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Abstract: Mitomycin C (MMC) is an alkylating chemotherapy drug that could induce DNA damage
and genetic alteration. It has been used as a model mutagen for in vivo and in vitro studies. The
current study aimed to evaluate the protective role of Zinc oxide alginate–nanocomposites (ZnO-
Alg/NCMs) against MMC–induced genotoxicity in mice. Animals were treated as follows: the control
group, the groups treated with Algin (400 mg/kg b.w), the groups treated with ZnO-Alg/NCMs
(400 mg/kg b.w), the group treated with MMC, and the groups treated with MMC plus Algin or ZnO-
Alg/NCMs. Pre-treatment with Algin and ZnO-Alg/NCMs was repeated for one or seven days. Zinc
oxide alginate-nanocomposites (ZnO-Alg/NCMs) were synthesized with the aim of incorporating
the intrinsic properties of their constituents as an antigenotoxic substance. In this study, alginate was
extracted from the brown marine alga Fucus vesiculosus, Zinc oxide nanoparticles were synthesized by
using water extract of the same alga, and loaded in alginate to synthesize ZnO-Alg/NCMs. ZnO-NPs
and ZnO-Alg/NCMs were characterized by TEM, SEM, EDX, and Zeta potential. The obtained
results confirmed that by TEM and SEM, ZnO-NPs are rod shaped which modified, when loaded
in alginate matrix, into spherical shape. The physical stability of ZnO-Alg/NCMs was reported to
be higher than ZnO-NPs due to the presence of more negative charges on ZnO-Alg/NCMs. The
EDX analysis indicated that the amount of zinc was higher in ZnO-NPs than ZnO-Alg/NCMs. The
in vivo results showed that treatment with MMC induced genotoxic disturbances. The combined
treatment with Algin and ZnO-Alg/NCMs succeeded in inducing significant protection against
MMC. It could be concluded that ZnO-Algin/NCMs is a promising candidate to protect against
MMC–induced genotoxicity.

Keywords: ZnO-Alg/NCMs; alginate; Fucus vesiculosus alga; genotoxicity; MMC

1. Introduction

Exposure to various endogenous and environmental agents such as metals, pesti-
cides, and alkylating agents, along with therapeutic compounds including antitumor and
antibiotics [1], could induce DNA damage, genetic alteration, endothelial dysfunction,
and tissue injury. Mitomycin (MMC) is an alkylating DNA reactive antibiotic agent with
anti-proliferative properties isolated from the Gram-positive actinobacteria Streptomyces
caespitosus [2]. It has been used in the treatment of gastric, bladder, pancreatic, and colon
cancer [3]. MMC was observed to induce genotoxic stress in human primary endothelial
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cells [4]. Due to its stable cytogenetic activity, MMC is used as a model mutagen for in vivo
and in vitro studies.

Functional foods greatly promise to improve health and prevent chronic diseases [5].
Alginate is an anion polysaccharide with respect to the linear (unbranched) non-repeating
copolymers, containing of huge amount of the two glycan monomers, β–D–mannuronic
acid, and its C5–epimer α–L–guluronic acid [6]. Alginates are widely used technologi-
cally due to their physical characteristics, for example, their stabilizing, thickening, and
emulsifying assets, and also due to individual properties, such as gel strength, porosity, or
biocompatibility. Their use is increasing in applications like biomaterials for tissue engineer-
ing and bio-printing [7]. Alginates have been revealed to be an extremely biodegradable,
more available, and lower price alternative to natural biopolymers [8]. Alginates show
similarities to pectin in continental plants [9]. Alginates are present in the cell walls of
Phaeophyceae, in a crystalline array analogous to the cellulose microfibrils, and also orig-
inate in the intercellular matrix in the Phaeophyceae [10]. Alginate oligosaccharide was
observed as a nontoxic and biodegradable polymer, and has a bright possibility for biomed-
ical applications [11]. The antioxidant property of alginate oligosaccharide has received
significant attention [12]. The nature of oligosaccharides offers further beneficial charac-
teristics such as anti–inflammatory activity [13] and bacteriostatic function [14]. The most
unique feature is its antineoplastic activity [15]. Alginate–derived oligosaccharides were
observed to display strong and dose-dependent antitumor effects versus Sarcoma 180 [16].
Alginate oligosaccharides suppressed the tumorigenicity of prostate cancer cells [17]. Seven
common genera of marine algae belonging to Phaeophyceae are present in the Red Sea
shore of Saudi Arabia. These algae are Hormophysa, Macrocystis, Fucus, Sargassum, Macro-
cystis, Padina, and Turbinaria [18]. Nanoparticles are growing in relevance due to the
numerous applications in many scientific areas. Several nano-metals synthesized by vari-
ous methods can be used for a diversity of technological applications [19]. Nanoparticles
can be synthesis by applying some plant and algae extracts, as reducing and capping
agents, due to the substantial contents of these biomaterials contents [20,21]. Many recent
studies investigated that various plant extracts can be used to manufacture metal oxide
nanoparticles, including, remarkably, zinc oxide (ZnO-NPs). ZnO-nanoparticles are safe
and less toxic than other metal oxides [22]. Studies proved that ZnO-NPs have antibacterial,
antiviral, and antifungal activity [23]. ZnO-NPs have antibacterial activity, are nontoxic,
and economic, and do not show any injurious effects to normal body cells [24]. Nanocom-
posites are a combination of biopolymers, such as alginate, and inorganic materials, like
zinc oxide (ZnO), in nano dimension size, that give mechanical strength, extreme thermal
resistance, and low permeability [25,26]. Significant composites of alginate are ionically
bonded with different ions such as Ca+2, Ag+1 [27], and Zn+2 [28]. Sodium alginate with
ZnO nanocomposite films have a potential application in wound healing [24]. Therefore,
this study aimed to synthesize these by using biological algal extract and characterize the
generated ZnO/Alg-NCMs by physical means, which subsequently will be investigated
for its ability to reduce MMC induced genotoxicity.

2. Material and Methods
2.1. Alga

Fucus vesiculosus and Padina pavonica were gathered from the beach at Jeddah, Saudi
Arabia and were recognized according to Taylor [29]. The algae were gathered in April 2020.
Marine algae were cleaned with running tap water followed by distilled water to completely
eliminate any debris. The cleaned algal biomass was then dried in oven at 60 ◦C until a
constant weight was achieved. The dried and grounded algal powders were sieved using
the standard laboratory test sieve; the size of algae particles were 1–1.2 mm.

2.2. Alginate Extraction

The Na-alginate extraction method was performed according to the method developed
by Hambali et al. [30]. In total, 100 gm of F. vesiculosus and P. pavonica were soaked with 1%
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HCl for 1 h. Then, it was rinsed with 3% Na2CO3 solution in relation to 1:30 (w/v) at 65 ◦C
for 150 min, and then filtration was performed. Then, 10% HCl solution was amended in
relation of 1:1 and allowed to form into white alginic acid to a pH of 2–3 within 30 min.
Extreme pH was neutralized by the addition of dilute Na2CO3, with blending to ensure
homogenization of the solution, until a pH of 7 was attained. After a pH of 7 was attained,
Isopropyl alcohol (IPA) was added to obtain the Na alginate, and then dried at 60 ◦C in an
electrical oven.

2.3. Alginate Yield

The Na-alginate yields that were obtained from the F. vesiculosus and P. pavonica extrac-
tion process were calculated, based on the weight of Na-alginate after drying, compared to
the algal dry weight. The calculation of Na-alginate yield percentage was achieved using
the following formula:

Yields % =
A
D
∗ 100 (1)

D is the initial dry weight of algae used, A is the weight of alginate.

2.4. Alginates Characterisation

Fourier transforms infrared Spectroscopy (FTIR) is an important device that is used to
identify the functional groups that relate to alginate. The previously extracted dry alginate
was analyzed using FTIR spectroscopy and compared with standard alginic acid obtained
from Sigma (Saudi Investment Group and Marketing) Ltd. Dry alginate samples were
mixed with pellets of potassium bromide and the FTIR spectra were then investigated
within the range of 400–4000 cm−1 using a “Termo Fisher Nicolete IS10, (Waltham, MA,
USA) Spectrophotometer”. 1H NMR spectra were acquired in 0.1% w/v solutions of sodium
alginate in DEMSO. Negative and positive-ion electrospray mass spectrometry (ESI-MS)
was carried out on a Micromass Q-TOf and Q-TOf Ultima instruments (Waters, Manchester,
UK). Nitrogen was used as the desolvation and nebulizer gas at a flow rate of 250 and 15
L/h, respectively. Source temperature was 80 ◦C and the desolvation temperature was 150
◦C.

2.5. Green Synthesis of Zinc Oxide Nanoparticles

Zinc oxide nanoparticles were synthesized by using F. vesiculosus. Zinc acetate de-
hydrate (0.02 M) was supplemented to 40 mL of D water under constant stirring. Ten
milliliters of algal aqueous extract (1 gm of alga added to 100 mL D water and boiled
for 1 h) was added dropwise to this solution with stirring. After 10 min, NaOH (2.0 M)
was added until reaching pH 12 and a pale white aqueous solution was obtained. The
precipitate was filtered and washed twice with DD water followed by ethanol to obtain
a solution free of contaminations. The ZnO-NPs were yielded after drying at 60 ◦C in a
vacuum oven overnight [31,32].

2.6. Synthesis of ZnO/Alginates Nanocomposites (ZnO/Alg-NCMs)

A total of 2 gm of Sodium alginate were dissolved in 100 mL D water, at 40 ◦C, then
0.075 g ZnO-NPs was added, and the mixture was stirred for 2 h. After 2 h the solution
was filtrated and dried at 60 ◦C for 2 days.

2.7. Characterizations of Zinc Oxide Nanoparticles and ZnO/Alg-NCMs

The characterization of ZnO/Alg-NCMs was performed by Fourier transform infrared
spectroscopy (FTIR) using a (JASCO Europe S.r.l., Cremella, Italy), FT-IR 5300 spectropho-
tometer. Morphology and particle size of the nanoparticles were characterized via scanning
electron microscopy JEOL JSM-6510/v, Tokyo, Japan (SEM), and transmission electron
microscopy (JEOL JSM-6510/v, Tokyo, Japan), (TEM). The chemical contents of the nanopar-
ticles were scanned by energy dispersive X-ray spectroscopy (EDS) using a Zeta potential
analyser (Malvern Zeta size Nano-Zs90) Malvern United States.
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2.8. Chromosome Abnormalities in Bone Marrow Cells

An investigation of chromosomal aberration was conducted in the bone marrow of
mice injected intraperitoneally with colchicine, two hours before euthanasia [33]. Chromo-
some extractions from bone marrow cells were taken according to the method of Yosida
and Amano [34]. One hundred well spread metaphases were analyzed per mouse and
the metaphases with gaps, chromosome or chromatid breakage, and fragments were doc-
umented. Metaphases with gaps, chromosome or chromatid breakage, and fragments
were recorded.

2.9. Chromosome Abnormalities in Spermatocytes

The diakinase-metaphase I cells collected from the spermatocytes were made following
the air-drying technique of Evans et al. [35]. Slides were stained with 7% Giemsa stain in
phosphate buffer (pH 6.8). A total of 500 well spread metaphases (5 animals/group) were
scored for chromosome aberrations in germ cells. The types of aberrations in spermatocytes
including XY univalent, autosomal univalent, and fragments were scored.

2.10. Sperm Morphology Assay

Sperm morphology assays were performed according to Rasgele [36]. Both of the
cauda epididymides from each animal were dissected, excised, and minced in isotonic
sodium citrate solution (2.2%). Smears were prepared and sperms were stained with Eosin
Y [36]. At least 1000 sperms per animal (5 animals/group) were assessed for morphological
abnormalities of the sperm shape. Sperm head and tail abnormalities were determined as
having either normal or abnormal morphology.

2.11. Statistical Analysis

The genotoxicity analysis, the significance of each treatment, was assessed by t-test.
All statements of significance were established on a probability of p ≤ 0.05.

3. Results and Discussion
3.1. Alginate Yields

Results in Figure 1 summarize that F. vesiculosus denoted larger amounts of alginate
yields than P. pavonica. Both algae were collected from the beach at Jeddah, in the Red Sea in
the same season. Alginate yields and quantity depended on various influences, for instance
season of their collecting, type of algal age and brown algal species [37–39], age, harvesting
methods [40], and extraction methods [41]. The alginates extracted from F. vesiculosus are
more susceptible to high temperatures than alginates from any other species [10].
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3.2. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectroscopy of the alginic acid (slandered) and FTIR analysis of alginate ex-
tracted from brown alga F. vesiculosus were investigated, Figure 2 and Table 1. There are
17 bands regions 3448, 2923, 2855, 1620, 1418, 1308, 1620, 1418, 1308, 1126, 1095, 1031,
947, 892, 819, 781, 725, 675, 622, and 433 cm−1. However, there are 15 bands in extracted
alginate from F. vesiculosus, the bands are 3449, 2992, 2854, 1653, 1625, 1519, 1465, 1402,
1273, 1115, 1048, 870, 672, 588, and 528 cm−1. The broad peak present at 3448 in alginic acid
is shifted to 3449 cm−1 in alginate extracted from F. vesiculosus, and very narrow peaks at
2923 and 2855 present in alginic acid are shifted to 2922 and 2854 cm−1, respectively, in
alginate extracted from F. vesiculosus. The peak present at 1620 cm−1 in alginic acid shifted
to 1625 cm−1 in alginate extracted from F. vesiculosus, however two others new peaks, 1653
and 1519 cm−1, are present in the same regions in alginate extracted from F. vesiculosus.
The wave number 3448 cm−1 indicates OH bonds in alginic acid [42], the peak present
in wave number 2923 cm−1 denotes C–H stretching bands [43]. The wave number (2855)
reveals C-H functional group [44]. The wave number 1620 cm−1 relates to the peak of
carbonyl stretching [45]. The wave number 1418 cm−1 indicates deformation of C–H [42].
The band found at wave number 1126 cm−1 relates to n(C–O) [46]. The wave number
present at 1095 cm−1 indicates PO2 symmetric (Phosphate II) [47]. The wave number 1031
cm−1 indicates C-O stretching [48]. The bands present in wave number 892 cm−1 relates
to C–C and C–O [42]. The bands found at wave number 781 cm−1 relate to Out-of-plane
bending vibrations [49], the wave number 725 cm−1 relates to Out-of-plane bending vi-
brations [49], and the peak present at wave number 675 cm−1 relates to CH out-of-plane
bending vibrations [50].
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3.3. Electrospray Mass Spectrometer

Alginate standard was used in ESI-MS analysis which indicated the great similarity to
sample that isolated from brown alga. Negative and positive-ion ESI-MS/MS was initially
evaluated with various pseudo-molecular ions, including [M − H], [M + H], [M + Na], and
[M − Cl], as precursors for optimal sequence information (Figure 3).
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Table 1. Alginic acids and alginate analysis by FT-IR.

Alginic Acids Wavenumber [cm−1] Alginates Wavenumber [cm−1] Assignment Ref. No.

3448 3449 OH bonds [42]

2923 2922
Asymmetric stretching

vibration of CH2 of acyl
chains (lipids)

[32]

2855 2854 CH2 symmetric stretching [5]

1653
C D O, C D N, NH of

adenine, thymine, guanine,
cytosine

[51]

1620 1625 Amide II [28]
1519 Amide II

1465 CH2 scissoring mode of the
acyl chain of lipid [52]

1418 1402 d C–H, d C–O-H [53]
1308 1273 CHaα– rocking [54]

1126 1115 Symmetric stretching
P–O–C [47]

1048 1048 C=O groups [55]
892–819 870 Vibrations of aromatic ring
781–725
675–622 672 800–600 C–Cl [31,32]

- 588 750–500 C–I [31,32]
433 528 750–500 C–I [30,31]Polymers 2021, 13, x 7 of 21 
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3.4. Proton Nuclear Magnetic Resonance (H1 NMR) Analysis

H1 NMR spectroscopy is an important device for determining the structure of polysac-
charides. Structural features of alginates are represented by H1 NMR Figure 4. Results
denote the relation of β-anomeric protons in the alginate sample in addition to the entrance
of protons signals within 4.5 to 5.7 ppm. Signals recognized to the anomeric hydrogen of gu-
luronic acid (G) at 5.66–5.70 pm and the H-5 of mannuronic acid at 4.56–5.03. These results
are agreement with [56]. The 1H NMR profile exposed the incidence of guluronic acid H-5
(GG-5G) that was determined at 4.282 ppm (signal III), as reported by Usoltseva et al. [57].
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3.5. SEM and TEM Image

The shape and distribution of biosynthesis ZnO-NPs and ZnO/Alg-NCMs that were
biosynthesized by brown alga F. vesiculosus, and alginates extracted from the same alga
investigated by Scanning Electron Microscope (SEM). The rod shape was observed with
ZnO-NPs and ZnO/Alg-NCMs Figure 5. The surface of ZnO/Alg-NCMs is observed on
fibrous nanocomposite surfaces from sodium alginate and ZnO-NPs indicating that ZnO
nano has been effectively modified on the surface of sodium alginate [58]. The results
proved by the TEM image in Figure 5 demonstrated that ZnO-NPs are rod shaped, one
diameter size ranges from 20 to 38 nm, meanwhile ZnO/Alg-NCMs are a spherical shape
with size ranges from 7.75 to 17.75 and a high distribution. The results shown in Figure 5
demonstrate that ZnO-NPs was modified when embedded with alginate due to ZnO-NPs
being rod shaped and ZnO/Alg-NCMs being a spherical shape. Trandafilović et al. [59]
demonstrated micrographs of ZnO-dispersed NPS showing a huge number of spherical
particles well spread in the alginate matrix. Nano-ZnO in the sodium alginate is well
distributed [60]. Hamouda et al. [31,32] observed the green-synthesized ZnO-NPs by
green alga Ulva fasciata had a rod shape.

3.6. Zeta Potential

The constancy of the attained nanomaterials was investigated by the zeta potential
measurement [61]. Figure 6 reported the Zeta potential of the apparent surface charge of
zinc oxide nanoparticles, and ZnO/Alg-NCMs bio-fabricated by brown alga F. vesiculosus.
The results show the Zeta potential value was −1.91 and −3.78 of biosynthesis zinc oxide
nanoparticles and ZnO/Alg-NCMs, respectively. The negative charge indicated that the
highest physical stability of ZnO/Alg-NCMs was more than ZnO-NPs bio–synthesised
by F. vesiculosus. Haider and Mehdi [62] reported the value of the negative charge of
the zeta potential shows the efficacy of the capping compounds in stabilizing AgNPs by
denoting more negative charges that reserve all the particles away from each other. The
negative values explain the repulsion between the particles and, thereby, realization of
more stability of the AgNPs structure eluding agglomeration in aqueous solutions [63].
The zeta potential value of nanocomposites is greater than the zeta potential of ZnO NPs
synthesized intracellular with Lactobacillus plantarum [61].
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3.7. Energy Dispersive X-ray Measurements

The results in Figure 7 represent peaks of metals content of the zinc oxide nanoparticles
and ZnO/Alg-NCMs bio-fabricated by the brown alga F. vesiculosus that were assessed
by Energy dispersive X ray spectrophotometry. The five metals are C, O, Ca, Cu, and Zn
with weight percentage 31.12, 28.34, 0.33, 2.22, and 37.98, respectively. Meanwhile seven
metals are presented in case of ZnO/Alg-NCMs bio-fabricated by brown alga F. vesiculosus:
C, O, Na, Ca, Cu, Zn, and Sb with weight percentage 28.78, 41.61, 4.44, 13.46, 2.78, 3.28,
and 5.65, respectively. The results suggested that some metals, such as Ca and Na, present
in alginates, were not present in ZnO-NPS, and also the weight percentage of carbon and
oxygen are higher in ZnO/Alg-NCMs than those present in ZnO-NPS, due to the fact that
carbon and oxygen are the main contents of alginate polymers. The existence of a sodium
(Na) peak proves the presence of sodium alginate [64].
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3.8. Chromosomal Aberrations in Bone Marrow Cells

Table 2 shows the number and percentage of the chromosomal aberrations induced
in control and treated animals. The mean percentage of metaphases with chromosomal
aberrations reached 24.6% (p < 0.01) 24 h after intraperitoneal injection with Mitomycin C.
The percentages of aberrant cells in animals treated with alginate (Algin) and ZnO/Alg-
NCMs were statistically not significant compared to the control group. Treatment with
alginate and ZnO/Alg-NCMs for 7 days caused a highly significant (p < 0.01) reduction
in the percentage of chromosomal abnormalities induced by MMC. The percentage of
reduction reached 33.3 and 56.9% after treatment with alginate and ZnO/Alg-NCMs,
respectively, Table 2. Additionally, Table 2 illustrates the protective effect of alginate and
ZnO/Alg-NCMs in reducing the different types of aberrations, Figure 8 demonstrates
different types of chromosomal aberrations observed in bone marrow cells.
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3.9. Chromosome Abnormalities in Spermatocytes

A highly significant (p < 0.01) elevation in spermatocytes’ chromosomal aberration
was observed after MMC treatment which reached 17.6 ± 0.44%. Treatment with Alginate
and ZnO/Alg-NCMs for 7 days ameliorated these genotoxicities and reduced the aberra-
tions statistically in a highly significant (p < 0.001) manner (Table 3). XY-univalents and
autosomal univalents were the main aberrations observed in diakinase metaphase I cells
Figure 9.

3.10. Sperm Shape Abnormalities

As shown in Table 4, MMC induced a statistically highly significant (p < 0.01) percent-
age of sperm abnormalities in male mice which reached 14.2%. The dominant abnormalities
found were amorphous, triangular, and without hook heads or coiled tail. Simultaneous
treatment of mice with Alginate and ZnO/Alg-NCMs reduced the percentage of sperm
abnormalities. It reached 8.64 and 7.16% (p < 0.01), respectively. The percentage of reduc-
tion reached 39.15 and 49.57% after treatment of mice with Alginate and ZnO/Alg-NCMs,
respectively, Figure 10.
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Table 2. Number and mean percentage of the different types of chromosomal aberrations in mouse bone marrow cells after treatment with different doses of alginate (Algin) and
alginate-nanocomposite (ZnO/Alg-NCMs) alone or in combination with MMC.

Treatment and Doses
(mg/kg b.wt.)

Treatment
Day(s)

No. of Metaphases with Chromosomal Aberrations

Inhibition %
Gap Frag. and/or Break Gap+(Frag. or Break) Deletion Rt. Excluding Gaps

Mean ± S.E. Including Gaps

MMC

1

24 65 26 4 4 19.8 ± 0.26 a 24.6 ± 0.4 a

Control 10 15 - - 3.0 ± 0.2 5.0 ± 0.27
Algin 400 7 14 2 - - 3.2 ± 0.2 4.6 ± 0.21

ZnO-ALg/NCMs 400 10 13 1 - - 2.8 ± 0.21 4.8 ± 0.23
AL 400 + MMC 18 56 24 4 2 17.2 ± 0.7 a 20.8 ±0.27 a 15.44

ZnO-Alg/NCMs + MMC 14 52 26 1 - 15.8 ± 0.45 a 18.6 ±0.3 a 24.39

MMC 1 24 65 26 4 4 19.8 ± 0.26 a 24.6 ± 0.4 a

Control

7

12 15 1 - - 3.2 ± 0.37 5.6 ±0.3
Algin 400 11 13 - - - 2.6 ± 0.3 4.8 ± 0.23

ZnO-Alg/NCMs 400 9 14 1 - - 3.0 ± 0.3 4.8 ± 0.3
AL 400 + MMC 21 48 13 - - 12.2 ± 0.3 ab 16.4 ± 0.3 ab 33.33

ZnO-Alg/NCMs + MMC 15 24 14 - - 7.6 ± 0.2 ab 10.6 ± 0.34 ab 56.9

The total number of scored metaphases is 500 (5 animals/group); Frag. = fragment, Rt. = Robertsonian translocation. a: significant at 0.01 level (t-test) compared to control (non-treated). b: significant at 0.01 level
(t-test) compared to treatment.
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Table 3. Number and mean percentage of metaphases with chromosomal aberrations in mouse spermatocytes after
treatment with Alginate and ZnO/Alg-NCMs alone or in combination at different doses of Alginate with MMC.

Treatment and Doses
(mg/kg b.wt.)

Treatment
Day(s)

No. of Different Types of
Chromosomal Aberrations Total Aberrations

Inhibition %
XY

Univalent
Autosomal
Univalent

XY+
Autosomal
Univalent

No. Mean % ± S.E.

MMC

1

46 27 15 88 17.6 ± 0.44 a

Control 13 4 - 17 3.4 ± 0.2
AL 400 14 4 - 18 3.6 ± 0.24

ZnO-Alg/NCMs 400 15 3 1 19 3.8 ± 0.2
Alginate 400 + MMC 42 27 10 79 15.8 ± 0.4 a 10.2

ZnO-Alg/NCMs + MMC 43 25 9 77 15.4 ± 0.36 a 12.5

MMC 1 46 27 15 88 17.6 ± 0.44 a

Control

7

13 6 - 19 3.8 ± 0.24
Alginate 400 12 4 - 16 3.2 ± 0.2

ZnO-Alg/NCMs 400 13 5 - 18 3.6 ± 0.22
Alginate 400 + MMC 28 10 7 45 9.0 ± 0.5 ab 48.8

ZnO-Alg/NCMs + MMC 22 9 5 36 7.2 ± 0.33 ab 59.09

The total number of scored metaphases is 500 (5 animals/group); a: significant at 0.01 level (t-test) compared to control (non-treated);
b: significant at 0.01 level (t-test) compared to treatment.
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Chromosome abnormalities in bone marrow cells were employed as a cytogenetic
end point in genetic risk assessment. One of the most significant bioassays for assessing
the genotoxicity of various substances is in vivo chromosomal abnormalities [65,66]. In
the present study, MMC induced a high and statistically significant percentage of chro-
mosome aberrations in mouse bone marrow cells. These finding are in agreement with
those observed by Khalil et al. [67] who documented that MMC induced chromosomal
aberrations in Swiss albino mice. MMC has been shown to cause mitotic delay [68] which
could affect the yield of chemically induced abnormalities [69]. MMC is an alkylating agent
that induces DNA damage leading to an arrest of replication and transcription as well as
apoptosis [70]. The activated metabolite of MMC mitosene reacts via N-alkylation with
7-N-guanine nucleotide residues in DNA at the location of 5′–CpG–3′ sequence that causes
DNA crosslinking and, thus, inhibits DNA synthesis [71].
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Table 4. Number and percentage of different types of sperm shape abnormalities in male mice after treatment with different doses of Alginate (Algin) and alginate-nanocomposite
(ZnO/Alg-NCMs) alone or in combination with MMC.

Treatment and Doses
(mg/kg b.wt.)

Examined
Sperm No.

No. of Sperms with

Abnormal
Sperm No.

Abnormal
Sperms

Mean % ± S.E.
Inhibition %Head Abnormalities Tail

Abnormalities

Amorphous Triangle Without Hook Small Big Coiled

MMC 5000 171 163 135 6 5 230 710 14.2 ± 0.21 a

Control 5000 34 27 19 - - 15 95 1.9 ± 0.25
Alginate 400 5000 37 23 14 - - 10 84 1.68 ± 0.25

ZnO-Alg/NCMs 400 5000 33 22 19 - - 17 91 1.82 ± 0.33
AL 400 + MMC 5000 95 112 72 6 2 145 432 8.64 ± 0.43 ab 39.15

ZnO-Alg/NCMs 400 +
MMC 5000 88 109 68 5 1 87 358 7.16 ± 0.7 ab 49.57

a: significant at 0.01 level (t-test) compared to control (non-treated). b: significant at 0.01 level (t-test) compared to treatment.
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MMC induced a high and statistically significant percentage of chromosome abnor-
malities in diakinesis metaphase I mouse spermatocytes. The most common type of
abnormality seen in mouse spermatocytes after treatment with MMC was the univalents.
There are reports that the X and Y chromosomes occasionally separate to form univalents
in mouse primary spermatocytes [72]. It is termed non-pairing of XY, or X-Y dissociation.
Leonard and Linden [73] concluded that autosomal univalents resulting from asynapsis
or desynapsis are rare in control animals, since chiasma formed at the diploten stage
maintain pairing association until the end of metaphase. X and Y chromosomes do not
have homologous segments and so, X-Y univalents are the most common aberration. In the
first meiotic prophase, homologous chromosomes undergo pairing, chiasma formation and
crossing over [74]. In bivalents, when the process of pairing fail to progress in a normal
manner, the two homologs would persist as unassociated univalents which could undergo
random separation at anaphase I, leading to aneuploidy in the following metaphase.

The present study demonstrated that the mean percentages of sperm shape abnormali-
ties were significantly increased after MMC treatment. These results support those obtained
by Kumari et al. [75]. Sperm shape abnormalities reflect changes in the DNA content [37].
Also, sperm head abnormalities are frequently taken as a typical test for monitoring the
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mutagenic potential for many chemicals [76]. Tail deformities were conveyed to decrease
fertility in human and animals [77].

The results indicated that pre-treatment with alginate for 7 days significantly reduced
chromosomal aberrations in somatic and germ cells. Alginate oligosaccharide was observed
to decrease H2O2-induced oxidative stress [11]. Guo et al. [13] documented that pre-
treatment of mice with alginate oligosaccharide inhibited the oxidative stress process and
were well protected against acute Doxorubicin cardiotoxicity. Oligosaccharides identified
from brown algae were found to exhibit an anti-proliferative activity via induction of cell
cycle arrest and apoptosis on human prostate cancer cells both in vitro and in vivo [17].

The present results showed that pre-treatment with ZnO-Alg/NCMs for 7 days signif-
icantly reduced chromosomal aberrations in somatic and spermatocytes and reduced the
percentage of morphological sperm abnormalities. Bionanocomposites are a combination of
biopolymers and inorganic materials, mainly from metal oxides like silver nitrate, titanium
oxide, silicon oxide, and zinc oxide in nano dimension size. The incorporation of zinc
oxide nanoparticles into sodium alginate possesses an antibacterial effect which inhibits
the growth of various Gram-positive pathogens [25]. Nystrom and Bisrat, [78] showed
that such a relationship between the specific surface dissolution rate and the solubility of
equilibrium increased with a decrease in particle size. The hyperbolic relationship between
particle size and surface-specific dissolution rate increases solubility [79] due to the larger
surface area, which promotes dissolution [80]. Moreover, a decline in the particle size into
nanoparticles enhances the solubility and bioavailability of the active ingredients [81].

4. Conclusions

The current study revealed F. vesiculosus denoted more alginate yields than P. pavonica.
FT-IR, ESI-MS and 1H NMR proved that the compound that was extracted from F. vesiculosus
is alginate. TEM, SEM, EDX, and Zeta potential proved that ZnO/Alg-NCMs is spherical in
shape, more negatively charged than ZnO-NPs, and the amount of zinc in ZnO/Alg-NCMs
was lower than in the case of ZnO-NPs. The current study also revealed that MMC in-
creased chromosomal abnormalities in bone marrow and spermatocytes and significantly el-
evated the percentage of sperm shape deformities. Oral administration of ZnO-Alig/NCMs
was found to be safe and may be a potential candidate to ameliorate the detrimental effects
of different chemical-induced oxidative damage and cytogenetic alterations.
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