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Abstract: The circadian clock system is closely associated with inflammatory responses. Dysreg-
ulation of the circadian clock genes in the skin impairs the skin barrier function and affects the
pathophysiology of atopic dermatitis. Interleukin 4 (IL-4) is a proinflammatory cytokine derived
from T-helper type 2 cells; it plays a critical role in the pathogenesis of atopic dermatitis. Agerarin
(6,7-dimethoxy-2,2-dimethyl-2H-chromene) is a natural JAK1/2/3 inhibitor isolated from Ageratum
houstonianum that has a protective effect on the epidermal skin barrier. However, it remains unclear
whether agerarin affects the circadian clock system. The aim of this study is to investigate the effect of
agerarin on IL-4-induced PER2 gene expression in human keratinocytes through reverse transcription
(RT)-PCR, quantitative real-time PCR (qPCR), immunoblotting, immunofluorescence microscopic
analysis, and real-time bioluminescence analysis. We found that agerarin reduced IL-4-induced PER2
mRNA expression by suppressing the JAK-STAT3 pathway. In addition, real-time bioluminescence
analysis in PER2:luc2p promoter-reporter cells revealed that agerarin restored the oscillatory rhyth-
micity of PER2 promoter activity altered by IL-4. These findings suggest that agerarin may be useful
as a cosmeceutical agent against inflammatory skin conditions associated with disrupted circadian
rhythms, such as atopic dermatitis.
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1. Introduction

The circadian rhythm is an endogenous oscillating system that controls various bio-
logical and physiological processes with an approximately 24 h cycle [1]. The central clock
in mammals is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and
acts as an essential circadian pacemaker. Most peripheral tissues are synchronized by the
central clock, transmitting periodic signals, such as hormones, metabolites, and neuronal
signals. The circadian clock is regulated by core clock genes, including brain and muscle
aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1), circadian locomotor output
cycles kaput (CLOCK), period circadian regulator (PER)1/2, cryptochromes (CRY), retinoic
acid-related orphan receptor alpha, and nuclear receptor subfamily 1 group D member 1
(NR1D1, also known as REV-ERBα/β) [2]. At the molecular level, circadian rhythms are
generated by oscillating clock-related genes that organize a transcription–translation feed-
back loop [3]. The core circadian loop includes transcriptional activators, such as BMAL1
and CLOCK complexes, which drive the expression of PER1/2 and CRY by binding to
E/E’-box elements present in their promoter region. PER1/2 and CRY complexes, in turn,
inhibit BMAL1 and CLOCK complex-mediated transcription, thereby negatively regulating
their own transcription [4].
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Approximately 10% of the total genome can be regulated by the core circadian clock
genes in every organ, including the skin [4–7]. The skin is the organ most susceptible
to external environments, such as ultraviolet (UV) radiation, humidity, pathogens, and
temperature. Various functions of the human skin, including transepidermal water loss,
sebum production, cell proliferation, pH and temperature regulation, and itch, undergo
circadian rhythm variations [4,8]. Human skin cells, including keratinocytes, melanocytes,
and fibroblasts, are known to express various functional circadian clock genes [9–11].
Dysregulation of the circadian clock genes in the skin impairs its barrier function and
affects the pathophysiology of inflammatory diseases, such as atopic dermatitis (AD) and
psoriasis [12–14].

The circadian clock controls immune functions, and inflammatory cytokines substan-
tially affect circadian rhythms at the molecular, cellular, and behavioral levels [15–20].
Indeed, depletion of Bmal1 facilitates lipopolysaccharide (LPS)-induced interleukin (IL)-
1β production [21], and deletion of Cry1 increases LPS-induced IL-6 and tumor necrosis
factor alpha (TNFα) expression [22]. Based on these studies, it is suggested that abnormal
expression of core clock genes may contribute to the pathophysiology of skin inflam-
mation. Conversely, inflammatory cytokines modulate the expression of circadian clock
genes [23,24]. IL-4 is a cytokine secreted by T-helper type 2 cells (Th2), which are overex-
pressed in AD skin lesions and play a critical role in the pathogenesis of AD [25]. PER2
is necessary for circadian clock rhythm resetting [26] and regulation of rhythmic period
length [27]. However, it is unclear whether IL-4 regulates PER2 expression and alters the
circadian clock system in keratinocytes.

Agerarin (6,7-dimethoxy-2,2-dimethyl-2H-chromene) is a bioactive compound iden-
tified in the ethanolic extract of Ageratum houstonianum (AHE) that functions as a Janus
kinase (JAK)-1, -2, and -3 inhibitor [28] and induces CLOCK expression to upregulate
aquaporin-3 (AQP3), a membrane water transporter protein, in human keratinocytes [29].
However, it remains unclear whether agerarin affects IL-4-induced PER2 expression.

This study aimed to investigate whether agerarin affects PER2 gene expression in
human keratinocytes. In this study, we used a transformed epidermal keratinocyte cell
line, HaCaT, which is derived from normal adult skin. This cell line closely reflects ker-
atinocyte cell behavior and possesses functional epidermal physiology controlled by the
circadian clock, similar to neonatal foreskin keratinocytes [30]. Here, we show that IL-4
upregulates PER2 expression at the mRNA level and that agerarin reduces IL-4-induced
PER2 expression by inhibiting the JAK/signal transducer and activator of the transcription
3 (STAT3) signaling pathway. Furthermore, we observed that agerarin restores the IL-4-
induced amplitude of the circadian rhythmicity of PER2 promoter activity, as revealed by
live-cell bioluminescence.

2. Results
2.1. IL-4 Upregulates PER2 Expression in HaCaT Keratinocytes

We examined the effect of IL-4 on PER2 expression in HaCaT keratinocytes. The cells
were treated with 20 ng/mL IL-4, and PER2 mRNA expression was measured. Reverse
transcription (RT)-PCR analysis revealed that PER2 mRNA expression peaked 3 h after IL-4
stimulation in HaCaT cells (Figure 1A). Quantitative real-time PCR (qPCR) demonstrated
an approximately 2.1-fold increase in PER2 mRNA levels relative to control levels after 3 h
of treatment (Figure 1B). Immunoblot analysis demonstrated an increase in the level of PER2
protein after 24 h of IL-4 stimulation (Figure 1C). Immunofluorescence staining showed that
IL-4-induced PER2 proteins were localized in the nucleus of the cells (Figure 1D). These data
suggest that IL-4 upregulates PER2 expression at the mRNA level in HaCaT keratinocytes.



Molecules 2022, 27, 4205 3 of 14

Figure 1. Effect of IL-4 on the expression of PER2. HaCaT cells were treated with vehicle (PBS) or
20 ng/mL IL-4 for various periods (0–36 h). (A,B) Total RNA was isolated, and the levels of PER2
mRNA were measured by RT-PCR (A) and qPCR (B). The mRNA level of GAPDH was used as
an internal control. ns, not significant; ** p < 0.01; *** p < 0.001 compared to vehicle (PBS)-treated
control group (n = 3) by Sidak’s multiple comparisons test. (C) Whole-cell lysates were prepared and
immunoblotted using anti-IL31 antibodies. GAPDH was used as the loading control. (D) HaCaT cells
cultured on coverslips were treated with vehicle (PBS) or 20 ng/mL IL-4 for 24 h, followed by fixing
and permeabilization. Immunofluorescence staining was performed using anti-PER2 and Alexa
Fluor 555-conjugated secondary antibodies (red staining). α/β-tubulin was counterstained with
anti-α/β tubulin and Alexa Fluor 488-conjugated secondary antibodies (green staining). Nuclear
DNA was stained with 1 µg/mL Hoechst 33258 (blue staining). Fluorescent cells were captured with
an EVOSf1 fluorescence microscope. The last panel on the right is a zoomed-in view of the dotted box.
Scale bars, 50 µm. IL-4, interleukin 4; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PBS,
phosphate-buffered saline; PER2, Period2; RT-PCR, reverse transcription polymerase chain reaction;
qPCR, quantitative real-time PCR.

2.2. The JAK/STAT3 Pathway Is Involved in IL-4-Induced PER2 Expression

Upon IL-4 stimulation, activated JAK leads to phosphorylation of STAT, which then
translocates to the cell nucleus to regulate target genes [31,32]. Consistent with previ-
ous studies, we observed that the phosphorylation of JAK1 at Tyr1034/1035, JAK2 at
Tyr1007/1008, and STAT3 at Tyr705 increased within 15 min in response to IL-4 stimulation
(Figure 2A).

To investigate whether the JAK/STAT3 pathway is associated with PER2 expression by
IL-4 stimulation, we examined the effect of pharmacological JAK inhibitors on IL-4-induced
PER2 expression. Pretreatment with 40 µM AG490 (JAK2-specific inhibitor) or 6.2 µM
pyridone 6 (pan-JAK inhibitor) significantly inhibited the IL-4-induced accumulation of
PER2 (p < 0.001; Figure 2B). To further determine the role of the JAK/STAT3 pathway in IL-4-
induced PER2 expression, we used stable transfectants of HaCaT cells expressing scrambled
shRNA (shCT) or STAT3 shRNA (shSTAT3). Stable knockdown of STAT3 and suppressed
phosphorylation of STAT3 following IL-4 treatment were confirmed by immunoblotting
(Figure 2C). Under these experimental conditions, IL-4-induced accumulation of PER2 was
considerably reduced in shSTAT3 cells compared to shCT cells (Figure 2D). These data
suggest that IL-4 regulates PER2 expression through the JAK/STAT3 signaling pathway.
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Figure 2. Role of the JAK/STAT3 pathway in IL-4-induced PER2 expression. (A) HaCaT cells were
treated with 20 ng/mL IL-4 for different periods (0–60 min). Whole-cell lysates were prepared, and
immunoblotting was performed using phosphorylation-specific or total protein antibodies. GAPDH
was used as an internal control. Uncropped blots are shown in Figure S2. (B) HaCaT cells were treated
with 20 ng/mL IL-4 for 24 h in the absence or presence of 40 µM AG490 and 6.2 µM pyridone 6.
GAPDH was used as an internal control. Relative band intensities were measured using ImageJ.
*** p < 0.001 compared to IL-4 alone-treated group (n = 3) by Sidak’s multiple comparisons test.
(C,D) HaCaT cells expressing scrambled (shCT) or STAT3 shRNA (shSTAT3) were treated with (+) or
without (−) 20 ng/mL IL-4 for 15 min (C) or 24 h (D). The protein levels of p-STAT3 (Tyr705) and
total STAT3 (C) and PER2 (D) were measured by immunoblotting. GAPDH was used as an internal
control. JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3.

2.3. Agerarin Inhibits IL-4-Induced JAK/STAT3 Signaling Pathway

Agerarin (Figure 3A) is an active component of AHE that inhibits JAK1 and JAK2
kinase activities [28]. Therefore, we considered the possibility that agerarin may affect
IL-4-induced PER2 expression through inhibition of JAK1/2 kinase activity. To test this
possibility, we first confirmed the effect of AHE and agerarin on the inhibition of the
JAK/STAT3 signaling pathway in HaCaT keratinocytes. IL-4-induced phosphorylation of
JAK1 at Y1034/1035, JAK2 at Y1007/1008, and STAT3 at Tyr705 were inhibited by AHE
(Figure 3B) and agerarin (Figure 3C) in a dose-dependent manner. These data demonstrate
that agerarin inhibits IL-4-induced activation of the JAK/STAT3 signaling pathway.

2.4. Agerarin Abrogates IL-4-Induced PER2 Expression in HaCaT Cells

To investigate whether JAK1/2 inhibitory agerarin affects IL-4-induced PER2 expres-
sion, we pretreated HaCaT cells with AHE and agerarin prior to IL-4 addition. RT-PCR
analysis showed that both AHE (Figure 4A) and agerarin (Figure 4B) reduced IL-4-induced
PER2 mRNA levels. In addition, the IL-4-induced increase in PER2 protein levels was
also significantly (p < 0.001) reduced by pretreatment with AHE (Figure 4C) and ager-
arin (Figure 4D). Furthermore, immunofluorescence staining showed that the IL-4-induced
abundance of nuclear PER2 was reduced by agerarin pretreatment in HaCaT cells (Figure 5).
These results demonstrate that agerarin isolated from AHE inhibits IL-4-induced PER2
expression at the mRNA and protein level.
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Figure 3. Effect of AHE and agerarin on inhibition of the JAK/STAT3 signaling pathway stimu-
lated by IL-4. (A) Chemical structure of agerarin. (B,C) HaCaT cells were pretreated with 20 and
40 µg/mL AHE (B) or 20 and 40 µM agerarin (C) for 30 min before stimulation with (+) or without (−)
20 ng/mL IL-4. After 15 min, cells were harvested, and the phosphorylation of JAK1 at Y1034/1035,
JAK2 at Y1007/1008, and STAT3 at Y705 were measured by immunoblotting. Band intensities of
phosphorylated proteins were measured using ImageJ and normalized to the corresponding to-
tal proteins. GAPDH was used as an internal control. ns, not significant; * p < 0.05, ** p < 0.01,
*** p < 0.001 compared to control (n = 3) by an unpaired two-tailed t-test. AHE, ethanolic extract of
Ageratum houstonianum.

2.5. Agerarin Inhibits IL-4-Induced PER2 Expression in HaCaT Cells Synchronized
with Dexamethasone

Treatment with dexamethasone is known to exert a synchronizing effect on clocks in
cultured cells through rhythmic expression of several clock genes, such as PER2 in HaCaT
keratinocytes [30]. To further characterize the functional effect of agerarin, we synchronized
HaCaT cells with dexamethasone, as reported previously [33], and examined the effect of
agerarin on IL-4-induced PER2 expression. As observed in a previous study [30], PER2 ex-
pression peaked at 12 h and returned to baseline levels 24 h after synchronization (Figure 6).
As predicted, IL-4 stimulation substantially increased the peak, which was reduced by
agerarin treatment. Notably, PER2 expression increased again at 36 h, suggesting that it
oscillates after synchronization with dexamethasone.
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Figure 4. Effect of agerarin and AHE on the suppression of IL-4-induced PER2 expression. (A,C)
HaCaT cells were pretreated with 20 or 40 µg/mL AHE (A) and 20 or 40 µM agerarin (C) for 30 min
before stimulation in the presence (+) or absence (−) of 20 ng/mL IL-4. After 3 h, total RNA was
isolated, and the levels of PER2 mRNA were measured by RT-PCR. The mRNA level of GAPDH was
used as an internal control. (B,D) HaCaT cells were pretreated with AHE (B) and agerarin (D), as
described above. After 24 h, whole-cell lysates were prepared and immunoblotted using anti-PER2
antibodies. GAPDH was used as the loading control. Band intensities of PER2 protein were measured
using ImageJ and normalized to GAPDH. ns, not significant; *** p < 0.001 compared to IL-4-treated
group (n = 3) by Sidak’s multiple comparisons test.

2.6. Construction of Live-Cell Bioluminescence Reporter for Oscillation of PER2 Promoter Activity

To further evaluate whether agerarin affects the oscillation of PER2 expression, we
isolated the 5′-regulatory region of the human PER2 gene, spanning nucleotides −500 to
+50, which contains multiple cis-acting regulatory elements, including E-box, D-box, GC
box elements, circadian transcription enhancing site, transcription start site, and STAT3-
binding site (Supplementary Figure S1A). A bioluminescence reporter plasmid, PER2:luc2P
encoding the firefly luciferase 2P gene (luc2P) under the control of the human PER2 pro-
moter (−500/+50), was constructed and transfected into HaCaT cells to establish a stable
bioluminescent reporter cell line (HaCaT/PER2:luc2P). After synchronizing with 100 nM
dexamethasone for 2 h, as reported previously [33], the bioluminescence of PER2:luc2P
maintained a circadian oscillation for up to 90 h (Supplementary Figure S1B), suggesting
that PER2 expression displays a circadian rhythmic pattern in synchronized HaCaT cells.

Next, we evaluated the effect of AHE and agerarin on IL-4-induced PER2 oscilla-
tion. HaCaT/PER2:luc2P bioluminescence reporter cells were synchronized with 100 nM
dexamethasone for 2 h and treated with AHE or agerarin, after which the phase, period,
and amplitude parameters of real-time PER2:luc2P bioluminescence were analyzed. We
observed that IL-4 shortened the phase (Figure 7A), lengthened the period (Figure 7B), and
enhanced the peak amplitude (Figure 7C) of PER2:luc2P bioluminescence compared to the
control. Treatment with AHE or agerarin restored the IL-4-induced alteration of PER2:luc2P
oscillations to a pattern close to that of the control. These findings suggest that agerarin
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in AHE could restore the altered rhythmic expression of PER2 induced by IL-4, possibly
through the downregulation of PER2 expression.

Figure 5. Effect of agerarin on IL-4-induced localization of PER2. HaCaT cells cultured on coverslips
were treated with vehicle (PBS), 20 ng/mL IL-4, or 20 ng/mL IL-4 plus 40 µM agerarin for 24 h,
followed by fixing and permeabilization. Immunofluorescence staining was performed using anti-
PER2 and Alexa Fluor 555-conjugated secondary antibodies (red staining). The α/β-tubulin was
counterstained with anti-α/β-tubulin and Alexa Fluor 488-conjugated secondary antibodies (green
staining). Nuclear DNA was stained with 1 µg/mL Hoechst 33258 (blue staining). Fluorescent cells
were captured with an EVOSf1 fluorescence microscope. The last panel on the right is a zoomed-in
view of the dotted box. Scale bars, 50 µm.

Figure 6. Effect of agerarin on the suppression of IL-4-induced PER2 expression in HaCaT cells
synchronized with Dex. HaCaT cells were synchronized with 100 nM Dex for 2 h, followed by the
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addition of in the presence (+) or absence (−) of 20 ng/mL IL-4 or 20 ng/mL IL-4 plus 40 µM agerarin.
After 24 h, whole-cell lysates were prepared and immunoblotted using anti-PER2 antibodies. GAPDH
was used as the loading control. Band intensities of PER2 protein were measured using ImageJ and
normalized to GAPDH. Dex, dexamethasone.

Figure 7. Real-time bioluminescence of the PER2:luc2P reporter. HaCaT/PER2:luc2P cells seeded in
96-well plates were synchronized with 100 µM Dex for 2 h, after which the medium was replaced with
the recording phenol-free medium containing 1% fetal bovine serum and 1 mM luciferin. Real-time
bioluminescence of the PER2:luc2P reporter was measured and recorded every 20 min for 90 h
using Spark10M. (B–D) After synchronization with 100 nM Dex, HaCaT/PER2:luc2P reporter cells
cultured on 96-well plates were treated with 20 ng/mL IL-4 in the presence (+) or absence (−) of
20 µg/mL AHE or agerarin (20 and 40 µM). Real-time bioluminescence of the PER2:luc2P reporter
was measured using Spark10M. The phase (A), period (B), and amplitude (C) of the bioluminescence
of the PER2:luc2P reporter were analyzed using Biodare2. * p < 0.05; *** p < 0.001 (n = 12) by Sidak’s
multiple comparisons test. CT, synchronization only control; A.U., arbitrary unit.

3. Discussion

In this study, we demonstrated that IL-4 enhanced PER2 expression through activation
of the JAK/STAT3 signaling pathway and the amplitude of the circadian oscillation of
PER2 promoter activity in HaCaT keratinocytes. Agerarin is an effective natural JAK1/2
inhibitor [28], and we found that it alleviated IL-4-induced PER2 expression and restored
the oscillation of PER2 expression altered by IL-4 stimulation.

Inflammation is a complex biological response of body tissues to harmful stimuli, such
as pathogens and chemical irritants, to eliminate the initial cause of tissue damage and
repair damaged tissues. However, prolonged inflammation is an important pathogenic
feature and is closely associated with various diseases, such as AD and osteoarthritis.
Multiple immune cells, including dendritic cells, T lymphocytes, macrophages, and mast
cells, are involved in the inflammatory response. Activated CD4+ Th cells differentiate
into two major subtypes: Th1 cells, which lead to a cell-mediated response, and Th2 cells,
which lead to a humoral immune response [34]. Th2 cells produce effector cytokines,
such as IL-4, IL-5, IL-6, and IL-13. In particular, IL-4 plays an autoregulatory role in
promoting Th2 cytokine production and stimulates B cells to produce immunoglobulin E,
which, in turn, stimulates mast cells to release histamine and leukotriene to cause allergic
reactions [35]. In addition to its effect on immune cells, IL-4 also acts on keratinocytes to
induce thymic stromal lymphopoietin production, which is involved in the maturation
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of T cell populations and epidermal Langerhans cells [36]. Therefore, IL-4 signaling is
considered a potential therapeutic target for AD treatment [37].

Mammalian circadian rhythms are endogenous clocks that help organisms adapt
to daily changes in response to environmental stimuli. The SCN functions as a master
circadian oscillator that controls several physiological responses, such as the sleep cycle,
endocrine system, heart rate, metabolism, and immune function [38,39]. Several studies
have shown that circadian clock components are involved in skin biology, including hydra-
tion and skin aging. CLOCK regulates the expression of not only AQP3, which regulates
hydration by transporting water and glycerol in the skin [39] but also tissue inhibitor of the
metalloproteinase 3 gene in HaCaT keratinocytes [40]. Meanwhile, PERIOD is involved in
skin aging by mediating MMP-1 gene expression [41].

Persistent loss of sleep disrupts the circadian rhythm. It is well established that con-
stant disruption of the circadian rhythm increases the incidence rate of chronic diseases,
such as diabetes, obesity, AD, and cancer [12,42–44]. Immune function is also controlled by
circadian rhythm, including the number and function of circulating leukocytes and types
of cytokine production [45,46]. In the present study, we observed that IL-4 stimulation
stimulated the JAK-STAT3 pathway and caused a significant increase in the mRNA expres-
sion of PER2. In addition, inhibition of JAK kinase activity with the JAK2 inhibitor AG490
or a pan-JAK inhibitor pyridone suppressed IL-4-induced PER2 expression. In addition,
STAT3 knockdown abrogated IL-4-induced PER2 expression. Furthermore, IL-4 altered
oscillatory PER2 promoter activity in HaCaT keratinocytes. These data suggest that the
JAK-STAT3 signaling pathway links inflammatory cytokine signaling and the circadian
clock system in HaCaT keratinocytes. Thus, targeting the JAK/STAT pathway may be a
potential therapeutic approach for the treatment of inflammatory skin disorders associated
with disrupted circadian rhythms, such as AD.

Does the enhanced expression of PER2 contribute to IL-4-mediated inflammatory
responses? Per2 mutant mice exhibited a short period and arrhythmic oscillatory rhythms
as compared to wild-type mice [47,48], suggesting that PER2 is necessary for circadian
clock rhythm resetting [26] and regulation of the rhythmic period length [27]. Depletion
of Cry, which forms a complex with Per2, leads to the elevation of proinflammatory cy-
tokines through constitutive activation of the nuclear factor kappa B and protein kinase A
signaling pathways [22]. In addition, the absence of Per2 alleviated inflammatory responses
in an AD animal model [49]. Thus, it is possible that enhanced PER2 expression via the
IL-4-mediated JAK/STAT3 pathway might result in the upregulation of various proinflam-
matory cytokines, thereby contributing to the pathophysiology of skin inflammation, such
as AD. However, because STAT3 can also regulate the expression of multiple inflammatory
genes in keratinocytes, the precise role of PER2 in skin inflammatory responses remains to
be determined.

A. houstonianum contains various bioactive components, including flavonoids (age-
houstin A, agehoustin B, agehoustin C, agehoustin D, eupalestin, agecorynin C, exoticin,
purpurascenin), pyrrolizidine alkaloids (heliohoustine, lycopsamine and retrohoustine),
benzofuran, chromenes (precocene I and precocene II), diazoprogesterone, hexadecanoic
acid, and squalene [50–53]. Of these, precocene II, known as agerarin (spectra can be
seen at https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-11642-x/
MediaObjects/41598_2017_11642_ MOESM1_ESM.pdf) (accessed on 1 May 2022), is a natu-
ral selective inhibitor of JAK1 (IC50, 0.473 µM) with a weak inhibitory activity against JAK2
and 3 (IC50, 4.92 and 3.12 µM, respectively) but not TYK2 [49]. Here, we also observed
that the JAK2 inhibitor AG490 and pan-JAK inhibitor pyridone restored PER2 expression
enhanced by IL-4. Thus, we speculated that agerarin could prevent IL-4-induced PER2
expression. To test this possibility, we first confirmed the inhibitory effect of agerarin on
the IL-4-induced JAK-STAT3 pathway. Previously, we reported that AHE induced AQP3
expression at a concentration of 5–20 µg/mL in a dose-dependent manner [29], while
agerarin inhibited TNFα+IFNγ-induced phosphorylation of JAK1, JAK2, and STAT3 at
concentrations above 10 µM in a dose-dependent manner in HaCaT keratinocytes [28].

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-11642-x/MediaObjects/41598_2017_11642_
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-11642-x/MediaObjects/41598_2017_11642_
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Therefore, in the present study, we confirmed the inhibitory effects of AHE at 10 and
20 µg/mL concentrations and agerarin at 10 and 20 µM concentrations on the JAK-STAT3
pathway. Consistent with a previous study [28], AHE and agerarin dose-dependently
inhibited IL-4-induced phosphorylation of JAK1 and JAK2, as well as that of STAT3 at
Tyr-705, a downstream target of JAK1/2. Under these experimental conditions, we tested
whether agerarin prevented PER2 expression induced by IL-4 and found that it reduced
PER2 mRNA and protein levels. Furthermore, agerarin restored the oscillatory rhythmicity
of PER2 expression altered by IL-4. These data suggest that the JAK-STAT3 axis but not
TYK2 is critical for PER2 overexpression by IL-4 and that inhibition of the JAK-STAT3 path-
way may be an effective strategy for the restoration of disturbed circadian clock systems
induced by aberrantly expressed PER2. It has also been reported that agerarin downregu-
lated STAT3 expression in melanocytes and is known to inhibit phosphorylation of JAK1/2
and STAT3 by IL-4 plus IL-13 and TNFα plus IFNγ in HaCaT keratinocytes [28,54]. These
findings suggest that the natural JAK inhibitor agerarin may help in alleviating the altered
circadian rhythm of keratinocytes during skin inflammation. However, we cannot rule out
the possibility that agerarin exerts an off-target effect in addition to JAK kinases, leading to
the downregulation of PER2 expression independent of the JAK-STAT3 pathway. In this
regard, further detailed studies are necessary to determine whether agerarin affects the
expression of other circadian clock genes and whether it can restore the disturbed circadian
rhythms of keratinocytes and immune cells during inflammation.

In summary, the current study showed that: (i) IL-4 upregulates PER2 expression at
the transcriptional level; (ii) the JAK/STAT3 pathway is involved in IL-4-induced PER2
upregulation; and (iii) the natural JAK inhibitor agerarin restores PER2 expression and its
oscillatory rhythmicity altered by IL-4. Thus, agerarin targeting the JAK/STAT pathway
may be useful as a potential cosmeceutical agent against inflammatory skin diseases
associated with disrupted circadian rhythms, such as AD.

4. Materials and Methods
4.1. Materials

The ethanolic extract of Ageratum houstonianum (AHE) was prepared as described
previously [29]. Human IL-4 was obtained from Peprotech (Rocky Hill, NJ, USA). Primary
antibodies against phospho-JAK1 (Y1034/1035), total JAK1, phospho-JAK2 (Y1007/1008),
total JAK2, phospho-STAT3 (Y705), and total STAT3 were purchased from Cell Signaling
Technology (Beverly, MA, USA). Primary antibodies specific to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and PER2 were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Agerarin (CAS number: 644-06-4) and other chemical reagents were
obtained from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cells and Cell Culture

Human keratinocyte HaCaT cells were obtained from the Cell Line Service (Eppelheim,
Germany). The cells were cultured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum (HyClone, Logan, UT, USA) and penicillin-streptomycin
(Sigma-Aldrich).

4.3. RT-PCR

Total RNA was isolated from HaCaT cells using a TRIzol RNA extraction kit (Invit-
rogen, Carlsbad, CA, USA) and was reverse transcribed to cDNA using an iScript cDNA
synthesis kit (Bio-Rad, Hercules, CA, USA). RT-PCR was performed using reverse tran-
scriptase (Promega, Madison, WI, USA) and gene-specific PCR primers as follows:

• PER2 forward, 5′-CCA CGA GAA TGA AAT CCG CT-3′;
• PER2 reverse, 5′-CCT CCC AAT GAT GAA GGA GA-3;
• GAPDH forward, 5′-ACC CAC TCC TCC ACC TTT G-3′;
• GAPDH reverse, 5′-CTC TTG TGC TCT TGC TGG G-3′.
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The thermal cycling conditions were as follows: denaturation at 94 ◦C for 5 min, fol-
lowed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing at 54.5 ◦C for 30 s, and elon-
gation at 72 ◦C for 1 min. The amplified PCR products were separated by electrophoresis on
a 1% agarose gel containing ethidium bromide and visualized under UV transillumination.

4.4. Quantitative Real-Time PCR (qPCR)

Total RNA was isolated as described previously. qPCR was performed on an iCycler
iQ system with an iQ SYBR Green Supermix kit (Bio-Rad). Validated commercial qPCR
primers and SYBR Green-based fluorescent probes specific for PER2 (id: qHsaCEP0051693)
and GAPDH mRNA (id: qHsaCEP0041396) were obtained from Bio-Rad. The thermal
cycling conditions for PCR were as follows: denaturation at 95 ◦C for 2 min, followed by
40 cycles of denaturation at 95 ◦C for 10 s and annealing at 60 ◦C for 45 s. The relative
expression of mRNA was normalized to that of GAPDH using the software provided by
the manufacturer.

4.5. Immunoblot Analysis

HaCaT cells were lysed in ice-cold cell lysis buffer supplemented with 20 mM hy-
droxyethyl piperazineethanesulfonic acid (pH 7.2), 1% Triton X-100, 150 mM NaCl, 10%
glycerol, 1 mM EDTA, 1 mM Na3VO4, 1 mM NaF, 10 µg/mL leupeptin, and 1 mM phenyl-
methylsulfonyl fluoride. The proteins were separated by electrophoresis on an 8% sodium
dodecyl sulfate-polyacrylamide gel and transferred to nitrocellulose membranes. The
membranes were blocked with 5% skimmed milk for 30 min and then incubated with the
appropriate primary antibodies for 4 h at 25 ◦C and secondary antibodies overnight at 4 ◦C.
The immunoreactive protein bands were visualized on a CP-BU X-ray film (Agfa, European
communities) using an enhanced chemiluminescence detection system (GE Healthcare,
Piscataway, NJ, USA). In some experiments, the relative intensities of the immunoreactive
bands were measured using ImageJ version 1.52a (National Institutes of Health, Bethesda,
MD, USA).

4.6. Immunofluorescence Microscopic Analysis

Immunofluorescent staining of HaCaT cells was performed as previously described [28].
Briefly, HaCaT cells seeded on coverslips were treated with vehicle (phosphate-buffered
saline; PBS), 20 ng/mL IL-4, or 20 ng/mL IL-4 in the presence of 40 µM agerarin. After 24 h,
the cells were fixed with 3.7% paraformaldehyde for 10 min and permeabilized with 0.3%
Triton X-100 for 15 min. After blocking with 5% bovine serum albumin for 1 h, the cells
were incubated with primary antibodies specific to αβ-tubulin (1:100) and PER2 (1:100) for
2 h, followed by the addition of Alexa Fluor 488-conjugated (1:300; green fluorescence for
αβ-tubulin) or Alexa Fluor 555-conjugated (1:300; red fluorescence for PER2) secondary
antibodies (Invitrogen) for 40 min at 25 ◦C. Nuclear DNA was stained with 1 µg/mL
Hoechst 33258 (blue fluorescence) for 10 min. Fluorescent cells were captured using an
EVOS FL fluorescence microscope (Advanced Microscopy Group, Bothell, WA, USA).

4.7. Construction of Human PER2 Promoter-Reporter and Generation of Real-Time
Bioluminescence Reporter Cells

A PER2 promoter fragment spanning nucleotides −500 to +50 upstream of the tran-
scription start site was synthesized from human genomic DNA (Promega) via PCR with
the primers 5′-ggG cgt agt gaa tgg aag gcg-3′ and 5′-cag cag ccc aag gaa ctt-3′. The PCR
products were ligated into a T&A vector (RBC Bioscience, Taipei County, Taiwan), fol-
lowed by enzyme digestion with KpnI and BglII and ligation into the corresponding sites
of the pGL4.2(luc2P/minP/Hygro) vector (Promega), yielding the pPER2:luc2P biolumi-
nescence reporter. HaCaT cells were transfected with pPER2:luc2P using the Nucleofector
electroporation kit (Amaxa, Inc., Köln, Germany), followed by selection with 10 µg/mL
hygromycin (Sigma-Aldrich). After four weeks, a stable bioluminescence reporter cell line
(HaCaT/PER2:luc2P) was obtained.
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4.8. Real-Time Bioluminescence Analysis

For real-time bioluminescence monitoring, HaCaT/PER2:luc2P reporter cells were
seeded to white 96-well plates (Thermo Fisher Life Sciences, Middlesex, MA, USA) at
a density of 2.0 × 104 cells/well. After 2 d, the cells were synchronized with 100 µM
dexamethasone for 2 h, after which the medium was replaced with a phenol red-free record-
ing medium containing 1% fetal bovine serum, 1% penicillin/streptomycin, 0.2 mg/mL
hygromycin, and 1 mM D-luciferin (Promega). The plates were sealed, and biolumines-
cence was continuously recorded at intervals of 20 min for 5 d using Spark10M (Tecan,
Männedorf, Switzerland). Circadian parameters (period, phases, and amplitude) were
analyzed using Biodare2 (www.biodare2.ed.ac.uk) (accessed on 3 June 2021).

4.9. Statistical Analysis

Data are expressed as the mean ± standard deviation. Statistical analysis was per-
formed using a one-way analysis of variance, followed by Dunnett’s or Sidak’s multiple
comparisons test using GraphPad Prism (version 9.2.0; GraphPad Software, Inc., La Jolla,
CA, USA). Statistical significance was set at p < 0.05.

5. Conclusions

This study demonstrates that the Th2 cytokine IL-4 upregulates PER2 expression
by activating the JAK/STAT3 signaling pathway, and a natural JAK inhibitor, agerarin,
reduces PER2 expression induced by IL-4. Furthermore, agerarin restores the circadian
rhythmicity of PER2 expression altered by IL-4 in HaCaT keratinocytes. These findings
suggest that agerarin can be used as a beneficial compound for cosmeceutical applications
against inflammatory skin conditions associated with disrupted circadian rhythms, such
as AD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134205/s1. Supporting Information S1–S8, Un-
cropped gels and blots; Supplementary Figure S1, Generation of live-cell bioluminescence reporter
for monitoring of PER2 expression in live cells.
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