2021 87.68 83.33 91.33 86.06 CatBoost WPD

Albaqami et al., 2021 86.59 81.74 90.66 84.77 LightGBM WPD

Schirrmeister et al., 2017 84.6 75.9 91.9 82.0 BD-Deep4

Amin et al., 2019 87.31 78.57 94.67 84.97 AlexNet + SVM

Gemein et al., 2020 86.2 79.7 91.6 83.6 BD-TCN

This study 89.13 84.92 92.66 87.70 CatBoost DWT

The best results are highlighted in bold.

dataset for in-depth analysis. The first experiment is to verify
the importance of feature redundancy reduction by testing
different feature aggregation schemes. The second experiment
is to investigate the effect of patient age on EEG pathology
detection by performing our proposed approach with and
without age. The third experiment is to further sufficiently
explore the efficacy of the proposed technique, through adopting
a region-reduction based experimental strategy.

Effect of feature redundancy reduction on
performance

To evaluate the influence of feature redundancy reduction
on EEG abnormality detection, we conducted ablation

experiments by removing each part of the proposed multi-
scale aggregation mechanism. Here, four different cases were
considered and compared. These cases are as follows:

Case 1: without feature aggregation process, which
means that the statistical features derived from DWT
analysis and age of patients are directly concatenated
into a characteristic vector and then fed to an ensemble
learning classifier.
Case 2: ignoring the local feature aggregation information,
which means that the aggregation process only considers
the global aggregation and age information.
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Case 3: ignoring the global feature aggregation information
in our aggregation process.
Case 4: with the global, local and age information
considered in the aggregation process as shown in Figure 8.

In each case, the extracted statistical features are the same
before performing the aggregation operation, and the classifier
used is CatBoost. To better understand the influence of feature
redundancy, the execution time for training and testing taken by
this experiment are also provided. Table 5 lists the experimental
results of each case. The best outcomes for each column of this
table are highlighted in bold. The reported training time mainly
includes the time needed for feature aggregation and classifier
training, whereas the testing time involves the calculation of the
aggregation features as well as the classification itself.

As Table 5 shows, the cases adopting different scale
aggregation achieved significantly higher accuracy rate, which
indicates the importance of feature redundancy reduction
to improve classification performance. Especially, the Case 4
improved the accuracy by 2.54 and 4.35% compared to Case 2
and Case 3. Even though Case 4 took slightly more execution
time, it yielded a higher classification effect, which is worthwhile.
In addition, we can notice that Case 1 attained a relatively poor
classification accuracy with high training and testing time. This
is because the wavelet-based features derived from multichannel
EEG signals are of high dimensionality or large size and
meanwhile contain redundant or unrelated information, which
is not conducive to the subsequent classification processing.
Nevertheless, we also observe that Case 1 has an approximately
2% higher classification accuracy than the baseline method
based on hand-crafted features (Sharma et al., 2020). It suggests
that the DWT-based feature extraction technique is effective
when applied to analyze EEG signals.

In a nutshell, the experimental results demonstrate that our
proposed multi-scale aggregation mechanism can significantly
reduce feature dimension and redundancy without losing
important information. In addition, the results also support
the fact that not all characteristics are relevant or beneficial,
and removing these usually contributes to enhancing the
performance of machine learning classifiers whilst greatly
reducing the computational burden.

Importance of age information
In this part, we verified the importance of patients’ age

for EEG pathology detection. Therefore, two different cases
have been considered: (1) the final feature vectors obtained
in the aggregation process include the age of patients and
(2) the patients’ age is excluded from the feature set before
performing classification. Meanwhile, in order to eliminate
the influence of the classifier itself on the comparison of
classification results, different ensemble learning algorithms are
employed under the same set of features. For this purpose, the
classifiers used in this experiment are the same as in the initial

experiment. Figures 9, 10 illustrate the classification results
of three different approaches for the first and second cases,
separately. As seen from the figures, the classification effect for
each classifier has greatly improved by considering patient age
in EEG pathology detection task, e.g., for the CatBoost classifier,
the obtained classification accuracy was 85.14% along with
80.15% in sensitivity and 83.12% in F1-score in the second case,
while by adding age, the performance increased by 3.99, 4.77,
and 4.58%, in accuracy, sensitivity and F1-score, respectively.
Similar comparison results can also be observed for another
two classifiers. This shows that considering age in this way
is able to yield a statistically significant performance gain for
EEG abnormality detection. Such a result is consistent with
a recently reported study, where the researchers attempted to
improve the accuracy of resting state EEG-based Alzheimer’s
disease (AD) diagnosis by adding the age of patients in the
classification process (Cassani and Falk, 2020). They found that
using age as an additional feature can contribute toward the
classification of healthy normal elderly controls vs. mild-AD
patients. Thus, from the overall results, we can conclude that the
age information is useful for EEG analysis.

Performance comparison under different
electroencephalogram channels

To further verify the validity of our proposed methodology
for abnormal EEG detection, a commonly used region-
reduction based experimental approach is adopted in this work,
similar to the studies of Ghosh et al. (2021) and Liu et al. (2021).
Specifically, the EEG channels selected were first divided into
six different regional areas, which consisted of frontal (FP1,
FP2, F7, F8, F3, F4, FZ), temporal (T3, T5, T4, T6), ear (A1,
A2), parietal (P3, P4, PZ), occipital (O1, O2), and motor cortex
(C3, C4, CZ). We then assessed the classification performance
of the proposed approach based on its ability to classify the
features extracted from the EEG channels covering part of or
all brain regions. Note that the age of patients was added to the
final feature vectors at every evaluation. Moreover, in order to
provide a thorough and more reliable analysis, the classification
process was carried out using two classifiers that exhibited better
performance in the initial experiment. Table 6 illustrates the
experimental results of both ensemble learning models.

From the Table 6, we can see that despite the lack of
data on partial EEG channels, our proposed framework can
still classify EEGs well, and in most cases achieve better
results than the baseline method based on deep learning. In
particular, when discarding the EEG signals from the occipital
region, our proposed method using the CatBoost classifier still
yields better classification accuracy than the recently proposed
methods (Albaqami et al., 2021). These results further provide
a stronger indication that our framework is effective in EEG
pathology detection task, and has the ability to extract highly
compact and discriminative features from the raw EEG signals.
In addition, the results of experimental analysis also suggest
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TABLE 5 Performance comparison for the four different cases.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Training time (s) Testing time (s)

Case 1 81.15 75.39 86.00 78.51 261.588 2.494

Case 2 86.59 83.33 89.33 85.02 9.808 0.061

Case 3 84.78 79.36 89.33 82.64 12.553 0.091

Case 4 89.13 84.92 92.66 87.70 15.283 0.154

The best results are highlighted in bold.

FIGURE 10

Performances of different classifiers over the independent final testing set (without age information).

TABLE 6 Validating the effect of EEG electrodes on the proposed method performance.

Brain regions CatBoost LightLGB

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Frontal + Temporal + Occipital + Parietal + Ear + Motor Cortex 89.13 87.70 88.04 86.30

Temporal + Occipital + Parietal + Ear + Motor Cortex 83.69 81.78 82.60 80.16

Frontal + Occipital + Parietal + Ear + Motor Cortex 85.86 83.54 86.59 84.77

Frontal + Temporal + Parietal + Ear + Motor Cortex 88.40 86.88 86.95 84.87

Frontal + Temporal + Occipital + Ear + Motor Cortex 86.95 85.12 87.68 85.95

Frontal + Temporal + Occipital + Parietal + Motor Cortex 86.59 84.64 85.86 83.81

Frontal + Temporal + Occipital + Parietal + Ear 85.14 83.12 85.86 83.95

that with the same classifier, different combinations of EEG
channels could bring different classification accuracies. This
implies that, for EEG pathology detection, various brain regions
have different effects on the results; of these, the frontal region
seems to be more significant in comparison with other regions,
since excluding EEG signals from this area will result in the
maximum performance loss, e.g., LightLGB F1-score decreased
by 6.14% (from 86.30 to 80.16%) by ignoring corresponding
signals. Interestingly, this is in alignment with previous research
findings in other domains (Li et al., 2008; Zangeneh Soroush
et al., 2020), e.g., Liu et al. (2021) found that among brain
areas, the frontal area is the most influential for EEG-based
driving fatigue detection. Although we did not exhaust all
the combinations of brain regions due to the multitude of

possibilities, the current results suggest that some specific areas,
including the frontal and motor cortex, play a crucial role in
EEG pathology decoding.

Conclusion

In this paper, we presented a novel automatic detection
framework based on multi-scale features and ensemble learning
to solve the binary classification problem of EEGs. Different
from most existing feature-based methodologies, our approach
adopts a lightweight multi-scale aggregation mechanism to not
only greatly reduce the feature redundancy but also minimize
the computational complexity for post-processing, which is
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the core innovation of our framework. In addition, the age
information of patients is combined with the extracted multi-
scale features for further enhancing the discrimination of
characteristics. The fused characteristics are classified using
three different popular classifiers. Extensive experimental results
show that the proposed framework yields superior performance
vis-a-vis competing techniques on the same dataset, which
firmly demonstrates the validity and feasibility of the proposed
technique. Moreover, our experiments also indicate that the
patient age is crucial for differentiation of normal versus
abnormal EEGs, and therefore the age should be taken into
consideration, be it by the feature development, or in the
classification process.

There are many directions that are clearly of interest
for future exploration. One avenue is to extend the current
methodology to multiple classification scenario, that is,
classifying multiple brain-related disorders based on salient
feature extraction and ensemble learning. Our further
efforts will also include combining other demographic and
physiological factors (e.g., gender, blood pressure, etc.) together
with the EEG signals to enhance the discrimination ability.
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