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Summary  
 
The generation and maintenance of protective immunity is a dynamic interplay between 
host and environment that is impacted by age. Understanding fundamental changes in 
the healthy immune system that occur over a lifespan is critical in developing 
interventions for age-related susceptibility to infections and diseases. Here, we use 
multi-omic profiling (scRNA-seq, proteomics, flow cytometry) to examined human 
peripheral immunity in over 300 healthy adults, with 96 young and older adults followed 
over two years with yearly vaccination. The resulting resource includes scRNA-seq 
datasets of >16 million PBMCs, interrogating 71 immune cell subsets from our new 
Immune Health Atlas. This study allows unique insights into the composition and 
transcriptional state of immune cells at homeostasis, with vaccine perturbation, and 
across age. We find that T cells specifically accumulate age-related transcriptional 
changes more than other immune cells, independent from inflammation and chronic 
perturbation. Moreover, impaired memory B cell responses to vaccination are linked to a  
Th2-like state shift in older adults' memory CD4 T cells, revealing possible mechanisms 
of immune dysregulation during healthy human aging. This extensive resource is 
provided with a suite of exploration tools at 
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ to enhance 
data accessibility and further the understanding of immune health across age.  
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Introduction  1 

Tracking the dynamics of the healthy immune landscape over the lifespan is 2 
critical for understanding susceptibility to infections, responses to vaccines, and the 3 
onset of immune-related diseases that occur differentially across the aging spectrum. 4 
While many studies on immune health and aging utilize single snapshots of the immune 5 
system to infer common features of this aging process, (Sayed et al. 2021; Whiting et al. 6 
2015; Sparks et al. 2024) the function of immune cells is always dictated by some 7 
element of time. The innate immune compartment (i.e., monocytes, neutrophils) is 8 
heavily engaged in rapid and stochastic responses (hours to days) whereas the 9 
adaptive immune compartment (T cells, B cells) mediates slower but more durable 10 
memory responses (days to years). Indeed, recent studies focused on longitudinal 11 
monitoring in the context of infection, vaccination and homeostasis have offered a 12 
unique view of the global age-associated changes in the immune system and provided 13 
deeper insights into the dynamic interplay of immunity with exposures over time. 14 
(Fourati et al. 2022; Van Phan et al. 2024; Alpert et al. 2019)  15 

The wide-spread implementation of single-cell RNA sequencing (scRNA-seq) 16 
has revolutionized our ability to dissect the complexities of the immune system, enabling 17 
deep interrogation of individual immune cells. (Terekhova et al. 2023; Mogilenko, 18 
Shchukina, and Artyomov 2022) Combining scRNA-seq, and other high-plex methods, 19 
with longitudinal sampling offers unprecedented insights into the ongoing adaptation of 20 
the immune system at a single cell level and interactions between immune cells and 21 
their surrounding microenvironment. Notably, memory T cells and B cells play pivotal 22 
roles in long-term immunity, collectively orchestrating responses to pathogens and 23 
vaccines throughout one's life. Memory responses in mice and humans can be 24 
maintained for decades, in part through self-renewal. (Soerens et al. 2023; Akondy et al. 25 
2017; Fuertes Marraco et al. 2015) However, in long-term mouse studies, memory T 26 
cells progressively accumulated unique transcriptional programs over time. (Soerens et 27 
al. 2023) Similarly, transcriptional alterations in the T cell compartment of humans have 28 
been increasingly recognized as a feature of aging (H. Zhang et al. 2022; Thomson et 29 
al. 2023; Moskowitz et al. 2017), associated with diminished immune responses and 30 
increased vulnerability to infections among older adults. (Gustafson et al. 2020) 31 
However, the breadth, variation and, in turn, stability of these changes across the entire 32 
peripheral immune compartment and their link to concurrent age-related immune 33 
dysfunction in people, including impaired vaccine-specific antibody production and a 34 
higher propensity for chronic viral re-activation, are not fully elucidated.  35 

Here, we longitudinally profiled the peripheral immune system in 96 healthy 36 
young and older adults over 2 years, in the homeostatic state and following annual 37 
immune perturbation induced by influenza vaccination. Employing scRNA-seq, high-38 
dimensional plasma proteomics, and spectral flow cytometry to samples collected at 8-39 
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10 time points per donor, we investigated the molecular and cellular mechanisms 40 
underlying broad age-related changes in immune responsiveness. This effort generated 41 
a human peripheral immune cell scRNA-seq reference dataset composed of over 13.7 42 
million peripheral blood mononuclear cells (PBMCs) from our longitudinal, prospective 43 
cohort and an additional 3.2 million PBMCs from a cross-sectional follow-up cohort of 44 
234 healthy adults. Our study uniquely demonstrates that T cell subsets in older adults 45 
maintain distinct transcriptional programming compared to those in young adults, with 46 
reprogramming in early T cell subsets accumulating over time, independent of 47 
inflammation and changes induced by chronic CMV infection. Memory B cell subsets, 48 
while exhibiting minimal age-related transcriptional reprogramming at homeostasis, 49 
demonstrate significantly altered responses to vaccine-induced perturbation in older 50 
adults. We further reveal that altered memory B cell responses correlate with memory 51 
CD4 T cell reprogramming towards a Th2-skewed state across age, providing insights 52 
into mechanisms of age-related immune dysregulation and unique targets for 53 
therapeutic intervention and disease prevention in older adults.  54 
 55 
Results 56 
 57 
Generation of a high-resolution healthy peripheral immune cell atlas for 58 
application across human immune studies.  59 

A critical step in understanding the immune landscape in healthy people across 60 
age is defining robust immune cell types within a tissue of interest. A number of 61 
references exist for labeling of human immune cells within peripheral blood using 62 
scRNA-seq datasets (Domínguez Conde et al. 2022; Terekhova et al. 2023; Hao et al. 63 
2021), however none of these references collectively met our input criteria. These 64 
criteria included 1) use of many donors to account for immune composition 65 
heterogeneity, 2) large number of cells sequenced per donor to allow detection of rarer 66 
subsets, and 3) a broad age range of donors to account for age-specific variation. Thus, 67 
we began by building a new human immune cell atlas, based on scRNA-seq data we 68 
generated from peripheral blood mononuclear cells (PBMCs) of more than 100 healthy 69 
donors ranging from 11 to 65 years (yrs) of age (n=108, Figure 1A). Cohort details are 70 
provided in Supplemental Table 1. The cell numbers after quality control and doublet 71 
removal averaged more than 15,000 cells per donor (mean: 16,867 cells, range of 25-72 
75 quartiles: 15074-18264 cells, sample-specific metrics are included in Supplemental 73 
Table 1), generating a final dataset of 1.82 million high-quality PBMCs from healthy 74 
people across age. From these data, we used a hierarchical label strategy, 75 
unsupervised clustering and distinct immune-based marker genes to define 9 cell 76 
subsets at level 1, 29 subsets at level 2 and 71 subsets at level 3, that further 77 
encompasses broad features of age, sex and cytomegalovirus (CMV) infection. (Figure 78 
1B, 1C) Level 3 includes characterization of 35 T cell, 11 B cell, 7 monocyte, 6 natural 79 
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killer (NK) and 12 other subsets including dendritic cells and hematopoietic precursors. 80 
(Figure 1D, see Methods). The number of cells used to generate this atlas allowed 81 
resolution of smaller, more unique subsets such as CD27- TBX21+ effector B cells and 82 
the recently described population of circulating KLRC2+ CD8-alpha alpha T cells. 83 
(Thomson et al. 2023) Further details on our Human Immune Health Atlas and immune 84 
cell subsets can be found at https://apps.allenimmunology.org/aifi/resources/imm-85 
health-atlas/. We utilized this high-quality, high-resolution human peripheral immune cell 86 
atlas for labeling cells in all subsequent scRNA-seq analyses presented here, providing 87 
consistent comparison of immune subsets across RNA and multi-modal single cell 88 
sequencing datasets. 89 
 90 
Changes in the homeostatic programming of T cell subsets accumulate over the 91 
course of age, independent of systemic inflammation. 92 

To-date, there are limited longitudinal studies focused on understanding the 93 
dynamics of the immune cell landscape across healthy age, as these types of studies 94 
require two different time scales of “aging”; 1) comparison of donors of different ages 95 
and 2) repeat sampling of individual donors over time. To address this gap, we 96 
prospectively recruited a cohort of 49 young adults (25-35 yrs of age at enrollment) and 97 
47 older adults (55-65 yrs of age at enrollment) and followed them longitudinally over 98 
the course of 2 years. (Figure 2A) During this time course, donors received 2 seasonal 99 
influenza vaccinations and up to 10 total blood draws. Vaccine-related blood draws 100 
were collected at 0, 7 and 90 days post-vaccination (“Flu Vax” series). A similar 0, 7 and 101 
90 day time course was collected but with no vaccination administration (“No Vax” 102 
series), as well as additional “stand-alone” visits to account for seasonal variation. 103 
These time points were designed to enable comparison of age-related differences in the 104 
immune landscape that occur during homeostatic maintenance as well as during 105 
vaccine-induced perturbation. CMV serology was additionally performed to allow 106 
comparison of the impact of immune perturbation induced by chronic viral infection. 107 
PBMCs and plasma were collected at each blood draw for in-depth immune profiling 108 
assays that included scRNA-seq, spectral flow cytometry, O-link plasma proteomics and 109 
influenza-specific serology. Extensive clinical data was collected on donors at each 110 
blood draw and is available for detailed exploration at 111 
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/vis/clinical/. 112 
Basic cohort demographics, including age, sex, CMV infection status, and sample 113 
information are detailed in Supplemental Table 1.  114 

Age-related changes in the circulating proteome are well-described (Argentieri et 115 
al. 2023; Whiting et al. 2015), however there are conflicting results regarding the 116 
association between circulating markers of inflammation and age. Thus, we first 117 
investigated proteomic changes in our healthy adult cohort via our Olink dataset. We 118 
found 69 proteins differentially expressed at baseline between young and older adults 119 
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(65 increased and 4 decreased with padj<0.05), including previously described markers 120 
including CXCL17 and WNT9A at baseline. (Figure 2B, 2C) (Argentieri et al. 2023) 121 
Notably, no significant increase in classic inflammatory proteins TNF, IL-6, IL-1B or a 122 
more recently described age-related marker IL-11 (Widjaja et al. 2024) were detected 123 
over time in older adults. (Figure S1A) The observed age-related alterations were also 124 
maintained over time, with a similar pattern of protein differences observed a year later. 125 
(Figure S1B, S1C) Thus, we find circulating hallmarks of healthy age persist in the 126 
absence of systemic inflammation.  127 

We next interrogated the cellular landscape of healthy immune aging utilizing our 128 
scRNA-seq dataset. To build the reference dataset for this study, all scRNA-seq data 129 
collected from our cohort was compiled and cells were labeled via our new Human 130 
Immune Health Atlas. After cell label transfer, post-transfer doublet exclusion, and 131 
clean-up, the resulting longitudinal immune health dataset consisted of >13.7 million 132 
PBMCs. Similar to the atlas dataset, the cell numbers per sample averaged more than 133 
15,000 cells per donor per time point (mean: 15,886 cells, range of 25-75 quartiles: 134 
14,153-18,032 cells, sample-specific metrics are included in Supplemental Table 1). 135 
The final dataset includes more than 3 million T cells, 1.2 million B cells, 1.1 million NK 136 
cells, 2.4 million monocytes, 123,020 dendritic cells, and 10,431 hematopoietic 137 
precursors, building a rich resource to interrogate age-related immune changes at high-138 
resolution in many immune cell subsets simultaneously. 139 

A consistent hallmark of immune aging is the loss of naïve CD8 T cells. We 140 
began by examining cellular composition as a key feature of the aging process in this 141 
reference dataset. We found significant age-related compositional changes in 16 142 
immune cell subsets, including decreased frequencies of core naïve CD8 T cells at 143 
baseline (padj = 8.6e-12) in older adults that is a hallmark feature of immune aging. 144 
(Supplemental Table 2) To further explore features of homeostatic immune aging, we 145 
next focused on examining transcriptional profiles across all 71 immune cell subsets 146 
defined by our Human Immune Health Atlas. For these analyses, we performed pseudo-147 
bulk differential gene analyses comparing young and older adults at baseline (“Flu Year 148 
1 Day 0”), controlling for sex and CMV as potential confounding factors. We found that 149 
T cell subsets were the main immune cells that exhibited transcriptional changes with 150 
age. (Figure 2D) Consistent with previous T cell-focused studies (Thomson et al. 2023; 151 
Moskowitz et al. 2017), T cell subsets early in differentiation showed the highest number 152 
of age-related differentially expressed genes (DEGs), with naive > central memory > 153 
effector memory subsets. Of note, few transcriptional changes were observed in other, 154 
non-T cell subsets and many subsets exhibited no age-related changes in their 155 
transcriptome. To confirm this observation, we ran a cross-sectional analysis on 156 
samples collected one year later (“Flu Year 2 Day 0”) and found similar results. (Figure 157 
S1D, S1E) Age-related changes were also distinct from those found in immune subsets 158 
when directly assessing broad immune perturbations caused by CMV infection and 159 
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influenza vaccination. (Figure S1F) Indeed, many transcriptional differences in B cell 160 
subsets were found with vaccination, highlighting that the lack of age-related differences 161 
in this adaptive immune compartment is unlikely a technical artifact due to lower B cell 162 
numbers in the peripheral blood. While T cell subsets also demonstrated the most 163 
significant changes in frequencies with age, the transcriptional changes did not directly 164 
correspond with compositional changes in the subsets. (Figure 2E) Indeed, core naive 165 
CD4 T cells show the most transcriptional changes (N=331 DEGs) with no significant 166 
difference in frequency (padj=0.65), whereas core naive CD8 T cells show both 167 
transcriptional (N=182 DEGs) and frequency changes with age. Thus, during 168 
homeostasis, T cells are the peripheral immune cell subset most transcriptionally and 169 
compositionally altered by age, with few transcriptional changes observed in other 170 
innate and adaptive immune compartments.  171 

The homeostatic aging process has been linked with transcriptional variation 172 
however the actual stability of immune cell programming across age is unknown. To 173 
further determine the stability of age-related transcriptional changes in T cells, we 174 
analyzed the longitudinal transcriptional changes (over the course of 600 days) in the 8 175 
immune cell subsets with the most differentially expressed genes. These subsets 176 
included core naive CD8 T cells, core naive CD4 T cells, central memory CD8 T cells 177 
(N=185 DEGs), GZMK+CD27+ effector memory CD8 T cells (N=67 DEGs), naive CD4 178 
Tregs (N=158 DEGs), central memory CD4 T cells (N=161 DEGs), GZMB-CD27- 179 
effector memory CD4 T cells (N=56 DEGs) and GZMB-CD27+ effector memory CD4 T 180 
cells (N=69 DEGs). To interrogate the overall maintenance of transcriptional profiles 181 
with age, we developed upregulated and downregulated RNA-based composite scores 182 
as summary metrics of age-related differential gene expression specific to each of these 183 
subsets. (Figure S2A) Applying these metrics to each donor, we found consistent age-184 
related transcriptome changes in young and older adults (adjusted p<0.05 for all 185 
subsets). (Figure S2B) There was also a significant correlation between age metric 186 
across each of the 8 T cell subsets within an individual (Figure 2F), implying that 187 
transcriptional changes occur uniformly across the T cell compartment of an individual 188 
with age. Moreover, older adults consistently maintained differential age metrics 189 
compared with young adults over a 2-year period. (Figure 2G, 2H, Figure S2C, S2D). 190 
These data collectively indicate that age-related transcriptional differences are 191 
maintained over time in age-susceptible T cell subsets. 192 

To further collectively confirm that these proteomic, compositional and 193 
transcriptional changes accumulate over the course of homeostatic aging, we acquired 194 
a second cross-sectional cohort of paired PBMC and serum samples from healthy 195 
adults (n=234), with a continuous age range from 40 to 90+ years of age (Whiting et al. 196 
2015), and again performed deep immune profiling. (Figure 3A) Basic cohort 197 
demographics, including age, sex, and CMV infection, as well as sample assay 198 
information are detailed in Supplemental Table 1. Proteomic analysis revealed 199 
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circulating proteins altered with healthy age continuously accumulate across the aging 200 
spectrum in the absence of systemic inflammation, evidenced by the lack of association 201 
with TNF, IL6, IL1B and IL11 with chronological age. (Figure 3B) We further utilized the 202 
scRNA-seq data to build a follow-up reference of more than 3.2 million PBMCs of 203 
similar quality as our original datasets (Figure 3C; see Methods). Initial examination of 204 
the 71 cell subsets confirmed the expected hallmarks of immune aging, including a 205 
decrease in core naive CD8 T cells (slope: -7.6, pval=5.3e-26) and a modest, although 206 
not significant, increase of CM CD4 T cells (slope: 2.12, pval=1.4e-01) across age. 207 
(Figure 3D, 3E) To better understand the dynamics of the transcriptional programming 208 
across age, we applied our previously described summary metrics of age-related 209 
differential gene expression (‘transcriptional age” metric). We found a continuous 210 
increase in the age metric for upregulated genes across the 8 age-susceptible subsets 211 
from people 40 to 65 years of age. (Figure 3F) Notably, the upregulated RNA age 212 
metric consistently plateaued after 65 years of age across all subsets.  Conversely, the 213 
age metric for down-regulated genes demonstrated the opposing pattern, remaining 214 
relatively stable from 40-65 then rapidly decreasing from 65-90 yrs of age. (Figure 3G) 215 
This suggests that up- and down-regulated genes within immune cells have different 216 
dynamics in adults above 65 years of age and may be distinct from those occurring 217 
between 40-65 years of age. To further investigate the functional implications of these 218 
changes, we assessed the overlap between DEGs in these 8 subsets to find commonly 219 
targeted genes; identifying 26 gene down-regulated and 36 gene up-regulated with age 220 
that were consistent in at least 4 subsets. Common age-related genes included 221 
increasing genes associated with effector differentiation (e.g., PTGER2) and 222 
intracellular signaling responses (e.g., SESN3, ANHAK) (Figure 3H), as well as 223 
decreasing genes associated with cell state polarization (e.g., IL16) and apoptosis (e.g., 224 
STK17A). (Figure 3I) Collectively, these data demonstrate that age-related changes in 225 
the immune landscape affect T cell subsets early in differentiation and coordinated 226 
changes occur progressively over the course of age, independent from markers of 227 
systemic inflammation.   228 
 229 
The immune landscape induced by chronic CMV infection is stable over time and 230 
distinct from aging.  231 

Cytomegalovirus (CMV) is thought to contribute to low-grade inflammation by 232 
inducing chronic immune stimulation over time. However, the impact of age on the 233 
cellular and molecular landscape induced by CMV infection has yet to be fully 234 
elucidated. To assess the overall impact of CMV on the immune landscape of our 235 
healthy adult cohort, the cell frequencies and transcriptomes of the 71 immune cell 236 
subsets were compared in CMV+ and CMV- individuals (CMV+ n = 44; CMV- n = 52). We 237 
found 6 cell subsets to be significantly impacted by CMV infection (i.e., with greater than 238 
5 DEGs and cell frequency differences of adj p<0.05). (Figure 4A) In particular, we 239 
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found increased frequencies of KLRF1+/-GZMB+ EM CD8 T cells (KLRF1+ padj=0.002; 240 
KLRF1- padj =3.9e-10 ), KLRF1-GZMB+ EM CD4 T cells (padj=1.5e-18), GZMK+ CD27+ 241 
EM CD8 T cells (adjusted p= 0.02), KLRF1+ γδ T cells (padj = 1.8e-07) and adaptive NK 242 
cells (padj = 1.2e-08) in CMV+ compared with CMV- individuals. Immune cell subsets 243 
with CMV-related cell frequency increases also displayed more prominent 244 
transcriptional changes, including KLRF1+/-GZMB+ EM CD8 T cells (KLRF1+ N=23 245 
DEGs; KLRF1- N=56 DEGs), KLRF1-GZMB+ EM CD4 T cells (N=8 DEGs), and adaptive 246 
NK cells (N=63 DEGs). These findings were confirmed in our larger, follow-up cohort 247 
(CMV+ n=136; CMV- n=98). (Figure S3A) Thus, we determined specific innate and 248 
adaptive immune cell subsets commonly expanded in chronic CMV infection, regardless 249 
of age. 250 

We next compared the age-associated stability of compositional changes 251 
observed in CMV+ people, focused on these 6 commonly expanded immune cell 252 
subsets. No age-related differences in the frequencies of the more terminal-like effector 253 
T cell subsets, KLRF1+/-GZMB+ EM CD8 T cells, in CMV+ adults were observed both at 254 
baseline and over a two-year period (Figure 4B, Figure S3B), possibly due to the 255 
relatively ‘younger’ nature of our healthy cohort (less than 65 yrs of age). There was, 256 
however, a significant decrease in adaptive NK cells (padj=0.01) in CMV+ older adults 257 
compared with CMV+ young adults, which was maintained over a two-year period 258 
(Figure 4B). To confirm this age-related decrease of adaptive NK cells, we performed 259 
spectral flow cytometry on 24 young (CMV+ n=12; CMV- n=12) and 24 older (CMV+ 260 
n=12; CMV- n=12) adults. While both CMV+ young and older adults showed expanded 261 
adaptive NKs compared with CMV- individuals, adaptive NK cells (defined as 262 
KLRC2+CD57+CD56dimCD16+ cells (Dogra et al. 2020; Lopez-Vergès et al. 2011)) had 263 
a lower frequency in older CMV+ adults compared to young CMV+ adults. (Figure 4C, 264 
4D) We also noted a trending decrease in expression of KLRC2 (a.k.a., NKG2C) on 265 
adaptive NK cells from CMV+ older individuals. (Figure 4E) Thus, age modestly impacts 266 
the composition of the CMV-mediated immune landscape in healthy adults. 267 

We then evaluated the impact of CMV infection on age-related differences in the 268 
transcriptome of age-susceptible T cell subsets (identified in Figure 2), using our RNA 269 
age metric. Consistent with CMV infection mainly impacting more terminal effector T cell 270 
subsets, no significant differences in the age-related transcriptional profiles of these 8 T 271 
cell subsets between CMV+ and CMV- young or older adults were found (Figure S3C, 272 
p>0.05 for all 8 subsets), indicating that chronic viral infection does not accelerate 273 
transcriptional age in T cell subsets early in differentiation. We assessed how age 274 
impacts the transcriptional changes induced by chronic CMV infection in all immune cell 275 
subsets, comparing CMV-induced gene expression in young and older adults 276 
separately. From these analyses, we found that adaptive NKs and KLRF1-GZMB+ EM 277 
CD8 T cells displayed the most transcriptional changes with CMV infection in young 278 
adults, however these changes were much less pronounced in older adults at baseline. 279 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Main Text 8  
 

(Figure S3D) The number of CMV-induced DEGs in adaptive NKs were also found to 280 
be consistently reduced in older adults one year later (Flu Year 2 Day 0). (Figure S3E) 281 
Moreover, a subset of CMV-induced genes in adaptive NKs of young adults exhibited 282 
overall lower expression in older adults, including KLRC2. (Figure 4F) In particular, 283 
ZBTB38, a newly defined marker gene of the adaptive NK population (Rebuffet et al. 284 
2024), was decreased, both consistently over time in CMV+ older adults compared with 285 
CMV+ young adults (Figure 4G), as well as decreasing in expression in CMV+ subjects 286 
across age in our follow-up cohort, reaching similar expression to CMV- subjects in 287 
advanced age. (Figure 4H) Thus, the changes in the transcriptional landscape induced 288 
by CMV infection are relatively independent of age, however the adaptive NK subset 289 
uniquely exhibits a stably altered transcriptional state suggestive of lower activation in 290 
older adults.   291 

CMV infection may have systemic effects on the immune system as well, thus we 292 
evaluated the impact of CMV and age on the circulating proteome. Although we did not 293 
find any significant different proteins between CMV+ and CMV- individuals at a global 294 
level, we took advantage of the one young adult that seroconverted from CMV- to CMV+ 295 
during our longitudinal study to identify select proteins that are induced by CMV 296 
infection. CMV-induced proteins were determined via strict criteria of being expressed at 297 
low levels during the CMV uninfected phase but had a persistent increase after infection 298 
of at least 1.5-fold higher than the highest pre-infection level. We identified 10 proteins 299 
that met these criteria. (Figure 4I) We next evaluated whether there was a significant 300 
difference in expression levels of these 10 proteins in CMV+ vs. CMV- individuals from 301 
our full longitudinal cohort. We found that 4 of the proteins (FCRL6, FCRL3, KLRD1, 302 
GZMH) were significantly increased in chronic CMV infection (Figure 4J, not shown), 303 
independent of age. Additionally, higher expression of GZMH in CMV+ individuals was 304 
maintained over time and showed significant CMV-related differences in our follow-up 305 
cohort, again independent of age. (Figure 4K) To further link these proteomic changes 306 
back to the observed changes in cellular composition, we evaluated which immune cell 307 
subsets transcriptionally express GZMH. GZMH was expressed the highest in GZMB+ T 308 
cell subsets and adaptive NKs (Figure 4L, 4M), linking CMV-related immune cell 309 
expansion with the circulating proteome. Together, these data demonstrate that CMV 310 
infection stably alters the immune cell landscape in adults, with age primarily altering 311 
adaptive NK cells in healthy CMV+ adults. 312 
 313 
Age-related alterations in B cell responses to vaccine-induced perturbation are 314 
maintained over time. 315 

It is well-known that age also has a major impact on the ability of an individual to 316 
make effective, long-lasting antibody responses to vaccination, linked to alterations in 317 
the B cell compartment (Wang et al. 2019; Frasca et al. 2016), however less is known 318 
about the impact of age on broader B cell responses to vaccine-induced perturbation 319 
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(i.e., bystander activation) in healthy adults. To study these broad responses, we first 320 
binned individuals into their specific “flu vaccine year” to account for variation in 321 
seasonal flu vaccine composition (e.g., flu strains, adjuvants) that may impact cell 322 
responses, identifying 26 young and 42 older adults receiving the same vaccine in the 323 
year. (Figure 5A) Then we assessed whether our sub-cohort was generally 324 
representative of other aging cohorts, examining total level of influenza vaccine-specific 325 
IgG antibodies as well as the functional capacity of vaccine-specific antibodies using a 326 
custom hemagglutination inhibition (HAI) MSD assay at day 0 and day 7 post-327 
vaccination. We additionally evaluated antibody responses against a vaccine neo-328 
antigen (B/Washington strain; Figure 5B, 5C) and a vaccine recall antigen (B/Phuket 329 
strain; Figure 5D, 5E). Consistent with previous aging studies, the functional antibody 330 
response (HAI) to a recall antigen was significantly lower in older adults. (Figure 5E) 331 
However, the neo-antigen HAI responses were similar between young and older adults 332 
(Figure 5C), as were total vaccine-specific IgG levels for both neo- and recall antigens. 333 
(Figure 5B, 5D) Thus, these data consistently demonstrate that age impacts vaccine-334 
specific antibody responses and uniquely indicate that memory, but not naïve, B cell 335 
responses are preferentially impaired with age. 336 

In our previous analyses, we observed memory B cell subsets had the most 337 
transcriptional changes after vaccination. (Figure S1F) Thus, we utilize our high-338 
resolution scRNA-seq dataset to further explore the impact of vaccine-induced 339 
perturbation on the composition and transcriptome of these subsets with age. We 340 
assessed age-related frequencies of plasma cells pre- and post-vaccination, as a 341 
classic cellular read-out of vaccine-specific responses in the periphery. Like the total flu-342 
specific IgG responses, we found both young and older adults exhibited similar 343 
increased in plasma cells post-vaccination. (Figure 5F) We also observed similar 344 
increases in frequencies for multiple memory B cell subsets, including CD27- effector B 345 
cells, CD27+ effector B cells and CD95+ memory B cells, independent of age. However, 346 
core memory and type 2 polarized B cell subsets had reduced expansion in older 347 
adults. (Figure 5F) We further confirmed these frequency changes via flow cytometry 348 
analysis on a subset of donors, demonstrating strong correlations between RNA- and 349 
flow-based B cell subset frequencies. (Figure S4A) Thus, while there was no alteration 350 
in the vaccine-specific expansion of plasma cells with age, we observe a broader, age-351 
related limitation in expansion of memory B cell subsets with age. 352 

To further assess broad memory B cell responses to vaccination, we interrogated 353 
transcriptional profiles at day 7 post-vaccination for enrichment of activation-related 354 
signaling pathways. Plasma cells exhibited pathway enrichment indicative of higher 355 
activation, whereas core memory B cells demonstrated lower MYC-related activation in 356 
older adults that aligned with their limited expansion with age. (Figure S4B) Similar to 357 
core memory, CD27+ effector B cells also lower enrichment in pathways associated 358 
with activation in older adults (e.g., MYC pathway, adjusted p value: 3.68-08, NES: 359 
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2.02). (Figure S4C, S4D) CD27- effector B cells also exhibited reduced ROS-360 
associated signaling in older adults (adjusted p value: 0.04, NES: 1.77; Figure 5G), 361 
which has previously been linked to flu vaccine responsiveness. (Nellore et al. 2023) 362 
This reduction was observed at multiple different time points over the course of 363 
vaccination. (Figure 5H) Moreover, this effector B cell subset in older adults shows 364 
lower expression of genes associated with functional effector memory B cells (Nellore et 365 
al. 2023) (Figure 5I, 5J), including lineage-defining genes FCRL5, CD19, MAS4A1, and 366 
ITGAX, as well as activation genes like ZEB2, TBX21, XBP1, S100A10, DAPP1, and 367 
BATF. Collectively, these data indicate that older adults have broad alterations in the 368 
compositional and transcriptional B cell responses to vaccine-induced perturbation. 369 

A key feature of effective B cell responses to flu vaccination is the production of 370 
class-switched immunoglobulin G (IgG) antibodies. Thus, we assessed whether the 371 
CD27- effector B cell subset displayed altered isotype composition post-vaccination. 372 
Notably, older adults displayed significantly lower expression of IgG genes (e.g., 373 
IGHG1) as well as higher IGHD and IGHM expression than young adults in CD27- 374 
effector B cells. (Figure 5K) The reduction in IGHG genes was found in both year 1 and 375 
year 2 flu vaccination series, demonstrating that there is a consistent decline in class-376 
switch responses overall with age. To further confirm these data, we assessed IgG 377 
expression by the effector memory B cell subset via spectral flow cytometry using the B 378 
cell annotation strategy from Glass, et. al., 2020. (Glass et al. 2020) We found that 379 
frequency of IgG+ CD27- effector B cells was significantly lower in older adults both at 0 380 
and 7 days post-vaccination than young adults (Figure 5L, 5M). Moreover, the CD27- 381 
effector population also expressed less surface CD19 in older adults (Figure 5N), 382 
corresponding to their age-related gene expression profiles. Thus, CD27- effector B 383 
cells, an important subset in response to flu vaccination, display lower IgG class-384 
switching and express less lineage-defining surface markers with age. Together, these 385 
data reveal that multiple memory B cell subsets have altered age-related responses to 386 
vaccine-induced perturbation that could play a role in reduced antibody functionality in 387 
older adults. 388 
 389 
Accumulation of a Th2-like state in memory CD4 T cells is associated with age-390 
related B cell dysregulation. 391 

Poor memory B cell activation, altered immunoglobulin class switching and 392 
reduced vaccine-specific antibody functionality in older adults suggests there may be 393 
alterations in memory T cell helper capacity with age. However, our initial flow 394 
cytometry-based analysis found no differences in the frequencies of activated T 395 
follicular helper cells (defined as ICOS+CD38+PD1+CXCR5+ CD4 T cells) at day 7 post-396 
vaccination between young and older adults. (Figure S5A) These data, in tandem with 397 
similar frequencies of vaccine-induced plasma cells, indicate that the general process of 398 
antigen-specific activation and expansion are likely maintained with age. Thus, we 399 
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determine if age-related molecular reprogramming of CM CD4 T cells, which are one of 400 
the most transcriptionally altered memory T cell subsets with age (Figure 2), could 401 
influence the type of helper functions these cells provide to B cells. Initial analyses of 402 
the overall ‘helper’ programming found that the Tfh transcriptional signature within the 403 
CM CD4 T cells decreased with age, (Figure S5B) with a main Tfh-defining marker 404 
CXCR5 expression decreased in CM CD4 T cells from older adults. (Figure S5C) This 405 
decrease was confirmed by a consistent loss of CXCR5 expression across age in our 406 
follow-up cohort. (Figure S5D) We next used CellPhoneDB (Efremova et al. 2020) to 407 
interrogate receptor-ligand interactions. (Figure 6A) Notably, we found that CM CD4 T 408 
cells from older adults displayed reduced predicted interactions with core memory B 409 
cells, including a key complex for B cell activation CD40LG:CD40. (Figure 6B) This 410 
reduced interaction exhibited similar decreases in these receptor-ligand interactions at 411 
year 2 (Figure S5E) and stemmed from a loss of CD40LG in CM CD4 T cells (Figure 412 
S5F), but not CD40 in core memory B cells, in older adults. (Figure S5G) This was 413 
confirmed in our follow-up cohort, which showed steadily decreasing expression of 414 
CD40LG in CM CD4 T cells, but not CD40 in core memory B cells, across age. (Figure 415 
6C) Thus, CM CD4 T cells exhibit a lower transcriptional propensity for providing direct 416 
help to memory B cells with age. 417 

In addition to direct interactions, T cells can mediate B cell responses through 418 
indirect, cytokine-mediated interactions based on their help state (i.e., Th1, Th2, Th17).  419 
(Olatunde, Hale, and Lamb 2021) Using recently described scRNA-seq-based cell state 420 
signatures (Yasumizu et al. 2024), we examined the Th1, Th2 and Th17-like state of 421 
CM CD4 T cells with age. From these analyses, we found that older adults exhibited a 422 
significant skewing towards a Th2-like state compared to young adults in CM CD4 T 423 
cells that was stably maintained over time. (Figure 6D, 6E) Moreover, our follow-up 424 
cohort confirmed a continuous increase in the Th2-like state in CM CD4 T cells across 425 
age. (Figure 6F) Neither Th1- or Th17-like states changed significantly with age or over 426 
time in the CM CD4 T cells. To further confirm the association between age and the 427 
development of Th2-like state, we utilized our previously published tri-modal TEA-seq 428 
data to interrogate TF activity within CM CD4 T cells from children (11-13 yrs) and older 429 
adults (55-65 yrs). (Figure S5H) (Thomson et al. 2023) Consistent with the elevation in 430 
a Th2-like transcriptional state, activity of the Th2-associated TF GATA3 (p=0.00016) 431 
was significantly higher in CM CD4 T cells in older adults (Figure 6G). The activity of 432 
TBX21, the main Th1-associated TF, did not change with age. GATA3 activity also 433 
directly correlated with the RNA-based Th2-like cell state metric within this independent 434 
dataset. (Figure 6H) Consistent with higher GATA3 activity and a Th2-like state, older 435 
adults also exhibited increased chromatin openness within the IL4 locus, a GATA3-436 
regulated gene. (Figure 6I) Activity of the classical Th2 cytokine-driven TF STAT6 was 437 
not elevated in CM CD4 T cell with age (Figure S5I), nor was there increased openness 438 
at the STAT6-regulated gene IL4R. (Figure S5J) The elevation in GATA3 activity in 439 
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older adult CM CD4 T cells was in the absence of any notable increase in protein levels 440 
of circulating Th2-polarizing cytokines IL-4, IL-5 and IL-13 across age. (Figure S5K, 441 
S5L) Thus, we find that the molecular programming of memory CD4 T cells become 442 
gradually skewed towards a GATA3-related transcriptional state with age that is not 443 
directly reflected on a systemic level in the circulating proteome. 444 
 The age-related transcriptional changes in memory T cells collectively indicate 445 
the potential for altered B cell activation (via CD40LG:CD40 interactions) and B cell 446 
class switching (via Th2 state) in response to vaccine-induced perturbation in older 447 
adults. To further link stable homeostatic alterations in memory T cells with broad 448 
vaccine-induced memory B cell dysregulation with age, we interrogated the association 449 
of Th2 and T follicular helper cell states in CM CD4 T cells with chronological age, 450 
transcriptional age (RNA age metrics), baseline T cell functionality and broad vaccine-451 
induced B cell responses in our longitudinal cohort. (Figure 7A) Consistent with the 452 
direction of gene expression, Th2 and Tfh states correlated with up- and down- 453 
summary metrics respectively (Th2:RNA Age metric (up) pval=0.02, rho=0.28; Tfh:RNA 454 
Age metric (down) pval=1.02e-10, rho=0.796). Th2 and Tfh states were commonly 455 
associated with many features of T cell functionality and B cell responses (albeit in 456 
opposite directions), including CM CD4 T cell CXCR5 expression and core memory B 457 
cell activation pathways. Notably, the Th2 state of CM CD4 T cells specifically and 458 
inversely correlated with CD40L:CD40 interactions between CM CD4 T cells and core 459 
memory B cells (confirmed in our follow-up cohort (pval=0.011, rho=-0.17)), as well as 460 
the magnitude of change in HAI inhibition (i.e., functional antibody responses) at day 7 461 
post-vaccination. (Figure 7B) Additional, we find IGHG4 expression in Core memory 462 
and CD95 memory B cell post-vaccination positively correlated with Th2 state of CM 463 
CD4 T cells but not Tfh programming (Figure 7A, 7B), which is consistent with 464 
cytokines mediating changes in B cell antibody isotype. These data build a model in 465 
which memory CD4 T cells progressively lose intrinsic helper potential in tandem with 466 
developing a Th2 state across age that leads to reduced memory B cell activation, 467 
altered class-switching and less function antibody production in older adults. Taken 468 
together, exploration of our new, large-scale longitudinal immune health resource 469 
reveals novel cellular and molecular features of the healthy immune system connected 470 
to its responsiveness to acute and chronic perturbation with age.  471 
 472 
Discussion 473 
  In this study, we sought to uncover key features of the healthy peripheral immune 474 
system that accompany the aging process. By applying our newly developed Human 475 
Immune Health Atlas to two unique healthy adult cohorts (one longitudinal and one 476 
cross-sectional), we conducted an in-depth analysis of the molecular and cellular 477 
landscape of the immune compartment at homeostasis and in response to acute and 478 
chronic perturbation. This effort resulted in a high-resolution scRNA-seq resource 479 
comprising over 16 million peripheral immune cells from more than 300 healthy 480 
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individuals aged 25 to 90 years. Additionally, this resource includes paired plasma 481 
proteomics and spectral flow cytometry, offering complex, multi-dimensional insights 482 
into human immunity across health and aging. We also provide a suite of interactive 483 
data exploration tools at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-484 
health-age/ to enable researchers easier, open access to this extensive human immune 485 
health resource and to further facilitate new immunological discoveries and applications. 486 

The longitudinal nature of this study allows us to gain insight into immune cell 487 
programming at baseline, its stability over time and its broad alterations with acute and 488 
chronic perturbation. Remarkably, we observe long-term stability in homeostatic 489 
programming of many immune cell subsets is unaffected by age. While the 490 
programming of T cell subsets early in their differentiation was significantly altered by 491 
age, there was also little to no age-related effects on the more terminal T cell subsets, 492 
contrasting inflammatory, senescent or exhausted T cell features commonly associated 493 
in advanced aging studies. (Zhu et al. 2023; Mogilenko et al. 2021; Elyahu et al. 2019) 494 
Recent mouse studies have demonstrated a gradual shift towards an exhausted-like 495 
transcriptional state within the memory T cell compartment over a decade of antigenic 496 
re-challenge. (Soerens et al. 2023) However, our study's finding on the stability of 497 
certain features of transcriptional programming up to 65 years of age suggest this 498 
transition towards exhaustion may occur in more advanced age (i.e., >65 yrs of age). It 499 
also implies that homeostatic maintenance during early adulthood may be a more 500 
nuanced relationship between a cell’s lifespan, its programming, and the 501 
microenvironment it inhabits (i.e., lymph nodes) in the absence of overt disease. (Ural et 502 
al. 2022; Cakala-Jakimowicz, Kolodziej-Wojnar, and Puzianowska-Kuznicka 2021)  503 

CMV infection is another immunologic challenge intertwined with age - implicated 504 
to cause chronic immune activation and to modulate protective immunity in adults. 505 
(Furman et al. 2015; Picarda and Benedict 2018) Similar to previous observations, we 506 
found that individuals of all ages infected with CMV had a marked shift in their 507 
peripheral immune landscape, highlighted by the acquisition of terminally differentiated 508 
cytotoxic T cell subsets and adaptive NK cells. (Bayard et al. 2016; Wertheimer et al. 509 
2014; Schlub et al. 2011) Moreover, these changes were stable over the 2-year course 510 
of the study, neither displaying transient nor cumulative reprogramming as one may 511 
expect from reoccurring or continuous immune perturbation. Adaptive NK cells show an 512 
age-associated decrease in frequencies and subtle transcriptional differences 513 
suggestive of reduced activation in older adults. The gradual age-related reduction in 514 
ZBTB38 and KLRC2 expression, key population-defining markers recently described for 515 
‘NK3’ cells (Rebuffet et al. 2024), also indicates potential plasticity in the epigenetic 516 
programming of this immune cell subset across age. (Lau et al. 2018; Rückert et al. 517 
2022; Schlums et al. 2015) Of note, the recruitment of donors for this study occurred 518 
during the COVID pandemic, a period when exposure to common viruses was 519 
significantly reduced, and thus, the stability of the CMV-induced immune landscape with 520 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612119doi: bioRxiv preprint 

https://explore.allenimmunology.org/
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/
https://doi.org/10.1101/2024.09.10.612119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Main Text 14  
 

age in our study may uniquely reflect less immune remodeling by specific and bystander 521 
viral exposure during this period. (Nikolich-Žugich et al. 2020) Given that CMV 522 
activation and exposure significantly impact the success of solid-organ transplantation 523 
(Raglow and Kaul 2023; Kotton 2013; Fishman 2007), further research into the 524 
persistent cytotoxic reshaping of the immune cell landscape and its potential role in 525 
immune-mediated disease risk is warranted. 526 

In addition to studying the impact of age on the immune landscape during CMV-527 
mediated perturbation, we deeply examined acute, age-specific transcriptional 528 
responses of memory B cells to vaccine-induced immune perturbation. A unique feature 529 
of our Immune Health Atlas is the detailed annotation of the B cell compartment, which 530 
revealed novel age-specific transcriptional states in effector and memory B cell subsets 531 
in tandem with changes in vaccine-specific antibody responses during multiple rounds 532 
of immune activation. We found altered transcriptional states post-vaccination in plasma 533 
cells and, interestingly, effector memory B cells, a unique B cell subset associated with 534 
both age and viral infection, from older adults. This CD27-CD11c+Tbet+Zeb2+ effector 535 
memory B cell subset described had age-associated transcriptional state that 536 
corresponded to reduced activation potential via lower ROS pathway activity and lower 537 
frequencies of IgG+ cells, highlighting a potential mechanism for reduced protective 538 
responses with age. (Burton et al. 2022). These effector B cells in older adults also 539 
exhibited a reduced gene program affiliated with long-lived humoral responses in the 540 
context of influenza vaccination. (Nellore et al. 2023) Thus, our study reveals a new link 541 
between effector B cells, protective immunity and aging that may contribute to reduced 542 
vaccine efficacy in older adults.  543 

Previously, the connection between reduced B cell responses and age-related 544 
transcriptional changes in T cells remained unclear. While evidence suggests CD4 T 545 
cells undergo dysregulation with age, findings regarding the directionality and specific 546 
features of these age-related changes (e.g., Th1 versus Th2 polarization, effector vs 547 
memory function) are conflicting. (Terekhova et al. 2023; Elyahu et al. 2019; Hu et al. 548 
2019) Our findings on the age-related increase in a Th2-like state in central memory 549 
CD4 T cells aligns with recent literature finding elevated CCR4+ memory T cells in 550 
advanced age (Terekhova et al. 2023) and suggests a mechanism where heightened 551 
Th2 programming impedes T-bet activation in older adults. (Dai et al. 2024; Naradikian 552 
et al. 2016) Indeed, the only described T-bet deficient patient has been shown to have 553 
both high Th2 T cell populations (Yang et al. 2021) and impaired effector B cell 554 
development (Yang et al. 2022), directly linking two of our novel observations in this 555 
study. Furthermore, efficient generation of effector B cells often relies on contact-556 
dependent help from Tfh cells via CD40 ligand, essential for B cell activation and class 557 
switching. (Nonoyama et al. 1993; Song et al. 2022) This further aligns with an elevated 558 
Th2 state and reduced CD40L expression in central memory CD4 T cells in older adults. 559 
Thus, our study integrates novel mechanisms with established aspects of immune 560 
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aging, highlighting the dynamic accumulation of features including elevated Th2/Gata3 561 
programming, reduced effector/memory B cell activation, and impaired antibody 562 
functionality across age.  563 
 In summary, we uncover new insights into the dynamics of the peripheral 564 
immune landscape across age, chronic infection and vaccine-induced perturbation, 565 
underscoring the importance of longitudinal analyses in facilitating a more 566 
comprehensive understanding of age-related immune dysregulation. Our findings 567 
demonstrate that the healthy stable state of immune cell subsets change with age and 568 
impacts immune responsiveness, independent from systemic inflammation and chronic 569 
infection. These results have translational implications in the context of designing age-570 
specific vaccines, treating diseases utilizing immune cell-based treatments (e.g., CAR T 571 
cells) in older adults, and preventing the onset of age-related immunological diseases 572 
such as rheumatoid arthritis.  573 
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Methods 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

The Sound Life study cohort 
Healthy 25- to 35-year-old and 55- to 65-year-old adult donors were prospectively 
recruited from the greater Seattle, Washington, USA area as part of the Sound Life 
Project, a protocol (IRB19-045) approved by the Institutional Review Board (IRB) of the 
Benaroya Research Institute. All adult participants provided informed consent before 
participation. Donors were excluded from enrollment if they had a history of chronic 
disease, autoimmune disease, severe allergy, or chronic infection. All blood samples 
were collected, processed to PBMCs through a Ficoll-based approach and frozen within 
4 hours of blood draw. Plasma samples were processed, aliquoted and frozen within 4 
hours of blood draw. Basic demographics are provided in Supplemental Table 1. 

Follow-up cohort 
234 paired PBMCs and serum samples were retrospectively selected from a cohort of 
healthy adults, ages 40 years and older, recruited from the greater Palo Alto, California, 
USA area, under a protocol approved by Stanford University IRB. (Whiting et al. 2015) 
All participants provided informed consent before participation and these subsequent 
studies were approved by the Allen Institute IRB. Basic demographics for the selected 
follow-up cohort are provided in Supplemental Table 1. 

METHOD DETAILS 

scRNAseq via 10x Genomics v3 chemistry 
scRNA-seq was performed on PBMCs from the Sound Life cohort as previously 
described (Genge et al. 2021), using a modified 10x Genomics Chromium 3′ single-cell 
gene expression assay with Cell Hashing. In brief, PBMCs from the Sound Life cohort 
were thawed and stained with oligo-tagged antibodies (HTO) allowing for overloading of 
Chip G (10x Genomics, PN 20000177) wells at 64,000 cells. At cDNA amplification, 
HTO additive primer was spiked into the cDNA amplification master mix.  Following 
cDNA amplification per the manufacturer’s instructions, HTO and GEX cDNA products 
were separated using SPRI-Select (Beckman Coulter, PN B23319) bead-based cleanup 
before carrying forward into separate library indexing reactions. Libraries were 
sequenced on a NovaSeq S4 200 cycle flow cell at Northwest Genomic Center at the 
University of Washington (https://nwgc.gs.washington.edu/).  Samples were then 
computationally resolved and quality-checked using in-house pipelines. 
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scRNAseq via 10x Genomics FLEX  
PBMCs from our follow-up cohort were thawed per our standard methodology. (Genge 
et al. 2021) Samples were run in batches of 48 or 64 samples, with mixed age and sex 
distributions.  PBMC bridging controls were included on each batch to allow for cross 
batch normalization. Viable samples were processed using Chromium Next GEM Single 
Cell Fixed RNA Sample Preparation Kit (10x Genomics, PN 1000414) according to the 
10x Genomics protocol for “Fixation of Cells and Nuclei”. To facilitate high throughput, 
volumes were scaled from 1 mL to 250 µL for plate-based sample preparation and 
handling. Probe hybridization was completed according to the user guide “Chromium 
Fixed RNA Profiling Reagent Kits for Multiplexed samples” using the Chromium Fixed 
RNA Kit, Human Transcriptome, 4 rxns x 16 BC (10x Genomics, PN 1000476).  Up to 2 
million fixed cells were hybridized per sample. After 16-24 hours of probe hybridization 
incubation at 42°C, samples were pooled at equivalent cell numbers with 15 samples 
and a bridging control per pool. Each single cell suspension pool was loaded onto two 
wells of Chip Q (10x Genomics, PN 2000518) for GEM generation at an overloaded 
concentration of 400,000 cells. Pre-Amplification PCR and library construction were 
performed per the manufacturer’s instructions. Final scRNAseq libraries were 
sequenced using a NovaSeq X 25B 300 cycle flow cell or NovaSeq S4 200 cycle flow 
cell, depending on total read requirements at either Clinical Research Sequencing 
Platform at the Broad Institute (https://broadclinicallabs.org/) or Northwest Genomic 
Center at the University of Washington (https://nwgc.gs.washington.edu/). Samples 
were then computationally resolved and quality-checked using in-house pipelines.  

Olink Explore 1536 
Plasma samples from the Sound Life cohort were run on the Olink Explore 1536 
platform, which uses paired antibody proximity extension assays (PEA) and a next 
generation sequencing (NGS) readout to measure the relative expression of 1472 
protein analytes per sample. For plate setup, samples were randomized across plates 
to achieve a balanced distribution of age and sex. Longitudinal samples from the same 
participant were run on the same plate. Plasma bridging controls (12-40) were included 
on each of 6 batches and used for cross-batch normalization.  

Olink Explore 3072 
Serum samples were run on the Olink Explore 3072 platform to measure the relative 
expression of 2943 proteins. Follow-up cohort samples were split across 3 Olink 
batches with 41 serum bridging controls included across each of the batches for cross-
batch normalization. For plate setup, samples were randomized across plates to 
achieve a balanced distribution of age and sex. 
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HCMV serology 
Viral serology testing for Human Cytomegalovirus (HCMV) was performed at the 
University of Washington’s Clinical Virology Laboratory in the Department of Laboratory 
Medicine (https://depts.washington.edu/uwviro/). Plasma or serum samples (200 µL) 
were run through the FDA-approved LIAISON® CMV IgG Assay to qualitatively detect 
CMV IgG class antibodies. Results were reported for each sample as ‘Positive’ or 
‘Negative’ along with a CMV Ab Screen Index Value ranging from <0.20 to >10.00. 

Adaptive NK Flow Cytometry 
One to two million viable PBMCs were plated into wells of a 96-well U-bottom plate. 
Cells were stained for viability, FC blocked, and then stained with a surface marker 
antibody cocktail (Supplemental Table 3) using BD Brilliant Staining Buffer (BD 
Biosciences, PN 563794) for 30 minutes at 4°C. The samples were washed, fixed for 60 
minutes at room temperature, FC blocked and permeabilized for 10 minutes at room 
temperature, then stained with an intranuclear antibody staining cocktail for 60 minutes 
at 4°C using the eBioscience Foxp3/Transcription Factor Staining Buffer Set 
(Thermofisher, PN 00-5523-00). After staining, the samples were washed and fixed with 
Phosphate Buffered Saline solution (PBS) containing 1% paraformaldehyde (PFA) for 
15 minutes at 4°C. Finally, the samples were washed and resuspended in PBS before 
acquisition on a BD Symphony (5L) flow cytometer.  

B-cell Flow Cytometry 
PBMCs were rapidly thawed and diluted into 20% Fetal Bovine Serum (FBS) in ATCC-
modified RPMI (ThermoFisher Scientific, PN A1049101) and washed with media. Two 
million viable PBMCs from each donor were seeded into a 96-well V-bottom plate. 
PBMCs were then incubated with Human TruStain FcX and Purified mouse IgG 
(BioRad, PN PMP01X) for 10 minutes at room temperature and washed with Wash 
Buffer (1% FBS in PBS Solution). Cells were incubated with Fixable Viability Stain 510 
(BD Biosciences, PN 564406) for 30 minutes at 4°C and then washed. Cells were 
stained with a filtered antibody cocktail in Wash Buffer for 30 minutes at room 
temperature (Supplemental Table 3) and finally washed with Wash Buffer. Stained 
PBMCs were immediately resuspended to 10 x106 cells/mL in Wash Buffer and 
acquired on an Aurora 5L flow cytometer (Cytek Biosciences).  

Total Influenza-specific antibody serology 
The Meso Scale Discovery (MSD) Prototype Influenza 7-plex Serology Assay protocol 
measures IgG antibodies in human plasma specific for Influenza vaccine hemagglutinin 
(HA) antigens: A/Brisbane, A/Hong Kong, A/Michigan, A/Victoria, B/Colorado, B/Phuket, 
and B/Washington. Briefly, MSD 96-Well 10-Spot multi-array plates coated with seven 
flu HA antigens were blocked, human plasma samples were diluted 10,000-fold, and 
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added along with HA reference standards and controls to the plate. Plates were shaken 
for two hours at 15°C to 25°C, washed, then anti-human IgG antibodies labeled with 
electrochemiluminescent (ECL) SULFO-TAG were added. Plates were shaken for one 
additional hour at 15°C to 25°C, washed, then MSD GOLD Read Buffer B was added, 
and the plates were read on an MSD SECTOR S600 ECL plate reader. Test samples 
were quantified in AU/mL referenced against specific HA reference standards. 

Hemagglutination inhibition Influenza-specific antibody serology 
The MSD 96-well hemagglutination inhibition (HAI) 9-plex Assay measures neutralizing 
antibodies in human plasma that block the binding of labeled red blood cell vesicles to 
trimeric Influenza HA antigens, specific for the following lineages: A/Brisbane, 
A/Cambodia, A/Guangdong, A/HongKong, A/Kansas, A/Shanghai, A/Wisconsin, 
B/Phuket, and B/Washington. Briefly, plasma samples were first treated with enzymes 
to remove interfering sialic acid residues. MSD 96-Well 10-Spot multi-array plates 
coated with nine trimeric flu HA antigens were blocked and then pretreated human 
plasma samples diluted 5,000-fold along with HA reference standards were added to 
the plate. Plates were shaken for two hours at 15°C to 25°C, then red blood cell vesicles 
labeled with ECL SULFO-TAG were added. Plates were shaken for another two hours 
at 15°C to 25°C, washed, then MSD GOLD Read Buffer B was added, and the plates 
were read on an MSD SECTOR S600 ECL plate reader. Test samples were reported as 
Percent Inhibition, relative to a no-plasma diluent only control. Positive samples show 
high percent inhibition whereas negative or low samples show low percent inhibition. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Flow Cytometry data analysis and visualization. 
Adaptive NK and B cell flow cytometry data analysis consisted of traditional hierarchical 
gating in FlowJo v10.10 Software. For B cell analysis, total live cell gated data, 
consisting of all live singlet PBMCs within the experiment, was then downloaded and 
further processed with the R programming language (http://www.r-project.org) and 
Bioconductor (http://www.bioconductor.org) software. Data was transformed with an 
inverse hyperbolic sine (asinh) transformation with a cofactor of 220. Each marker was 
scaled to the 99.9th percentile of expression of all cells in the experiment. Total live B 
cells were over-clustered into 100 clusters using FlowSOM with all informative surface 
molecules as input. Clusters were then hierarchically clustered based on expression of 
B cell surface molecules and isotype and finally manually assigned to cell subsets, as 
described previously. (Glass et al. 2020) B cell subsets were plotted on a UMAP plot 
using the umap package in R, based on expression of all informative markers and 
excluding isotype.  
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Olink data processing.  
Olink’s standard data normalization was performed on these datasets. Protein 
expression values were first normalized across wells using an internal extension control 
(IgG antibodies conjugated with a matching oligo pair). Plates were then standardized 
by normalizing to the inter-plate pooled serum or plasma controls run in triplicate on 
each plate. Data were then intensity normalized across all cohort samples. Final 
normalized relative protein quantities were reported as log2 normalized protein 
expression (NPX) values. 

AIFI Immune Health Atlas (V1) building.  
To build our scRNA-seq PBMCs dataset for the AIFI Immune Health Atlas, we utilized 
data and analysis environments within the Human Immune System Explorer (HISE) 
system (https://allenimmunology.org/) to trace data processing, analytical code, and 
analysis environments from the original, raw FASTQ data to our final, assembled 
reference atlas. (Meijer et al. 2024) A graph representation of the analysis trace for this 
project is available at https://apps.allenimmunology.org/aifi/resources/imm-health-
atlas/reproducibility/. Additional details are available in our analysis notebooks on 
Github at https://github.com/aifimmunology/aifi-healthy-pbmc-reference and at our 
website at https://apps.allenimmunology.org/aifi/resources/imm-health-atlas/. 

Pipeline processing.  
After sequencing, Gene Expression and Hash Tag Oligonucleotide libraries from pooled 
samples in our pipeline batches were demultiplexed and assembled as individual files 
for each biological sample as described in (Swanson et al. 2022). 

Data selection from HISE storage.  
To assemble the input data for our reference dataset, we selected samples from all 
subjects in our longitudinal cohort (Sound Life cohort; Young Adult, age 25-35 yrs and 
Older Adult, age 55-65 yrs) and 16 samples from a previously described healthy 
pediatric cohort collected at the University of Pennsylvania (age 11-13 yrs (Thomson et 
al. 2023)). In total, 108 samples were selected for use in our reference (Pediatric, n = 
16; Young Adult, n = 47; Older Adult, n = 45), consisting of 2,093,078 cells before 
additional QC filtering. 

Labeling and doublet detection. 
To guide cell type identification, we labeled cells from each sample using CellTypist 
(v1.6.1)(Domínguez Conde et al. 2022), using the following reference models: 
Immune_All_High (32 cell types), Immune_All_Low (98 cell types), and 
Healthy_COVID19_PBMC (51 cell types) by following the approach described in the 
CellTypist reference documentation at https://celltypist.org. We also labeled our cells 
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using Seurat (v5.0.1) (Hao et al. 2021), which was downloaded from the Zenodo 
repository (DOI: https://zenodo.org/doi/10.5281/zenodo.7779016). For Seurat labeling, 
we utilized the SCTransform function to transform data to match the reference dataset, 
then used FindTransferAnchors and MapQuery to assign cell types based on the 3-level 
cell type labels provided in the reference dataset. We performed doublet detection using 
the scrublet package (v0.2.3) (Wolock, Lopez, and Klein 2019) implemented in the 
scanpy.external module of scanpy (v1.9.6).  

QC filtering.  
After assembly of all cells across our 108 samples, we filtered our data against a set of 
QC criteria designed to remove possible doublets (based on scrublet and high gene 
detection, > 5,000 genes), low-quality cells (based on low gene detection, < 200 genes), 
and dying or dead cells (based on mitochondrial UMI content, > 10%). Mitochondrial 
content was assessed using scanpy by identifying mitochondrial genes (prefixed with 
"MT-"), and using the scanpy function calculate_qc_metrics, as demonstrated in the 
scanpy tutorials (https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html). In total, 
140,950 cells were removed (6.73%), and 1,952,128 cells passed QC filtering (93.27%).  

Clustering and cell subsetting.  
After QC filtering, all remaining cells were clustered using a Scanpy workflow (Wolf, 
Angerer, and Theis 2018) to normalize, log transform, perform PCA, integrate age 
groups with Harmony (Korsunsky et al. 2019), perform Leiden clustering (Traag, 
Waltman, and van Eck 2019), and generate 2-dimensional UMAP projections. Clusters 
were assigned to major cell classes based on marker gene detection. For each cluster, 
the fraction of cells with detected gene expression for each marker was computed, and 
clusters meeting a set of cell class-specific criteria were selected for downstream 
annotation by our domain experts. Clusters from specific cell classes were selected 
from the full dataset for iterative clustering analysis where necessary to identify cell 
subpopulations with additional resolution. To assist with cell labeling, marker genes 
were identified for each cluster at each level of iteration and at each clustering 
resolution using the scanpy function scanpy.tl.rank_genes_groups with the parameter 
method = 'wilcoxon'. 

Expert annotation of cell types. 
Following high-level and iterative clustering, teams of domain experts within the Allen 
Institute for Immunology examined marker gene expression for clustered datasets and 
assigned cell type identities to each cluster. As part of this cell type identification 
exercise, any remaining doublets or low-quality clusters were also identified for later 
removal during dataset assembly. Cell type nomenclature and multiple levels of cell 
type resolution were harmonized across our domain experts. We identified 9 low-
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resolution cell classes (AIFI_L1), 29 mid-level cell classes (AIFI_L2), and 71 high-
resolution cell classes (AIFI_L3). After annotation, cluster labels were transferred to 
individual cell barcodes to assemble a final set of labels across all cells in our dataset. 

Training cell type labeling models. 
In order to utilize our cell type atlas to label other PBMCs datasets, we used CellTypist 
(v1.6.2 (Domínguez Conde et al. 2022)) to generate cell type labeling models. 
CellTypist utilizes logistic regression as part of its model generation process with a One-
vs-Rest (OvR) approach to multiple classes. We slightly modified CellTypist v1.6.2 to 
also allow the multinomial method provided by the LogisticRegression() function in the 
scikit.learn Python package, available at 
https://github.com/aifimmunology/multicelltypist . We used this modified version of 
CellTypist to train models for each level of our cell type labels using these two 
approaches. We utilized OvR regression for AIFI_L1 and AIFI_L2 labels, and 
Multinomial regression for AIFI_L3. 

Sound Life scRNA-seq dataset assembly.  
To build our longitudinally sampled PBMCs scRNA-seq dataset, we utilized data and 
analysis environments within the HISE system to trace data processing, analytical code, 
and analysis environments from raw FASTQ data to a labeled, high-quality final dataset. 
(Meijer et al. 2024) A graph representation of the analysis trace for this project is 
available at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-
age/reproducibility/. Additional details are available in our analysis notebooks on Github 
https://github.com/aifimmunology/sound-life-scrna-analysis/ and at our website 
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/. 

Pipeline processing. 
After sequencing, Gene Expression and Hash Tag Oligonucleotide libraries from pooled 
samples in our pipeline batches were demultiplexed and assembled as individual files 
for each biological sample, as described above for the PBMCs Atlas dataset. 

Data Selection. 
Input data for our dataset was assembled as described above for the PBMCs Atlas 
dataset. In total, 868 samples were selected for use in our dataset (Young Adult, n = 49 
subjects; n =  418 samples; Older Adult, n = 47 subjects, n = 450 samples), consisting 
of 15,781,886 cells before additional QC filtering. 

Labeling and doublet detection.  
To add cell type labels, we utilized CellTypist (v1.6.1) (Domínguez Conde et al. 2022) 
and the CellTypist models we generated using our Immune Health Atlas dataset at 
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three levels of cell type resolution (AIFI_L1, 9 broad cell classes; AIFI_L2, 29 
intermediate cell classes, and AIFI_L3, 71 high-resolution cell classes) by following the 
approach described in the CellTypist reference documentation at https://celltypist.org. 
We performed doublet detection the same way as described above for the Atlas. After 
cell type labeling and doublet detection were performed on each sample, we assembled 
data, labels, scrublet calls, sample metadata, CMV status, and BMI data across eight 
sets of samples defined by the cohort, biological sex, and CMV status of subjects to 
facilitate downstream analyses. 

QC filtering.  
After assembly of all cells across our samples, we filtered our data against the same set 
of QC criteria as described above for the PBMC Atlas. QC criteria were applied to the 
dataset in series: cells retained were not identified as a doublet by Scrublet; the percent 
of total UMIs assigned to mitochondrial regions was < 10%; N genes detected per cell 
was > 200 and < 2,500. In total, 951,864 cells were removed (6.03%), and 14,830,022 
cells passed QC filtering (93.97%). 

Clustering, subsetting, and doublet removal.  
After QC filtering, all remaining cells were clustered within AIFI_L2 labels using the 
scanpy workflow described above for the PBMC Atlas. lusters were filtered to remove 
doublets based on marker gene expression. For example, CD4 naive T cell clusters with 
a high fraction of MS4A1 expression were removed as B cell doublets. We also 
removed clusters with low gene detection as low quality. Due to their generally lower 
gene detection, this threshold was not applied to Erythrocyte or Platelet populations. In 
total, 800,059 cells (5.39%) were removed. 14,029,963 cells (94.61%) were retained for 
final clean up based on high-resolution AIFI_L3 labels. 

Refinement of cell type labels.  
After removal of doublets at the AIFI_L2 cell type resolution, we assembled cells from 
all samples for each cell type in the high-resolution AIFI_L3 labeling results. Separately 
for each cell type, we performed the scanpy data processing procedure described 
above to enable a final review of cell type labels. Each cell type was examined to 
identify remaining doublet clusters or clusters of cells that appeared to be mislabeled 
based on marker gene expression in collaboration with immunological domain experts. 
During this process, 234,117 cells were removed. 13,795,846 cells were retained for the 
final reference dataset and downstream analyses. 

Follow-up Cohort scRNA-seq Reference.  
Using our Atlas dataset, all cells in the follow-up cohort were automatically annotated 
with custom label transfer models built using the CellTypist framework. First, the genes 
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in the reference dataset were subsampled to match the 18,000 genes in the 10x FLEX 
scRNA-seq assay. This improved model performance by enhancing recognition of more 
rare cell populations. Then, three models were built for label transferring – one for each 
cell labeling level. Finally, the follow-up cohort data was labeled. Dataset cleanup, 
quality checking, clustering, and visualization were carried out using Scanpy. (Wolf, 
Angerer, and Theis 2018) Doublets were detected and removed using Scrublet, and 
minimal inter-batch effects were adjusted in the PCA space for visualization purposes 
using Harmony. (Korsunsky et al. 2019) After QC filtering, labeling and data clean-up, 
3,627,005 cells were retained in the final follow-up reference dataset and used for 
downstream analyses. 

Olink Analysis.  
The Olink analysis was performed in R using the lme4 package (Bates et al. 2014), 
applying the design formula: NPX(Bridged) ~ Age Group + CMV + Sex. The 
comparisons were based on the age group factor. Proteins with an adjusted p-value 
below 0.05 were considered differentially expressed. 

Cell frequency comparison from scRNA-seq. 
To deal with the constant sum issue on compositional data, we applied the centered log 
ratio (CLR) transformation on the frequency data for each sample. This transformation 
was applied to 71 cell types at level 3 labels for each scRNA sample in most frequency 
comparisons. For comparing switched and non-switched CD27- effector B cell in scRNA 
data, the CLR transformation was based on total memory B cells at level 3 labels. For 
the Tfh flow data comparison, the transformation was based on total T cells. In the B 
cell flow data comparison, the CLR transformation included 9 B cell types and 1 non-B 
cell type. For the isotype in the B cell flow data experiment, CLR transformation was 
performed on individual cell types for different isotype. For paired data, we applied the 
signed-rank Wilcoxon test to the CLR-transformed data. For unpaired data, we used the 
rank-sum Wilcoxon test on the CLR-transformed data.  

DEG analysis. 
Differential gene analysis was performed using the DESeq2 (version 1.42.0 (Love, 
Huber, and Anders 2014)) package in R (version 4.3.2). For all comparisons, genes 
were filtered based on a minimum of 10% non-zero counts in each comparison. 
Aggregated counts from single cells were used for the comparisons. Several DESeq2 
analyses were conducted with default setting: 

● For the global baseline comparison of flu year 1 day 0 samples, the design 
formula used was: Aggregated Counts ~ Age Group + CMV + Sex. The contrast 
was made for each factor. 
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● For the global flu vaccine and no-vaccine comparisons of year 1 and year 2 
samples, the design formula used was: Aggregated Counts ~ Visit + Age Group+ 
CMV + Sex + Subject. The contrast was made for the visit factor (day 0 vs day 
7). 

● For the flu response comparison between two age groups for aligned flu years, 
we included only donors with samples from both the 2020-2021 and 2021-2022 
flu seasons. Day 7 samples from both years were used in the analysis. The 
design formula applied was: Aggregated Counts ~ Flu Year+ Age Group+ CMV + 
Sex. The contrast was made on the age group factor (young vs older). 

● For the CMV comparison, we performed DESeq2 analysis using the design 
formula: Aggregated Counts ~ Age Group+CMV + Sex. The contrast was made 
for the CMV factor (positive vs negative). 

Genes were considered differentially expressed if their adjusted p-value was below 0.05 
and their absolute fold change was greater than 0.1. 

NMF projection. 
We used the NMF projection tool 
(https://github.com/yyoshiaki/NMFprojection/tree/main) with its precomputed NMF 
matrix 
(https://github.com/yyoshiaki/NMFprojection/blob/main/data/NMF.W.CD4T.csv.gz) to 
compute the NMF scores on Python (version 3.10.13). For each sample, we first 
subsetted the CD4 T cells and then performed NMF projection according to the 
recommended workflow. We normalized the different NMF scores based on the mean 
scores across cells in each cell type at the sample level. For the top genes defining 
each NMF factor, we extracted the weight of each gene from the precomputed NMF 
matrix. Genes with higher weights were considered to be more contributive to each 
factor. We choose the top 20 genes for Tfh NMF factor with highest weight.  

Cell to cell interaction analysis. 
We conducted cell to cell interaction analysis by using CellphoneDB (v5 
https://github.com/ventolab/CellphoneDB) with method: statistical inference of 
interaction specificity on default setting. For each sample, we calculated interactions for 
CM CD4 T cells and core memory B cells. We retained the interactions with an adjusted 
p-value below 0.05. For group comparisons, we applied a threshold of n>15 interaction 
numbers in two groups (young or older) to filter out the interaction with small numbers of 
significance.  

Enrichment analysis. 
Two types of enrichment analysis were conducted. For Gene Set Enrichment Analysis 
(GSEA), using the results from DESeq2, we ranked the genes based on -log10(p-value) 
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* sign(log2FoldChange) and performed enrichment analysis using the fgsea R package 
(version 1.28.0). Pathways with an adjusted p-value lower than 0.05 were kept. For 
Sample Level Enrichment Analysis (SLEA), we used genes that passed the 10% 
minimal expression threshold as the background gene set and calculated pathway 
scores for each sample using the leading-edge genes from the fgsea results. At the 
pseudobulk level, we calculated the mean gene expression with random genes from the 
background set for each sample, performing 1000 iterations. The z-score was computed 
as the deviation between the observed mean of leading-edge genes and the mean of 
the permuted means of random genes, divided by the standard deviation of the 
permuted means. This deviation was used as the pathway score for each sample. 

TEA-seq analysis. 

TEA-seq datasets were directly downloaded from GEO 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214546). We performed label 
transfer, doublet detection, and quality control (QC) based on the RNA module. Label 
transfer was conducted using Celltypist, based on the models generated from our atlas 
reference at three levels. We filtered the cells if predicted labels are not T cells. Doublet 
detection was done using the scanpy.external.pp.scrublet function on the RNA module 
only. Predicted doublets were filtered out before any downstream processes. QC was 
performed by ensuring that pct_counts_mito was below 15%, and n_genes_by_counts 
was either below 2500 or above 200. Cells from the RNA module were matched to 
those from the ATAC module using original barcodes and well IDs. Any mismatched 
cells containing only RNA or only ATAC modules were excluded. We performed 
scATAC analysis on ArchR (version 1.0.2). (Granja et al. 2021) The following steps 
were executed using the default ArchR workflow: LSI dimensionality reduction, group 
coverage, identification of reproducible peaks (MACS3) (Y. Zhang et al. 2008), peak 
matrix construction, motif annotation (cisbp database), background peak construction, 
deviation matrix, and weight imputation (MAGIC). (van Dijk et al. 2018) The z-scored 
ChromVar motif matrix was extracted with imputed weights. The motif scores at the 
sample level were calculated based on the mean score for each cell type within each 
sample.FOli 

RESOURCE AVAILABILITY 

Lead contact 
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by lead contacts, Claire E. Gustafson 
(claire.gustafson@alleninstitute.org) and Peter J. Skene 
(peter.skene@alleninstitute.org). 
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Materials availability 
This study did not generate new unique reagents. 

Data and code availability 
Single-cell RNA-seq data will be deposited at GEO (to be released upon publication). 
Raw single-cell RNA-seq fastq files will be deposited at dbGap and be publicly available 
as of the date of publication. All original code has been deposited at GitHub and 
Zenodo: https://github.com/aifimmunology/aifi-healthy-pbmc-reference/ 
(https://zenodo.org/records/13352146) for generation of the Immune Health Atlas, 
https://github.com/aifimmunology/sound-life-scrna-analysis/ 
(https://zenodo.org/records/13352142) for labeling and assembly of the Sound Life 
Cohort data, and https://github.com/aifimmunology/IHA-Figure (Zenodo link will be 
publicly available as of the date of publication) for downstream analysis and figure 
generation. All processed data, data objects, and clinical metadata derived from de-
identified human subjects is available at the Human Immune System Explorer (HISE) 
website. This paper also analyzes existing, publicly available data (GEO accession: 
GSE214546). Any additional information required to reanalyze the data reported in this 
paper is available from the lead contact upon request.  

Data Visualizations  

The following tools are provided to facilitate data exploration and discovery: 
 
Human Immune Health Atlas: https://apps.allenimmunology.org/aifi/resources/imm-
health-atlas/ 

1) AIFI Immune Health Atlas UMAP Explorer. Explore cell subsets and gene 
expression in a UMAP viewer to display an overview of the entire dataset. 
https://apps.allenimmunology.org/aifi/resources/imm-health-atlas/vis/umap/  

2) AIFI Immune Health Atlas Gene Expression Reference. A quick reference for 
gene expression across cell types and age groups. 
https://apps.allenimmunology.org/aifi/resources/imm-health-atlas/vis/reference/  

3) AIFI Immune Health Atlas Clinical Data Explorer. Flexible visualization of 
clinical metadata and lab results collected from our Atlas subjects. 
https://apps.allenimmunology.org/aifi/resources/imm-health-atlas/vis/clinical/  

 
Dynamics of Human Immune Health and Age Resource: 
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ 

4) Sound Life Longitudinal Dynamics Explorer. Explore gene expression and 
cell type frequency across the longitudinally sampled blood draws within each 
healthy subject of our longitudinal cohort.  
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https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-
age/vis/dynamics/  

5) Sound Life Differential Gene Explorer. Browse results of pairwise differentially 
expressed gene (DEG) tests for age, sex, CMV and influenza vaccination 
between our cohort samples.  
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/vis/deg/  

6) Sound Life Clinical Data Explorer. Flexible visualization of clinical metadata 
and lab results collected from our cohort's subjects.  
https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-
age/vis/clinical/  
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 Figures 1  
 

 

 
Figure 1. Generation of a high-resolution scRNA-seq atlas of peripheral immune cells 
from healthy children and adults. A. Overview of the Human Immune Health Atlas cohort 
(age range: 11-65 yrs; n=108) and final reference dataset. B. UMAP of immune cell subsets 
within the Atlas, highlighting major immune cell populations. C. Log2 fold change of clinical 
metadata features of age and CMV infection status compared using Milo differential abundance 
testing. Bronze is higher in older adults and Teal is higher in young adults. Red is higher in 
CMV+ people and blue is higher in CMV- people. D. Marker gene expression and cell counts of 
the 71 immune cell subsets in level 3 of the Atlas. More details about this Atlas can be found at 
https://apps.allenimmunology.org/aifi/resources/imm-health-atlas/. 
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 Figures 2  
 

 
Figure 2. Maintenance of age-related alterations in the healthy human immune landscape 
over time. A. Overview of the longitudinal Sound Life cohort of healthy young (n=49) and older 
(n=47) adults. B. Volcano plot of the age-related protein expression differences in circulating 
plasma proteome at baseline (Flu Vax Year 1 Day 0). C. CXCL17 and WNT9A normalized 
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 Figures 3  
 

protein expression (NPX) over time in young (teal) and older (bronze) adult plasma. Each 
donors’ samples are connected by a line. D. The number of differential expressed genes 
(DEGs) from DEseq2 analysis (log2fc >0.1 and p.adj<0.05) of immune cells subsets from young 
and older adults at ‘Flu Vax Year 1 Day 0’. E. Bubble plot comparison of the change in 
frequency (using centered log-ratio (CLR) transformation) and number of DEGs at ‘Flu Vax year 
1 day 0’ between young and older adults. Bubble size shows a combined metric of change 
defined as -log10(p.adj from CLR freq comparison) x DEG_Counts. P.adj for CLR freq was 
determined using Wilcoxon rank-sum test with Benjamini–Hochberg correction. F. The RNA age 
metric, calculated as a composite score of the top upregulated DEGs for each subset with >20 
DEGs, shown across each donor at Flu Vax Year 1 Day 0. G. RNA age metric (upregulated 
genes) in select subsets over time in young and older adults. Each donors’ samples are 
connected with a thin line. H. RNA age metric (downregulated genes) in select subsets over 
time in young and older adults. Each donors’ samples are connected with a thin line.  
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Figure 3. Dynamics of the healthy human immune landscape across age. A. Overview of 
our follow-up cohort of healthy adults (n=234) ranging from 40 - 90 years of age. B. Normalized 
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 Figures 5  
 

protein expression (NPX) of select age- and inflammation-related serum proteins in our follow-
up cohort, with donors ordered by age. C. UMAP of scRNAseq data generated from our follow-
up cohort, totaling a final reference dataset of 3.2 million PBMCs. C. Distribution of immune 
cells by sex and CMV infection status with the UMAP. D. Composition of CD8 and CD4 T cell 
compartment across age.  E. Frequencies (using centered log-ratio (CLR) transformation) of 
select T cell subsets within PBMCs across age. Regression line shown with 95% confidence 
intervals in gray. F. The average RNA Age Metric (upregulated genes) for the top age-impacted 
immune cell subset, shown across age. Regression line shown with 95% confidence intervals in 
gray. G. The average RNA Age Metric (downregulated genes) for the top age-impacted immune 
cell subset, shown across age. Regression line shown with 95% confidence intervals in gray. H-
I. Heatmap of mean RNA expression by age in the follow-up cohort for select H. up-regulated 
and I. down-regulated genes identified from initial DEG analysis. 
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Figure 4. Distinct impact of CMV infection and age on the immune landscape. A. Bubble 
plot comparison of the change in frequency (using centered log-ratio (CLR) transformation) and 
number of DEGs at ‘Flu Vax year 1 day 0’ between CMV+ (n=44) and CMV- (n=52) adults. 
Bubble size shows a combined metric of change defined as -log10(p.adj from CLR freq 
comparison) x DEG_Counts. B. Select subset frequencies in PBMCs shown over time. Teal 
dots are young adults. Bronze dots are older adults. Regression line shown. C. Representative 
flow plots of CD57 and NKG2C (KLRC2 gene) expression within NK cells. Adaptive NKs cells 
are defined as CD57+NKG2C+ NK cells. D. Adaptive NK cell frequencies and E. NKG2C 
(KLRC2) MFI expression on adaptive NKs comparing young CMV- (n=12), young CMV+ (n=12), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figures 7  
 

older CMV- (n=12) and older CMV+ (n=12) adults from spectral flow cytometry analysis. P-
values calculated using unpaired Wilcoxon test. F. Heatmap of mean RNA expression levels 
from upregulated DEGs in adaptive NKs of CMV+ young adults across all individuals in 
longitudinal cohort (n=96). G. ZBTB38 expression in adaptive NKs (left panel) CMV+ young 
(n=18) and older (n=24) adults, shown over time (up to 600 days after first blood draw). Teal 
dots are CMV+ young adults. Bronze dots are CMV+ older adults. Regression line shown. H. 
ZBTB38 expression in adaptive NKs (right panel) CMV+ (red, n=136) and CMV- (blue, n=98) 
adults across age in our follow-up cohort. I. Normalized expression (NPX-bridged) of plasma 
proteins in one young adult who converted from CMV- to CMV+ over the course of our study. 
Proteins were considered significant if they had a 1.5 or greater fold change pre- to post-
conversion. J. Normalized expression of GZMH protein in plasma of CMV- and CMV+ individuals 
from our longitudinal cohort. Young and older adults are delineated by circle and squares, 
respectively. K. Normalized expression of GZMH protein in serum of CMV- and CMV+ 
individuals from our follow-up cohort. P-value for J and K were determined by Wilcoxon rank-
sum test. L. UMAP of GZMH RNA expression in PBMCs from all individuals in our longitudinal 
cohort. M. Dot plot of GZMH RNA expression in NK, CD4 T cell and CD8 T cell subsets.   
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Figure 5. Age-associated B cell responses to the influenza vaccine. A. Number of samples 
and sampling timepoints across 2 flu seasons in the young and older adult cohorts that received 
the same seasonal vaccines. B-C. B/Washington and D-E. B/Phuket flu-specific total IgG 
antibody expression (B, D) in plasma compared to expression at baseline (Day 0) for both 
young (n=26) and older (n=42) adult cohorts in Flu Vax Year 1 and Mean percent inhibition of flu 
hemagglutinin (HA) antigen as determined by the HAI assay (C, E) for both young (n=21) and 
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 Figures 9  
 

older (n=22) adult cohorts at days 0 and 7 in Flu Vax Year 1. P-values were calculated using 
Wilcoxon’s signed-rank test (paired) for the comparison between Day 0 and Day 7, and using 
the Wilcoxon rank-sum test for all other comparisons. F. Peripheral memory and antibody-
secreting B cell population frequency changes in young (teal) and older adult (bronze) cohorts 
pre-vaccination (Day 0), and post-vaccination (Day 7). P-vals determined by Wilcoxon’s signed-
rank test (paired). G. Enrichment plot for the top Hallmark pathway in CD27- effector B cells 
when comparing Day 7 transcriptome between young and older adults after gene set 
enrichment analysis. H. Sample level enrichment analysis scores for the Hallmark Reactive 
Oxygen Species Pathway at each timepoint for CD27- effector B cells in young and older adults. 
I. Volcano plot of DEGs for CD27- Effector B cells between the age cohorts at Day 7 post-
vaccination. Highlighted genes are those previously shown to define a flu-specific effector B cell 
subset in a vaccinated adult cohort. Dark teal and bronze dots signify significantly different 
genes, and light-colored dots indicate nominal significance, while gray dots indicate no 
significance between age cohorts. J-K. Longitudinal expression of selected genes by CD27- 
effector B cell subset, averaged for each age cohort at each timepoint. L. Representative flow 
cytometry plot of CD19 and IgG protein expression on CD27- effector B cells in young and older 
adults at day 7 post-vaccination, based on flow cytometry analysis of 6 young and 6 older adult 
subjects that overlap with the scRNA data cohort. M. CLR-transformed frequency comparison of 
surface IgG+ CD27- effector B cells pre- and post-vaccination in young and older adults, as 
determined by flow cytometry. P-values were determined by Wilcoxon rank sum test with the 
alternative hypothesis 'less'. N. Median surface CD19 protein expression comparison on CD27- 
effector B cells pre- and post-vaccination in young and older adults, as determined by flow 
cytometry. P-values were determined by Wilcoxon rank sum test with the alternative hypothesis 
'less'. 
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Figure 6. Accumulation of an altered transcriptional state in central memory T cells with 
age. A. Graphical representation of T cell and B cell interactions. B. Receptor-ligand interaction 
prediction between CM CD4 T cells and core memory B cells in young (n=47) and older (n=49) 
adults from a single time point (Flu Year 1 Day 0). C. CD40LG in CM CD4 T cells and CD40 in 
core memory B cells across age in our follow-up cohort (n=234). Regression line shown with 
95% confidence intervals in gray. D. Triangle plots of Th1-, Th2- and Th17- cell state scores in 
CM CD4 T cells from young (teal) and older (bronze) adults. E. Th2 cell state scores in CM CD4 
T cells over time in young (teal) and older (bronze) adults. Regression line shown with 95% 
confidence intervals in gray. F. Triangle plots of Th1-, Th2- and Th17- cell state scores in CM 
CD4 T cells from our follow-up cohort (n=234). G. GATA3 and TBX21 transcription factor (TF) 
activity based on Chromvar analysis of TEA-seq data in CM CD4 T cells from children (n=8) and 
older adults (n=8). H. Spearman correlation between GATA3 TF activity and Th2 cell state 
score in CM CD4 T cells from the TEA-seq dataset (n=16). I. Chromatin accessibility tracks of 
the IL4 gene region in CM CD4 T cell subsets, showing normalized read coverage.  
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Figure 7. Age-related transcriptional states of central memory CD4 T associated with 
memory B cell response to influenza vaccination. A. Arc plot of Th2 and Tfh cell states in 
CM CD4 T cells correlations with features of age, T cell - B cell interactions and B cell 
responses to flu vaccination. Only correlations with pval <0.05 are shown. B. Select Spearman 
correlations of Th2 state with T-B interactions and B cell responses.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figures 12  
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figures 13  
 

Supplemental Figure 1, in regard to Main Figure 2. Impact of age, CMV infection and 
influenza vaccination on the healthy immune landscape. A. Normalized protein expression 
(NPX) of inflammatory markers TNF, IL-6, IL-1b and IL-11 over time in young (teal) and older 
(bronze) adult plasma. B. Volcano plot of the age-related expression differences in circulating 
plasma proteome at baseline (Flu Vax Year 2 Day 0). C. Spearman correlation between age-
related protein expression difference at Year 1 and Year 2. D. The number of down-regulated or 
up-regulated differential expressed genes (DEGs) from DEseq2 analysis of immune cell subsets 
from young (n=40) and older (n=44) adults at ‘Flu Vax year 2 day 0’ using DEseq2 analysis. E. 
Spearman correlation between the number of age-related DEGs in each immune cell subsets in 
‘Flu Vax year 1 day 0 and ‘Flu Vax year 2 day 0’. F. The number of DEGs in immune cell 
subsets, comparing CMV (CMV-positive versus CMV-negative), Flu vaccination time series 
(“Flu Vax”, Day 0 and Day 7 post-flu vaccination) and No Vax time series (“No Vax”, Day 0 vs 
Day 7 after no vaccination) to that of age. DEGs were defined as log2fc >0.1 and padj<0.05 for 
all comparisons.  
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Supplemental Figure 2, in regard to Main Figure 2. Maintained, age-related transcriptional 
signatures in healthy immune cell subsets. A. Equation for calculating the composite age 
score in each immune cell subset with more than 20 DEGs between young and older adults. B. 
RNA age metric (upregulated and downregulated genes) in 8 subsets (all subsets with >20 
DEGs) comparing young and older adults on year 1 day 0 samples. Each dot is from a single 
donor. P-value was determined using the Wilcoxon rank-sum test. C. RNA age metric 
(upregulated genes) in select subsets over time in young and older adults. Each donors’ 
samples are connected with a thin line. D. RNA age metric (downregulated genes) in select 
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subsets over time in young and older adults. Each donors’ samples are connected with a thin 
line.  
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Supplemental Figure 3, in regard to Main Figure 4. Transcriptional landscape of healthy 
immune cell subsets altered by CMV and age. A. Bubble plot comparison of the change in 
frequency (using centered log-ratio (CLR) transformation) and number of DEGs between CMV+ 
(n=136) and CMV- (n=97) adults in our follow-up cohort. Bubble size shows a combined metric 
of change defined as -log10(p.adj from CLR freq comparison) x DEG_Counts. B. Select subset 
frequencies in PBMCs shown over time. Teal dots are young adults. Bronze dots are older 
adults. Regression line shown. C. RNA age metric (upregulated genes) in select T cell subsets 
split by age and CMV infection status. P-values were calculated using Wilcoxon rank sum test. 
D-E. The number of DEGs (log2fc >0.1 and p.adj<0.05) in immune cell subsets comparing 
CMV+ and CMV- individuals, in young and older adults separately from our longitudinal cohort 
at D. ‘Flu Vax year 1 day 0’ and E. ‘Flu Vax year 2 day 0’. 
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Supplemental Figure 4, in regard to Main Figure 5. Age-associated responses of non-naive 
B cell subsets to flu vaccination. A. Correlation plots of RNA-quantified (y-axis) and flow 
cytometry-quantified (x-axis) level 3 B cell population (individual plots) frequencies of total live 
PBMC. Data shown for 6 young and 6 older adult subjects in flu year 1 that were represented in 
both scRNA-seq and cytometry analyses. P-value and r values of the Pearson correlation are 
displayed. B-D. Sample level enrichment analysis (SLEA) scores for the top pathways in the 
Hallmark database at each timepoint for B. plasma cells, C. core memory B cells and D. CD27+ 
effector B cells in young and older adults.   
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Supplemental Figure 5, in regard to Main Figure 6. Age-related transcriptional alterations in 
CM CD4 T cells independent from circulating cytokine signatures. A. The CLR transformed 
frequency of ICOS+ CD38+ Tfh cells determined by spectral flow cytometry, at day 0 and day 7 
post-influenza vaccination, comparing responses in young and older adults. P-values were 
calculated using Wilcoxon’s signed-rank test (paired) for the comparison between Day 0 and 
Day 7, and using the Wilcoxon rank-sum test for all other comparisons. B. Tfh activity score was 
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 Figures 19  
 

determined by NMF projection in CM CD4 T cells in young and older adults. C. Expression of 
leading-edge genes in Tfh activity score in young and older adults. D. CXCR5 expression in CM 
CD4 T cells across age in our follow-up cohort. E. Receptor-ligand interaction prediction 
between CM CD4 T cells and core memory B cells in young (n=40) and older (n=44) adults from 
a single time point (Flu Year 2 Day 0). F. CD40LG expression in CM CD4 T cells in young and 
older adults. G. CD40 expression in core memory B cells in young and older adults. H. TEAseq 
UMAP of T cells based on RNA module, with CM CD4 T cells highlighted. I. IRF4 and STAT6 
transcription factor (TF) activity based on Chromvar analysis of scATACseq data in CM CD4 T 
cells from children (n=8) and older adults (n=8). P-value was determined by Wilcoxon rank-sum 
or Wilcoxon signed-rank test, as appropriate, unless otherwise indicated in legend. J. Chromatin 
accessibility tracks of the IL4R gene region in CM CD4 T cell subsets from TEA-seq data, 
showing normalized read coverage. K. IL-4 normalized protein expression (NPX) in young (teal) 
and older (bronze) adult plasma. L. Normalized protein expression (NPX) of select Th1-, Th2- 
and Th17-related serum proteins in our follow-up cohort, with donors ordered by age.   
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