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Abstract: Salmonella Heidelberg (SH) on contaminated poultry causes economic and health risks to
producers and consumers. We hypothesized that sodium bisulfate (SBS) would decrease SH biofilm
on polyvinyl chloride (PVC) coupons and decrease the horizontal transfer of SH in broilers. Experi-
ment 1: Salmonella Heidelberg biofilm was cultured with PVC coupons, which were treated with SBS
at a pH of 3.5 for 10 min, 8 h, and 24 h. Experiment 2: Nine replicate pens per treatment were divided
between two rooms. A seeder contact model was used to mimic a natural infection environment.
Treatments consisted of tap water or sodium bisulfate in water at a pH of 3.5. Salmonella Heidelberg
incidence and enumeration were measured in crops and ceca. Sodium bisulfate significantly reduced
biofilm by 2.16 and 1.04 logs when treated for 8 and 24 h, respectively. Crop colonization was
significantly decreased in trials 1 and 2 by 0.29 and 0.23 logs, respectively. Crop pH was significantly
decreased in trial 2. Ceca colonization was significantly decreased in trial 1 by 0.39 logs. The results
from the present study suggest that SBS may be administered to drinking water to decrease SH gut
colonization and to reduce biofilm.

Keywords: Salmonella; water acidifier; biofilms; foodborne pathogens; meat safety; food-safety
interventions; pathogen transmission; poultry; salmonellosis control; zoonoses

1. Introduction

Poultry are carriers of Salmonella enterica serotypes, which can cause salmonellosis in
humans [1]. There are over 2500 Salmonella serotypes, with less than 100 that cause human
disease [2]. The CDC reports drug-resistant Salmonella are a serious threat because of
increased antibiotic resistant infections since 2009 [3]. Due to the concern of antimicrobial
resistance, demand for antibiotic alternatives has increased. Antibiotic alternatives may
include vaccines, probiotics, synbiotics, enzymes, organic/inorganic acids, phytobiotics,
and prebiotics [4,5].

Salmonella enterica serovar Heidelberg (SH) is one of the top ten serovars associated
with human disease isolated from poultry [6]. Egg contamination is a concern due to SH
being one of a few Salmonella serotypes able to vertically transfer from hen to chick [7].
A surveillance study from 2002 to 2006 reported 96.6% of SH isolated came from poultry
meat [8]. Salmonella Heidelberg has increasing resistance to common antibiotics and caused
one of the largest multistate foodborne outbreaks from consumption of contaminated
chicken [8,9]. Antimicrobial resistance continues to be an issue with SH, including multi-
drug resistant (MDR) strains [7,10]. In humans, SH was MDR 30% of the time [11]. In
2014, 9.9% of isolated SH was MDR to five classes and 21.1% to three or more classes
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of antibiotics [12]. Due to the increased resistance combined with decreased usage of
antibiotics, better alternatives are required.

The survival of microbial populations is increased by biofilm formation [13,14].
Salmonella enterica strains can form biofilms on abiotic surfaces, including ones found
in all phases of poultry production [15,16]. Biofilm-forming abilities depend on growth
conditions, contact surfaces, and serotypes or strains [17]. Attachment of biofilms to food
contact surfaces (stainless steel, ceramics, glass, or plastic) can lead to cross-contamination
of consumer products [18–20]. Reduction in Salmonella before processing is important to
mitigate cross-contamination [21].

Government agencies regulate disinfectants and sanitizers, working together to stan-
dardize effective procedures. The U.S. Environmental Protection Agency (EPA) controls
the efficacy, labeling, and handling of disinfectants [22]. Disinfection is a physical process,
such as an ultraviolet light or chemical that kills microorganisms [23]. The Food and Drug
Administration (FDA) and the US Department of Agriculture Food Safety and Inspection
Service (FSIS) share mandates, regulating concentrations of commonly used disinfectants
on surfaces that are commonly found in the production of meat, poultry, and eggs un-
der guidance from the EPA [24]. Further control of pathogenic bacterial populations is
mandated by USDA-FSIS to follow Hazard Analysis Critical Control Points (HACCP) [5].
In addition to disinfectants and sanitizers, inorganic acids also have some antimicrobial
properties. Combinations of these strategies are used to reduce foodborne illness, but
improvements are still needed.

Salmonella control includes biosecurity throughout all phases of production. Con-
trolled access, hygienic barriers, and pest control can all aid in limiting Salmonella [25].
However, even with enhance biosecurity measures, Salmonella remains an issue. Chemicals,
such as acidified hypochlorite and peroxyacetic acid (PAA), used at the recommended
FSIS and EPA ranges were ineffective against seven field strains of Salmonella biofilm [26].
Glutaraldehyde, hydrogen peroxide, and formaldehyde at a concentration of 1.0% (vol/vol)
were unable to eradicate Salmonella on poultry house concrete floors [27]. Corcoran and
colleagues found sodium hypochlorite (500 mg/L), sodium hydroxide (1 M), and benza-
lkonium chloride (0.02%) did not eliminate established 48 h or 168 h cultures of Salmonella
Typhimurium or Enteritidis biofilm when treated for 90 min on concrete, glass, steel,
polycarbonate, or tile coupons used to simulate food processing environments [28].

Clean drinking water is important for the health and performance of poultry. Biofilms
in potable water systems may host pathogenic bacteria, which could be indicated by the
presence of coliforms. There is no allowable level of coliform bacteria in drinking water, as
it is an indicator of fecal contamination [22,23]. Maes and colleagues surveyed broiler farm
microbial populations in outside water samples [29]. The total aerobic count ranged from
6 to 300 cfu/mL inside broiler houses [29]. Mixed-species biofilms can be made up of a
combination of Salmonella and/or aerobic species [30]. Schaefer and colleagues reported
Salmonella can readily colonize on silicone tubing as established mixed-species biofilms [30].
Broiler and layer farm water systems remain potential hot spots for Salmonella [27,31].
Salmonella-contaminated flocks also risk re-infection from contaminated drinkers [25].

Sodium bisulfate (SBS; NaHSO4), also known as sodium hydrogen sulfate, is catego-
rized by the EPA as a mineral acid salt with antimicrobial properties that dissolves and
releases a hydrogen ion, which decreases pH [32]. When used as a litter acidifier, SBS
significantly decreased litter pH from 7.2 to 6.9, and reduced Escherichia coli (E. coli) by
six logs after 2 weeks [33]. A lower litter pH can reduce bacteria that create ammonia
gas from uric acid in excreta [34]. Salmonella Typhimurium (ST) was reduced by 1.3 logs
in litter treated with SBS at a concentration of 100 lb/1000 ft2, which decreased litter pH
from 8.3 to 3.5 [35]. Chicken drumsticks were inoculated with 108 cfu/mL of SE and then
treated for 0–3 days with SBS at concentrations of 1%, 2%, and 3% [36]. After 3 days,
SBS significantly reduced pH from 7.42 to 1.64, 1.45, 1.31 and colonization by 0.92, 1.09,
and 1.57 log cfu/g [36]. Micciche and colleagues found that at a pH of 1.21–1.54, SBS
eliminated ST to 0 log cfu/mL in poultry, processing reused water in 5 min, which was
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a greater reduction than PAA, which reduced ST by 4–5 log cfu/mL at a pH of 4.02 [37].
When dog and cat food were treated with SBS at 0.2% and 0.4%, Salmonella Enteritidis was
significantly decreased by 2 and 1.6 logs, respectively [38]. Salmonella Typhimurium was
significantly decreased by 2.7 logs in rendered chicken fat (used for pet food products) by a
6-h SBS (0.5%) treatment [39]. Versatility of SBS in reducing Salmonella across platforms or
mediums suggests its potential.

Water lines can be an initial source of SH biofilm and minimizing colonization would
provide cleaner drinkers. We hypothesized that SBS at a pH of 3.5 would eliminate SH
biofilm on polyvinyl chloride (PVC) coupons and reduce the horizontal transfer of SH
among broiler chicks.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

Frozen stocks, maintained at –80 ◦C, of Salmonella Heidelberg (SH) were obtained
from USDA-ARS (College Station, TX, USA). Cultures were passaged three times every 8 h
in tryptic soy broth (TSB; Difco, Sparks, MD, USA) at 37 ◦C. Biofilm cultures were grown
in Luria–Bertani broth (LB; HiMedia, Mumbai, India). All media were supplemented
with novobiocin (25 µg/mL; Alfa Aesar, Haverhill, MA, USA) and nalidixic acid (LBNN;
20 µg/mL; MP Biomedicals, LLC, Illkirch, France) to control for extraneous bacteria.

2.2. PVC Coupons

Coupons (PVC; 2 cm × 5 cm; 1” PVC Schedule 40) were cut with a rotary tool and
lightly sanded. Coupons were soaked overnight in Alconox (White Plains, NY, USA), rinsed
six times with tap water and one time in distilled water. The coupons were autoclaved for
15 min at 121 ◦C in water, and air dried overnight in a biosafety cabinet.

2.3. Sodium Bisulfate

Sodium bisulfate (SBS; Jones-Hamilton Co., Walbridge, OH, USA) was prepared in
water via the manufacturer’s instructions. Briefly, 454 g of SBS was mixed into 16 L of
water to create a stock solution. The stock solution was titrated into fresh tap water until a
pH of 3.5 was obtained.

2.4. Biofilm Treatment

Biofilm formation on PVC was evaluated by using methods previously
described [40,41]. Briefly, sterile coupons were initially inoculated in 1.0 × 109 cfu/mL
of SH suspension (bacterial attachment step) in 30 mL of LBNN broth for 5 h under static
conditions at 37 ◦C. Coupons were then removed using sterile forceps, rinsed with
1 mL of cold PBS to remove loose cells, and placed in a new tube with 30 mL of LBNN

for 6 days under static conditions (biofilm formation step) at 37 ◦C. The media were
replaced every 48 h. Coupons were rinsed with 1 mL of cold phosphate-buffered saline
(PBS) and air dried for 5 min in a HEPA-filtered biological safety cabinet during media
replacement. All biofilm work was conducted in a biosafety cabinet. After 6 days,
coupons were rinsed, dried, and placed in a treatment of 30 mL of SBS at a pH of 3.5 or
sterile tap water for 10 min, 8 h, or 24 h at 37 ◦C.

2.5. Biofilm Analysis

Coupons were sonicated in 30 mL of PBS for 15 min at room temperature, using
an ultrasonic cleaner (VWR, Radnor, PA, USA) at a fixed frequency of 35 kHz. Samples
were serially diluted into PBS and directly plated onto XLT-4NN. Coupon rinsates were
pre-enriched for 24 h in buffered peptone water (BPW; Difco, city, if any state, country),
cultured into Rappaport–Vassiliadis broth (RV; Hardy Diagnostics, Santa Maria, CA, USA)
and struck for incidence. All agar plates were incubated for 24 h at 37 ◦C. Values presented
are the averages of six separate experiments on different days with triplicate coupon
samples per treatment.
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2.6. Animals and Handling Procedure

Day-of-hatch, male by-product broiler chicks were obtained from a commercial hatch-
ery and placed on clean pine shavings in floor pens. The environment was climate con-
trolled and age appropriate in disinfected animal biosecurity level 2 rooms, according to
the primary breeder management guidelines [42]. Birds were monitored 2–3 times daily
to check for morbidity, mortality, temperature, and relative humidity. Data loggers (CAS
DataLoggers, Chesterland, OH, USA) measured the temperature and relative humidity
every 5 min. Pen weights, feed, and water intake were measured across all trials to ensure
consumption was consistent between treatments. Fresh tap water and SBS water were
measured in a graduated cylinder daily. Feed was weighed back when the trial ended to
calculate feed consumption. All birds were cared for under approved Texas A&M Univer-
sity Institutional Animal Care and Use Committee and Institutional Biosafety Committee
protocols (IACUC 2019-0171; IBC 2019-073). Each trial was replicated twice at different
time points.

2.7. Experimental Design and Treatment Groups

Chicks (n = 30/pen) were randomly placed across eighteen pens, sized 0.9 m by 1.5 m.
Pens were assigned to one of two treatment groups with 9 pens (replicates). A balanced
unmedicated starter ration and water were provided ad libitum that met or exceeded
industry recommendations for nutrition. Upon arrival, a subset of ceca (n = 10) were
collected for enrichment to verify chicks were Salmonella free. Ceca were macerated in
BPW and incubated overnight at 37 ◦C. The following day, 0.1 mL of pre-enrichment was
sub-cultured into RV at 37 ◦C overnight. The enrichment was struck for isolation onto
XLT-4 without antibiotics to screen for wild-type strains. No Salmonella were detected.

Pre-seeder birds contaminated clean pine shavings to mimic a commercial broiler barn.
Male broiler chicks were randomly selected and placed in groups of 30 chicks per pen.
All pre-seeder chicks were orally gavaged with 0.5 mL of 2.0 × 107 cfu/mL of SH upon
arrival. On D7, all pre-seeder chicks were orally gavaged a second time with 0.5 mL of
2.0 × 108 cfu/mL. Fecal grabs (n = 1/pen) were aseptically collected from the litter on D5
post-infection to confirm incidence of SH shedding into the environment. All pre-seeder
birds were euthanized on D13 or D14 (based on hatchery schedule) by carbon dioxide
(CO2) asphyxiation. Ceca (n = 10/pen) were collected for incidence.

New chicks were randomly placed in groups of 30 chicks per pen onto litter previously
contaminated by pre-seeder chicks. Each pen included 10 seeder and 20 contact chicks.
There were two treatments. One treatment received tap water. The second treatment
received tap water treated with sodium bisulfate to a pH of 3.5. Each treatment pen was
replicated nine times. Seeders were wing banded and orally gavaged with 0.5 mL of
2.0 × 108 cfu/mL of SH to mimic horizontal transfer. On day 10, chicks were killed by CO2
asphyxiation. Ceca were removed from the seeders for incidence (n = 5/pen). Crop and
ceca samples were aseptically removed from contact birds for enumeration and incidence
(n = 10/pen). The crop contents were aseptically removed by clamping above and below
the crop using Rochester-Carmalt forceps (VWR). Crop pH was measured (n = 5/pen) by
diluting contents 10× in distilled water (Trial 1) or directly inserting a Hanna pH probe
(Trial 2; Hanna Instruments, Smithfield, RI, USA).

2.8. Salmonella Challenge

Salmonella Heidelberg was harvested by centrifugation at 600 × g for 15 min at 4 ◦C
to prepare the bird challenge. The pellet was resuspended in sterile cold PBS and washed
twice prior to challenge. Optical density was measured spectrophotometrically at 625 nm
at an absorbance value of 1.30 (SPECTRONIC® 20+ SERIES Spectrophotometers, Thermo
Fisher, Waltham, MA, USA) and estimated at 1.0 × 109 cfu/mL, relative to an established
standard curve. Concentration of the challenge stock was confirmed by serial dilution on
xylose lysine tergitol-4 (XLT-4; Hardy Diagnostics, Santa Maria, CA, USA) agar with added
supplement (Difco).
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2.9. Bacteriological Analysis

Cecal contents were weighed, and approximately 0.25 g of the contents were serially
diluted 1:10, 1:100, 1:1000, and 10,000 in PBS. Crop contents were weighed and stomached
for 30 s in 5 mL of BPW (Stomacher). Crop samples were then serially diluted in PBS (1:10,
1:100, 1:1000, 1:10,000, 1:10,000). All enrichment samples were pre-cultured in BPW for 24 h
before being sub-cultured into RV. All samples mentioned were cultured onto XLT-4NN at
37 ◦C for 18–24 h.

Colonies exhibiting normal Salmonella morphology were periodically confirmed
by lysine iron agar (Difco), triple sugar iron agar (Difco) slants, and an agglutination
assay using Salmonella O Poly A-I antiserum (Difco). Samples that were negative from
direct plating but positive after RV enrichment were assigned a value of 1.50 log10
Salmonella/g of cecal contents [43]. Crop samples with less than 0.05 g contents were
removed from the study.

2.10. Statistical Analysis

Statistical analyses were conducted via Student’s t-test. The mean and SEM were
calculated for all treatments. Outliers were removed two standard deviations from the
mean. All analyses were considered significant if the p-value < 0.05.

3. Results and Discussion
3.1. Biofilm

Biofilm production is critical to bacterial persistence [44]. Salmonella biofilm on pro-
cessing surfaces is a food industry concern due to the potential cross-contamination of
poultry products [19]. Maharjan and colleagues found that even with consistent water
line cleaning, microbial residue would fluctuate depending on the time and location of
flocks [45]. Ten minutes was not enough contact time for SBS to significantly decrease SH
biofilm (Figure 1A). Sodium bisulfate significantly reduced SH biofilms when applied for
8 h (2.15 log cfu/mL) and 24 h (1.05 log cfu/mL; Figure 1B,C). Overall, SH was a poor
biofilm former, which is similar to previous findings [46]. Authors believe SH may have
decreased at 24 h due to no supplementation of nutrient medium. Sodium bisulfate could
be an efficient and safe way to reduce SH biofilms in poultry drinkers.
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Figure 1. Salmonella Heidelberg biofilm on PVC coupons (n = 18/treatment) were significantly
reduced by sodium bisulfate (SBS) at a pH of 3.5 (p < 0.05) * when treated for 8 h or 24 h. The positive
control was tap water. Values presented are the averages of 6 separate experiments with triplicate
coupon samples within each experiment. Coupons were treated for (A) 10 min, (B) 8 h, or (C) 24 h.

3.2. Horizontal Transfer

There were no differences in pen weights, feed consumption, or water consumption
across treatments, indicating no negative treatment effects of SBS in the water. All incidence
of SH in fecal grabs, pre-seeder, and seeder ceca were positive (data not shown).

Acidifying the crop is proactive in bacteria inhibition because it is the second organ in
the gastrointestinal tract [47]. Low pH inhibits pathogens, such as Salmonella, by acidifying
the cell cytoplasm [48]. Ricke reviewed the importance of analyzing the crop in the initial
colonization stages of Salmonella Enteritidis [49]. Crop colonization was significantly
decreased (p < 0.05) in the SBS-treated group in trials 1 and 2 (Tables 1 and 2). Crop pH
was significantly decreased (p < 0.05) in the SBS-treated group in trial 2 (Table 2). The
broiler crop pH can range from below five to greater than six, due to the fermentation of
feed by host lactobacilli, which produce lactic acid [50–53]. The acid-binding (buffering)
capacity of feed ingredients can also affect crop pH [51]. The crop contains 108 to 109 cfu/g
of primarily Gram-positive facultative anaerobic bacteria such as Lactobacillus [48].
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Table 1. Trial 1 colonization and incidence of crop and cecal contents and average crop pH.

Treatment
Mean Log10 cfu/mL 2 Enrichment

Average Crop pH 3

Crop Ceca Crop Ceca

Positive Control 3.40 ± 0.04 4.06 ± 0.11 90/90 90/90 5.30 ± 0.07

SBS 3.13 ± 0.86 1 3.67 ± 0.12 1 90/90 90/90 5.24 ± 0.07
1 p < 0.05, statistically significant values were bolded. 2 Values are mean ± SEM from 10 birds per pen
per treatment with 9 replicate pens. 3 Crops of 5 birds per pen were collected for pH measurements. SBS,
sodium bisulfate.

Table 2. Trial 2 colonization and incidence of crop and cecal contents and average crop pH.

Treatment
Mean Log cfu/mL 2 Enrichment

Average Crop pH 3

Crop Ceca Crop Ceca

Positive Control 1.13 ± 0.11 2.01 ± 0.13 55/85 77/90 5.50 ± 0.09

SBS 1 0.74 ± 0.01 1 2.00 ± 0.14 48/83 72/90 5.05 ± 0.13 1

1 p < 0.05, statistically significant values were bolded. 2 Values are mean ± SEM from 10 birds per pen
per treatment with 9 replicate pens. 3 Crops of 5 birds per pen were collected for pH measurements. SBS,
sodium bisulfate.

Homeostatic pH values are maintained through the bicarbonate cycle [54]. Hinton
and colleagues reported the average pH of market-age broiler ceca was 6.2 [55]. Cecal
colonization was significantly decreased (p < 0.05) in trial 1 (Table 1). In trial 2, there
was no significant reduction in SH in cecal colonization (Table 2). We believe this is
due to the bicarbonate cycle maintaining homeostatic pH. Other applications of SBS did
not see reductions. Harris and colleagues found that Salmonella Typhimurium was not
significantly decreased by SBS in water in crops and ceca (direct plating and enrichment) of
market-age broilers during feed/water withdrawal [56]. Cochrane and colleagues treated
ST-contaminated feed ingredients (feather meal, avian blood meal, porcine meat, and bone
meal, and poultry by product meal) with 1.0% SBS over a 42-day period and did not see
a reduction compared to the control [57]. Line and Bailey applied SBS to broiler houses
before chicks were placed and on week 4, no significant effect on Salmonella prevalence was
detected in fecal grabs and drag swabs [58]. When SBS (4.5 kg/t to 9 kg/t) was added to
feed, it did not reduce SE in 34 d post-infected broiler cecas, feces, spleens, or livers when
challenged with 2 × 105 cfu/mL on d 1 [59].

We did not withdraw feed, due to the age of the birds and the unlikeliness of the
scenario for chicks during brood. Reports have demonstrated that Salmonella increases
in crops after feed withdrawal (10% versus 1.9%) [60]. Researchers speculate that this is
caused by consumption of contaminated litter by the birds during the withdrawal period,
because birds continuously peck and consume excreta in litter [47]. Previous experiments
with SBS at a pH of 3.2 in drinking water did not impact Salmonella Typhimurium in
market-age broiler crops or ceca during feed withdrawal [56].

The pH of the water fluctuated during the first 48 h, when the contact and seeder
birds were placed in trial 1 due to uncovered drinkers. The drinkers also leaked, which
caused a damp and humid environment for the SH to thrive. For trial 2, the drinkers were
replaced, which led to dry litter. Garden sprayers were used to add 7 L of water per pen.
Interestingly, we saw more differences in SH in the first trial’s results possibly due to the
increased water activity.

Water treatments are important to reduce pathogens on farms [61]. Prevention of
Salmonella in water lines can also reduce cross-contamination during production [21].
Pope and Cherry reported SBS used as an antimicrobial agent and litter acidifier reduced
the prevalence of E. coli and Salmonella in broiler houses [33]. Payne and colleagues
reported adjusting turkey litter to a pH of 4.0, with hydrochloric acid being effective in
reducing Salmonella populations [62]. Inhibition of pH-sensitive pathogenic bacteria, such
as Salmonella, can occur with the application of acidifiers at a pH below 5 [63]. The use
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of SBS as a water acidifier to decrease bacterial incidence would be less expensive than
organic acids [39].

4. Conclusions

Biofilms and planktonic bacteria respond differently to antimicrobial agents, so the
goal of this study was to analyze the differences in zoonotic SH versus as a mono-species
biofilm. Sodium bisulfate at a pH of 3.5 was able to reduce Salmonella Heidelberg biofilm
ceca and crop colonization in chicks. Reducing SH in the gut could prevent the fecal
contamination of poultry meat during production; however, future trials would be required
to determine this. Effective Salmonella control will involve multiple intervention strategies.
The use of acidifiers in poultry production is one of many tools available that may be used
to improve biosecurity and food safety.
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