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Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile
and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase
system (PTS) is a conserved pathway in bacteria that couples transport of sugars with
phosphorylation to monitor host carbohydrate availability. A family of structurally
homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been
recognized in divergent bacterial pathogens, including Streptococcus pyogenesMga and
Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via
the PTS, which impacts their dimerization and their activity. Recent work with predicted
PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR)
suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to
promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal
interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the
domain structure, but also raised additional questions such as how ubiquitous are
PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do
specific sugars signal through PCVRs, and do PCVRs interact with DNA both as
transcription factors and nucleoid-associating proteins? Here, we will review known
and putative PCVRs based on key domain and functional characteristics and consider
their roles as both transcription factors and possibly chromatin-structuring proteins.

Keywords: PCVR, PTS phosphorylation, AtxA, Mga, MgaSpn, MafR, nucleoid associated protein
INTRODUCTION

Nutrient acquisition is a major challenge for bacterial pathogens during infection. Energy-rich
carbon resources are in high demand for both the invading pathogen as well as the host. As a result,
these resources are limited by the host. In order to overcome these challenges, bacterial pathogens
have evolved to produce virulence factors (VFs) as well as nutrient-sensing regulatory proteins to
facilitate their expression. In Firmicutes, the phosphoenolpyruvate (PEP) phosphotransferase
system (PTS) facilitates the uptake of both preferred (glucose) as well as alternative carbon
nutrients by coupling their import and phosphorylation through sugar-specific membrane
channels (Figure 1) (Deutscher et al., 2014). PEP, a product of glycolysis, provides the energy
needed for sugar uptake by donating a phosphate to a series of proteins (EI, to HPr, to a sugar-
specific EIIA and EIIB) and finally onto the sugar itself, which is transported into the cell through a
cognate EIIC membrane channel (Deutscher et al., 2014).
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The availability of nutrients affects the rate of phosphate
transfer through the PTS pathway, and as a result, the metabolic
state of the cell is regulated based on these nutrient signals. In
Firmicutes, one of the major ways bacteria facilitate metabolic
activity is through control of carbon catabolite repression (CCR)
(Deutscher, 2008). CCR shunts off of the PTS when heat-stable
protein (HPr) is phosphorylated by HPr kinase/phosphorylase
(HPr K/P), which is activated when preferred sugars, like
glucose, yield high levels of ATP (Singh et al., 2008). This
activation leads to phosphorylation of HPr at a serine-46 and
allows phospho-Ser46-HPr to bind to the carbon catabolite
protein A (CcpA), leading to the repressed expression of
alternative carbon metabolism genes (Henkin et al., 1991;
Deutscher, 2008). Unlike ATP, PEP is in low abundance when
readily metabolized sugars are present due to the transfer of
phosphate through the PTS (Hogema et al., 1998; Bettenbrock
et al., 2007), which occurs via the following steps: enzyme I (EI)
receives phosphates from PEP on the histidine-191 residue and
relays it to histidine-15 on HPr. From phospho-His15-HPr, the
phosphate can be transferred to a sugar-specific enzyme IIA
(EIIA) protein (Deutscher et al., 2014). An inevitable depletion of
preferred sugars results in a decrease in cytosolic ATP, which
reduces HPr K/P activity, yielding a greater phospho-His15-
HPr/phospho-Ser46-HPr ratio, releasing CcpA-mediated
repression of alternative carbon utilization genes, and allowing
the bacteria to utilize alternative sources of carbon for energy.
Eventually, alternative carbon sources may become scarce for an
invading pathogen, creating a decrease in PTS-sugar influx and a
buildup of phosphorylated PTS intermediates (EI, HPr, and
EIIA/B). These alterations in phosphotransfer modulate the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
phosphorylation of classical PTS-regulatory domain (PRD)-
containing transcription factors and antiterminators. See Görke
and Stülke for a comprehensive review of CCR and the PTS
(Gorke and Stulke, 2008). This review focuses on a new category
of activators termed PRD-containing virulence regulators
(PCVRs) that regulate genes needed for a pathogen to adapt to
its new microenvironment and cause disease.

In addition to their role in modulating virulence gene
expression, PCVRs play an important role in nutrient
utilization (Uchida et al., 1993; Hoffmaster and Koehler, 1997;
Ribardo and McIver, 2006). They share important structural and
functional similarities with classical PRD-containing
antiterminators (e.g., LicT) and transcriptional activators (e.g.,
LevR and MtlR), most notably by possessing specific histidine
residues at sites of phosphorylation within PRDs that modulate
their activity (Schnetz et al., 1996; Deutscher et al., 2014). PCVRs
appear to function like transcriptional regulators, binding DNA at
specific intergenic regions and promoting or repressing gene
expression accordingly (Chen et al., 1993; Uchida et al., 1993;
McIver et al., 1995; McIver et al., 1999; Hemsley et al., 2003;
Almengor and McIver, 2004; Almengor et al., 2006; Ruiz-Cruz
et al., 2015; McCall et al., 2019). Nucleotide sequence specificity
may be less important than the intrinsic curvature and adjacent
bendability of the DNA in mediating these interactions
(Hadjifrangiskou and Koehler, 2008; Solano-Collado et al.,
2016). Interestingly, PCVR transcriptional activity appears to be
directly proportional to their multimeric state at specific cis-
regulatory elements (Hammerstrom et al., 2011; Solano-Collado
et al., 2013; Ruiz-Cruz et al., 2015), a trait shared with nucleoid-
associating proteins (NAPs). These observations have raised
FIGURE 1 | The PTS system. Depicted is a generalized schematic of the PTS that exists in Firmicutes. Phosphates are transferred across conserved histidine residues
on EI, HPr, and EIIA. A conserved cysteine serves as the site of phosphorylation on EIIB (asterisk indicates an exception to this in mannose-specific EIIBs which are
phosphorylated on a histidine). Major regulatory pathways diverging from the pathway include PCVRs which are putatively controlled through phosphorylation on PRD
histidine residues by HPr and/or EIIB proteins as well as carbon catabolite repression through phospho-Ser-HPr. The transition of unphosphorylated HPr to phospho-
Ser-HPr is initiated by abundance of ATP as well as the activation of HPr K/P by fructose-1,6-bisphosphate (FBP). HPr K/P can also transfer the phosphate from
phospho-Ser-HPr by moving it from HPr to a substrate phosphate (Pi), resulting in the formation of pyrophosphate (PPi).
October 2021 | Volume 11 | Article 772874
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the possibility that PCVRs are descendants of prototypical PRD-
containing transcriptional activators and have evolved functional
characteristics of genome-modeling architectural proteins. In this
review, we will use the two-best characterized PVCRs, the Bacillus
anthracis AtxA and the Streptococcus pyogenes Mga to establish a
definition of a PCVR and how these regulators may differ from
classical PRD-containing regulatory proteins. Furthermore, we
will discuss cutting-edge experimental techniques that could
provide novel insights into understanding how PCVRs function
as PTS-responsive elements that link metabolism and virulence in
Gram-positive pathogens.
PROTOTYPIC PCVRs IN PATHOGENIC
BACTERIA

PTS Sugar Uptake and Regulation
PCVRs share the greatest organizational similarity with the B.
subtilis mannitol operon transcriptional activator, MtlR
(Deutscher et al., 2014), which consists of two N-terminal
nucleic acid-binding domains, two centralized PRD-domains
with conserved phosphorylated histidine residues, and a C-
terminal EIIB-like domain (Figure 1). In MtlR, both DNA-
binding domains have a helix-turn-helix secondary structure
(pfam HTH_11) (Pabo and Sauer, 1984; Brennan and Matthews,
1989). The second DNA-binding domain also contains an HTH-
motif, sharing sequence similarity to the Mga HTH-domain
(HTHMga) that will be discussed later. The internal PRD
domains (PRD-1 and PRD-2, respectively) contain histidine
residues (230 and 289 for PRD-1 and 342 and 399 for PRD-2)
which in MtlR, are spatially conserved and subject to PTS-
phosphorylation (Deutscher et al., 2006). The C-terminal
region of MtlR contains two EII-like binding domains with the
proximal galactitol-specific EIIB-like domain (EIIBGat)
containing a conserved cysteine at position 419, which is
immediately followed by a distal EIIA-like binding domain
which contains a conserved histidine at position 599
(Deutscher et al., 2014). Unlike MtlR, PCVRs always appear
truncated, lacking the most C-terminal EIIA-like domain.
Additionally, the location of histidine residues in PCVR PRDs
are not spatially conserved, although in some instances, they are
still subject to phosphorylation in vitro (Tsvetanova et al., 2007;
Hondorp et al., 2013).

In addition to the similarities in domain organization defined
by secondary structure, protein data bank (PDB) crystal structures
of AtxA (PDB 4R6I) as well as two homologs, Streptococcus
pneumoniae MgaSpn (PDB 5WAY) and Enterococcus faecalis
MafR/EF3013 (PDB 3SQN), show similarities in tertiary
structure to established PRD-containing regulators (Osipiuk
et al., 2011; Hammerstrom et al., 2015). This raises the question
that PCVRs may share a common ancestral protein with a classical
PRD-containing activator, perhaps even MtlR itself. Before
discussing this topic further, we want to describe the structural
and functional similarities that are conserved amongst PCVRs,
starting with the two-best characterized PCVRs, the Bacillus
anthracis AtxA and the Streptococcus pyogenes Mga.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
AtxA
The anthrax toxin activator (AtxA) is a 53-kDa, DNA-binding
protein that is encoded by atxA located between the cya and
pagA genes on the Bacillus anthracis pXO1 plasmid (Uchida
et al., 1993; McCall et al., 2019). AtxA was first characterized as a
major transcriptional activator of the pXO2 plasmid-encoded
capsule genes (capBCADE) as well as the tripartite toxin genes
encoding protective antigen (pagA), lethal factor (lef), and edema
factor (cya) located on the pXO1 plasmid (Leppla, 1982; Green
et al., 1985; Uchida et al., 1985; Robertson and Leppla, 1986;
Uchida et al., 1987; Makino et al., 1988; Tippetts and Robertson,
1988; Makino et al., 1989). AtxA has positive and negative effects
to varying degrees on different genes through indirect
mechanisms of regulation (Hoffmaster and Koehler, 1997;
Drysdale et al., 2004; Mignot et al., 2004; Corsi et al., 2021).
Virulence of B. anthracis appears to be modulated directly
through AtxA, as mutation of atxA resulted in reduced
transcription of pagA, lef, and cya and correlated with
attenuated virulence in a mouse model of infection (Dai et al.,
1995). Bacillus cereus strain G9241, which causes anthrax-like
disease, possesses two alleles of atxA (atxA1 and atxA2). Loss of
both AtxA orthologues (AtxA1 and AtxA2) attenuated virulence
in a capsule-dependent manner, thus highlighting AtxA as a
master regulator which enables the virulence of pathogenic
Bacilli (Scarff et al., 2016).
Mga
The multiple gene activator of the Group A streptococcus (Mga)
is a 62-kDa DNA-binding protein and a major stand-alone
virulence regulator conserved in all strains of S. pyogenes
(Podbielski, 1992; Kreikemeyer et al., 2003; Bessen et al., 2005).
There are two divergent isotypes, mga-1 and mga-2, that are
associated with strains causing throat infections and skin
infections, respectively (Bessen et al., 2005). The mga gene is
encoded just upstream of the emm gene, which encodes the
major S. pyogenes surface M-protein or a related emm-like gene
(Spanier et al., 1984; Caparon and Scott, 1987), and can
positively control its own expression (Geist et al., 1993;
Podbielski et al., 1995; McIver et al., 1999). It enhances the
expression of different virulence genes, including those encoding
the fibronectin-binding serum opacity factor (sof) and the
collagen-like protein A (sclA) (Caparon and Scott, 1987; Chen
et al., 1993; McLandsborough and Cleary, 1995; Lukomski et al.,
2000b; Rasmussen et al., 2000) and a cluster of virulence factor-
encoding genes (Mga locus) that includes scpA (encoding the
C5a peptidase), sic (encoding the secreted inhibitor of
complement), and fba (encoding the fibronectin-binding
surface adhesin) (Haanes et al., 1992; Podbielski, 1993;
Hollingshead et al., 1994). The activity of Mga is growth
phase-dependent, being most active during exponential phase
growth leading to enhancement of adhesion and immune
evasion (McIver and Scott, 1997), while modulating
metabolism during early infection (Ribardo and McIver, 2006).
Numerous studies have shown that an intact Mga operon is
required for S. pyogenes to cause disease, making it an attractive
October 2021 | Volume 11 | Article 772874
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therapeutic target (Kihlberg et al., 1995; Schmidt et al., 1996;
Courtney et al., 1999; Lukomski et al., 2000a).

PCVR Structural Characteristics
One potential problem with the hypothesis that PCVRs are
descended from a common ancestral PRD-containing protein
lies in that they generally lack sequence similarity. Nevertheless,
the more obvious structural similarities of PCVRs, specifically at
the secondary and tertiary levels of order, suggest that PCVRs are
indeed orthologues and a product of either divergent or
convergent evolution. Despite having a crystal structure
available for AtxA (PDB 4R6I), Mga has proven exceedingly
difficult to express to levels that would allow it to be purified for
crystallography. To determine the homology of PCVR functional
domains, a Phyre2 analysis was used comparing user input
amino-acid sequences to those of known three-dimensional
structures (Kelley et al., 2015). AtxA was used as a template
for these comparisons, allowing other PCVR peptide sequences
to be aligned to the secondary structural “landmarks” defined
in AtxA.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
As previously mentioned, both AtxA and Mga share
predicted domain organization with MtlR, including two N-
terminal DNA-binding domains sharing HTH-motif structural
homology (Figure 2) (McIver and Myles, 2002; Tsvetanova et al.,
2007). The first HTH domain has homology to the ubiquitous
HTH_11 Pfam category found amongst many DNA-binding
proteins (Wilson et al., 1992), while the second HTH domain
shares similar primary structure originally identified as HTH-4
in Mga and given the Pfam designation HTHMga (Podbielski
et al., 1995; McIver and Myles, 2002). McIver and Myles used
mutagenesis to show that the HTH-3 domain (HTH_11) was
partially required for DNA-binding whereas the HTH-4 domain
(HTHMga) was absolutely essential for binding (McIver and
Myles, 2002). Mga also contains six conserved N-terminal
amino acids (QQWREL) known as the conserved Mga domain
(CMD-1) that is found in Mga as well as some S. dysgalactiae
Mga orthologues (Vahling and McIver, 2006). In S. pyogenes, the
Mga CMD-1 is involved in promotor binding in both emm
expression andmga auto-regulation (Vahling and McIver, 2006).
However, CMD-1 is not conserved in the orthologues MgaSpn
FIGURE 2 | Structural domains of PCVRs. Structural domains of each PCVR, with MtlR included for comparison, include two putative DNA-binding domains at the
N-terminus, two central PRDs, and one EIIB-like domain that is structurally similar to the EIIBs specific for galactitol, mannose, and lactose. Italicized numbers above
each peptide indicate amino acid residues as landmarks starting from the N-terminus. Black residues are sites of phosphorylation, with the exception of C402 and
C470 which are implicated in dimerization in AtxA and RivR, respectively. Green residues align with AtxA residues that undergo phosphorylation. Red residues align
with Mga residues that undergo phosphorylation. Blue residues align with MtlR residues that undergo phosphorylation. Purple residues align with AtxA and/or Mga
but have no known ability to undergo phosphorylation. Conserved Mga domain (CMD-1).
October 2021 | Volume 11 | Article 772874
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and MafR, although each protein shares a conserved arginine (R)
residue and in the case of MgaSpn, a conserved leucine (L)
residue as well.

As the PCVR name implies, AtxA and Mga contain two
central LicT-like PRDs as well as a C-terminal EIIB-like domain
that shares sequence similarity with a region found in the
galactitol-specific EIIB (EIIBGat) in E. coli (Volpon et al., 2006;
Tsvetanova et al., 2007). Within their PRDs, AtxA and Mga
contain histidine residues that are believed to undergo
phosphorylation in response to PTS signals, with H199 (PRD-
1) and H397 (PRD-2) in AtxA and H204/H270 (PRD-1) and
H324 (PRD-2) in Mga (Tsvetanova et al., 2007; Hondorp et al.,
2013). Unlike AtxA, the histidine residues of Mga closely align
with the PRD-contained histidine residues of LicT, LevR, and
MtlR (Deutscher et al., 2014).

PCVR Modulation by the PTS
The involvement of the PTS in regulating AtxA andMga through
post-translational modifications (PTMs) is poorly understood
(Figure 3). Classical PRD-containing regulators can be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
phosphorylated by EI, HPr and substrate-specific EIIB proteins
in both PRDs and in the EII-like domains under a variety of
conditions (Martin-Verstraete et al., 1998; Lindner et al., 1999;
Tortosa et al., 2001; Xue and Miller, 2007; Joyet et al., 2010; Joyet
et al., 2013). Deutscher et al. provides a good review of how PTS
proteins interact and phosphorylate different regulatory domains
in PRD-containing regulators (Deutscher et al., 2014). The
canonical mechanism of PTS regulation involves EI/HPr
phosphorylating one PRD-containing regulatory element to
activate the regulator, while the EIIB protein phosphorylates
another PRD, inactivating the regulator.

There is little direct evidence that PTS proteins (EI, HPr,
EIIB) interact with AtxA. However, a series of experiments using
site-directed mutagenesis to induce phospho-mimetic (H to D)
and phospho-ablative (H to A) amino acid substitutions in AtxA
revealed that H199D (in the PRD-1) activated AtxA while
H379D (in the PRD-2) had an inhibitory effect (Tsvetanova
et al., 2007; Hammerstrom et al., 2015; McCall et al., 2019).
Specifically, active AtxA upregulated the expression of pagA and
lef, formed dimers in solution, and directly bound to DNA.
FIGURE 3 | Functional status and hypothesized biochemical inputs that regulate AtxA and Mga PRDs. Left: Predicted phosphorylation patterns for PRDs contained
within AtxA and Mga. Center: Resulting activity levels given respective phosphorylation patterns; note that phosphorylation at the PRD2 has a dominant role on PCVR
activation in AtxA whereas phosphorylation in PRD1 dominates the activation state of Mga. Right: Predicted biological inputs resulting in respective phosphorylation
and PCVR activation states.
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Interestingly, the H379D substitution had a dominant effect on
AtxA activity in that it suppressed lef expression as well
as the production of capsule irrespective of the amino acid
residue present at position 199 (Hammerstrom et al., 2015).
In addition to these intriguing findings, Tsvetanova and
colleagues found that AtxA could be phosphorylated and
immunoprecipitated from B. anthracis cell lysates, but when
phospho-ablative substitutions were made at both PRD histidine
residues (H199A and H379A), AtxA could no longer be
immunoprecipitated in a phosphorylated form (Tsvetanova
et al., 2007). Taken together, these reports suggest that AtxA
activity may be directly linked to the PTS and phosphorylation.
However, a recent report by Bier and colleagues has challenged
the hypothesis that AtxA is directly phosphorylated by PTS
proteins (Bier et al., 2020). They found that EI and HPr did
not directly phosphorylate AtxA in vitro, but instead, an
intermediate regulatory protein is likely phosphorylated by the
PTS which in turn modulates the expression of atxA. This
was based on a series of experiments whereby isopropylthio-
b-galactoside (IPTG)-inducible atxA expression (PTS-
independent) had no altered ability to express the B. anthracis
toxin lef, regardless of the presence or absence of an intact PTS.
In contrast, atxA under the control of its native promotor was
unable to induce lef expression in a PTS-null (mutated for ptsH
and ptsI that encode HPr and EI, respectively) genetic
background. Additionally, atxA expression was significantly
decreased in a ptsHI double mutant. EIIB was not investigated
for in vitro phosphorylation of AtxA, thus its role in this process
still needs to be explored.

Although there is no evidence of direct PTS phosphorylation
of Mga in vivo, Valdes and colleagues demonstrated that Mga
does undergo variable phosphorylation in vivo (Valdes et al.,
2018). Unlike AtxA, Hondorp et al. provided clear evidence
that Mga from serotype M4 (mga-2) and M1 (mga-1) could be
phosphorylated by the PTS in vitro using purified PEP, EI, and
HPr (Hondorp et al., 2013; Bier et al., 2020). Combinations of
phospho-mimetic and -ablative mutations targeting the histidine
residue codons in mga yielded a collection of mutants with
differential Mga activity (Figure 3). In contrast to MtlR and
AtxA, phospho-mimetic mutations in PRD-1 of Mga (H204D
and H270D) led to the protein being inactivated, and this
phenotype was found to be dominant over a phospho-mimetic
mutation in PRD-2 (H324D) that activated the protein (Joyet
et al., 2010; Hondorp et al., 2013; Sanson et al., 2015). These
studies provide evidence that PCVRs like AtxA and Mga can be
modified by the PTS through phosphorylation events within
PRDs, but unlike well-studied PRD-containing regulator MtlR,
the exact mechanism by which the PTS controls these PCVRs
may not be conserved. Further studies will be required to
determine if in vitro phosphorylation events are representative
of PTMs that occur in vivo through the PTS.

PCVR Multimerization
Like MtlR, both AtxA and Mga share a C-terminal EIIBGat-like
domain (Tsvetanova et al., 2007; Hondorp et al., 2012). There is
accumulating evidence that this region is required for the
dimerization and the subsequent transcriptional regulatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
activity of each protein. Specifically, Hammerstrom and
colleagues found that mutating the codon for the cysteine
(C402) in the EIIBGat domain of AtxA prevented it from
forming homo-dimers using a co-immunoprecipitation
approach (Hammerstrom et al., 2011). Subsequent studies
found that an H199A substitution impaired the ability of AtxA
to bind DNA, (McCall et al., 2019) whereas both H379D and
H379E substitutions reduced its capacity to form homodimers,
presumably through loss of EIIB interactions resulting from
changes in protein conformation (Hammerstrom et al., 2015).
In Mga, multimerization is readily observed when the solution
undergoes changes in osmolality and pH. Divalent cations like
Ni2+ and Zn2+ cause Mga to form large aggregates in solution
that have hampered the ability to purify the protein (Hondorp
et al., 2012). Yet, Hondorp and colleagues found that deleting the
entire EIIBGat-like domain of Mga eliminated Mga homo-
multimerization as well as transcriptional activity. They later
found that phospho-mimetic double mutations (H204D/
H270D) in the PRD-1 of both isotypes of Mga prevented
multimerization (Hondorp et al., 2013). Interestingly, Mga was
still able to bind DNA as a monomer, however, the
transcriptional activation by non-multimerizing Mga was
impaired, implying that multimerization is required for the full
regulatory potential of Mga. Thus, PTS phosphorylation likely
impacts the activity of both AtxA and Mga by altering their
ability to form multimers, yet the exact pathway by which these
PTS signals are transduced is not fully understood.
NOVEL PCVRs IN GRAM-POSITIVE
PATHOGENS

Based on homology with the MtlR, Mga, and AtxA, additional
PCVRs can be found in the genomes of diverse species of Gram-
positive pathogenic bacteria. In this section, we will describe
more recently discovered candidates and discuss the basis for
their classification as PCVRs.

AtxA Paralogs
B. anthracis contains two AtxA paralog activators of capsule
synthesis (AcpA and AcpB), both of which are encoded on the
96-kb pXO2 plasmid and have been implicated in regulating
virulence (Vietri et al., 1995; Drysdale et al., 2004; Raynor et al.,
2018). The role of AcpA and AcpB in modulating virulence is
thought to be primarily attributed to an AtxA-induced
expression of the two proteins, which in turn control the
expression of capsule through direct capBCADE promotor
binding (Bourgogne et al., 2003; Drysdale et al., 2004). Two
reports show that both acpA and acpB impact virulence in vivo,
however each report drew opposing conclusions as to which gene
is more important and whether the genes are synergistic or
redundant (Drysdale et al., 2005; Sittner et al., 2021). It should be
noted that the authors used dissimilar animal models for
their studies.

The genes encoding AcpA and AcpB are located in close
proximity to one another (Vietri et al., 1995; Drysdale et al., 2004),
October 2021 | Volume 11 | Article 772874
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and have been described as PCVRs based on their sequence
similarity with AtxA and their function (Raynor et al., 2018). Both
AcpA and AcpB contain two N-terminal HTH putative DNA-
binding domains as well as two core LicT-like PRDs and one C-
terminal EIIBGat-like domain (Raynor et al., 2018) (Figure 2).
Both AcpA and AcpB contain numerous histidine residues in
their predicted PRDs, yet AcpA lacks any overlap with PRD
histidine residues in AtxA, Mga, and MtlR. On the other hand,
AcpB H350 aligns with a histidine residue in both AtxA and
Mga. Although there are no reports of these histidine residues
affecting protein activity, the H196 of AcpB aligns with the
H230 of MtlR and H204 of Mga, both of which are important
in the phosphorylation and activity of each respective protein
(Joyet et al., 2010; Hondorp et al., 2013; Heravi and
Altenbuchner, 2014).

Like AtxA, the activities of AcpA and AcpB are dependent on
multimerization. Co-immunoprecipitation experiments revealed
that epitope-tagged AcpA and AcpB form homodimers and that
AcpA may also form heterodimers with AtxA (Raynor et al.,
2018). Mutation of the C-terminal EIIB-like domains in either
AcpA or AcpB relieved this association and also led to a loss of
capB expression activity, which is consistent with previous
studies showing that homo-, and in this case, hetero-
multimerization directly affect the transcriptional activity of
AcpA and AcpB.

Mga Paralogs
S. pyogenes contains four Mga paralogs, RofA, Nra, Ralp3 and
RivR that, given their structural similarities to RofA and one
another, comprise a family termed the RofA-like proteins
(RALPs) (Granok et al., 2000). Their presence and combination
vary with serotype and contribute to a heterogenous pattern of
gene expression (Podbielski et al., 1999; Kreikemeyer et al., 2002;
Kreikemeyer et al., 2007; Buckley et al., 2020). Each of these
paralogs have been implicated in regulating known virulence
factors and adhesins that contribute to GAS fitness and viability
in vitro (Molinari et al., 2001; Kreikemeyer et al., 2002; Kwinn
et al., 2007; Siemens et al., 2012; Trevino et al., 2013).
Additionally, deletion of ralp3 and rivR have been shown to
attenuate virulence in murine models of GAS infection (Kwinn
et al., 2007; Trevino et al., 2013). Interestingly, the native Ralp3
coding sequence in the M1T1 strain, studied by Kwinn and
colleagues, contains a nonsense mutation about halfway
through the gene, suggesting this version of Ralp3 is truncated
and would lack the second hypothesized PRD domain and the
EIIB domain. Despite this truncation, their results suggest that
Ralp3 still maintains a role in regulating the virulence of
this strain.

Like Mga, secondary structure predictions by Phyre2
suggest the RALPs closely resemble AtxA. Each RALP has
two N-terminal HTH domains, two central PRDs with
several histidine residues, and one C-terminal EIIBGat-like
domain (Kelley et al., 2015) (Figure 2). There is currently no
evidence that any of the RALPs are capable of undergoing
phosphorylation or if the PTS modulates their activity.
However, Phyre2 analysis showed that Nra from the M49
serotype of S. pyogenes contains a histidine residue (H392) in
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its PRD-2 that aligns with the H379 in AtxA, thus opening up the
possibility that PTS-mediated phosphorylation occurs in RALPs
(Kelley et al., 2015).

To the best of our knowledge, the only RALP in which
multimerization has been studied is RivR, which was assessed
in vivo by cross-linking (Ramalinga et al., 2016). The resulting
banding patterns indicated that RivR formed both dimers and
multimers in the cell. Substitution of cysteine-470, located in the
EIIBGat-like domain, to serine (C470S) completely ablated the
ability of RivR to form dimers, and inhibited RivR from
regulating its target genes. This suggests the EIIBGat-like
domain is primarily responsible for multimerization, which is
consistent with AtxA and Mga (Hammerstrom et al., 2011;
Hondorp et al., 2012). Direct DNA binding has been
demonstrated in vitro for RofA, which binds two sites in the
intergenic region between the RofA-regulated genes rofA and
prtF of a serotype M6 strain (Granok et al., 2000). Analysis of the
two RofA binding sites within the intergenic region identified a
consensus binding sequence, however, this sequence is not found
upstream of any other RofA-regulated genes (Beckert et al.,
2001). The absence of RofA binding sites could suggest
indirect regulation by RofA or that RofA can bind DNA both
in a sequence-dependent and -independent manner. Analysis of
the region upstream of RivR-regulated genes also failed to
identify a consensus sequence (Trevino et al., 2013), suggesting
sequence-independent binding or indirect regulation.

MgaSpn
Pioneering work found that the Streptococcus pneumoniae isolate
TIGR4 contains a 58-kDa protein that repressed the rlrA
pathogenicity locus (Hava et al., 2003; Hemsley et al., 2003).
This gene, originally called mgrA (SP1800), shares a high degree
of amino acid sequence similarity to S. pyogenes Mga (Hemsley
et al., 2003; Solano-Collado et al., 2012). Because of its
similarities, MgrA was renamed Mga of Streptococcus
pneumoniae (MgaSpn). Like Mga, MgaSpn plays an important
role in early infection by modulating the production of bacterial
adhesins encoded within the rlrA pathogenicity islet that provide
S. pneumoniae the capacity to colonize the nasopharynx and
progress to pneumonia (Hemsley et al., 2003). Interestingly rlrA
positively regulates the other genes of the rlrA islet and is
homologous to RofA and Nra of S. pyogenes (Hava et al.,
2003). Furthermore, the rlrA islet has significant homology to
the type-1 fibronectin-collagen-T-antigen (FCT) encoding
region of S. pyogenes (Nakata and Kreikemeyer, 2021),
suggesting that rlrA and the type-1 FCT loci are derived from
an ancestral genetic element.

MgaSpn has been successfully crystallized (PDB 5WAY) and
PDB prediction software shows that it forms a dimer with the C-
terminal regions in close proximity to each other with the N-
terminal regions facing out. Phyre2 alignments with AtxA show
that MgaSpn contains secondary structures that are consistent
with two N-terminal HTH-domains, two central PRDs, and a C-
terminal EIIbGat-like domain (Figure 2) (Kelley et al., 2015).
TIGR4 MgaSpn PRD residues H215 and H292 align with
histidine residues of Mga, and MgaSpn H198 and H380 align
with histidine residues of AtxA; however, none of these are
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established sites of PTS-phosphorylation in Mga or AtxA.
Interestingly, MgaSpn H391, H320, and H318 align with H379,
H324, and H342 of AtxA, Mga, and MtlR, respectively, all of
which have been shown to be involved in modulating protein
activity (Tsvetanova et al., 2007; Hondorp et al., 2013; Joyet et al.,
2013). These overlaps in histidine residues would indicate that
MgaSpn may still retain the capacity to undergo PTS-
mediated phosphorylation.

As observed with Mga, purification of MgaSpn resulted in the
formation of multimers in solution (Solano-Collado et al., 2013).
MgaSpn also binds conserved regions of DNA, but in a sequence-
independent manner and binding is enhanced as multimers
aggregate around the site of initial dimerization (Solano-
Collado et al., 2012; Solano-Collado et al., 2013). The authors
noted that these characteristics are shared with prokaryotic
architectural proteins such as nucleoid-associated proteins
(NAPs), including HNS, HU, and IHF. To date, the question
of whether or not MgaSpn can be directly phosphorylated at its
PRD domains has not been investigated.
MafR
Enterococcus faecalis encodes a 56-kDa AtxA/Mga homolog
MafR (EF3013) that was initially characterized by X-ray
crystallization (PDB 3SQN) based solely on homology and
biochemical analysis (Osipiuk et al., 2011). Subsequent studies
by Ruiz-Cruz and colleagues have found that MafR plays a
central role in the regulation of numerous metabolic genes,
including both PTS- and non-PTS ABC-transporters, as well as
genes involved in calcium and queuosine homeostasis and
utilization of glycerol, maltose, and mannitol (Ruiz-Cruz et al.,
2015; Ruiz-Cruz et al., 2018; Ruiz-Cruz et al., 2019). To date,
there are no reports that suggest a direct link between MafR and
the expression of E. faecalis virulence genes; however, loss of
MafR led to significant attenuation in a murine model of
peritonitis, suggesting that the proper regulation of metabolic
genes is also crucial in the overall virulence of this opportunistic
pathogen (Ruiz-Cruz et al., 2015).

Protein folding prediction based on the crystal structure show
folding and dimerization of MafR similar to MgaSpn. Phyre2
analysis confirmed that MafR shares the same structural
domains as Mga, including two HTH-domains that likely bind
DNA (Kelley et al., 2015) (Figure 2). Alignments of MafR against
MtlR, AtxA, and Mga-1 and -2, revealed no shared histidine
residues in the PRDs with any of these other proteins. Like AtxA,
Mga, and MgaSpn, MafR has the propensity to form multimers
and this appears critical for its transcriptional activity (Ruiz-Cruz
et al., 2018). Additionally, MafR DNA-binding sites lack
conserved sequences, are AT-rich, and contain intrinsic
curvature, all three of which are traits shared by NAP binding
sites (Ruiz-Cruz et al., 2018; Ruiz-Cruz et al., 2019). The lack of
histidine conservation and, more so, the NAP-like behavior of
MafR suggest that the protein activation mechanisms have
diverged evolutionarily from those of classical PRD-containing
regulatory proteins and perhaps have even converged towards
those of NAPs. These points will be discussed later on in
this review.
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PREVALENCE OF PCVRs IN
STREPTOCOCI

As more AtxA/Mga family proteins are identified, it has become
more apparent that PCVRs are a diverse class of regulatory
proteins that are widespread in Gram-positive pathogens. In the
streptococci, numerous structural homologs of Mga and the
RALPs have been previously discovered (Geyer and Schmidt,
2000; Vasi et al., 2000; Hava and Camilli, 2002). The S. pyogenes
M1T1 isolate 5448 Mga was used to identify homologous
proteins in the genomes of multiple pathogenic streptococcal
species using BLAST (Figure 4). Interestingly, the abundance of
Mga and RALP homologs correlated directly with the pathogenic
potential of each queried streptococcal species in humans. b-
hemolytic species such as Group B (S. agalactiae) and Group C
streptococci (S. dysgalactiae and S. equi) exhibit the most
homologs (both having one Mga and three RALP homologs)
whereas more distantly related viridans streptococci, such as the
a-hemolytic S. pneumoniae or the g-hemolytic S. mutans having
few or no Mga/RALP homologs. These findings support the
hypothesis that PCVRs originated from a common ancestral
protein that either evolved from a classical PRD-containing
regulator or a PRD-containing regulator-like protein that arose
convergently. These similarities suggest that the Mga/RALP
PCVRs provided a greater fitness advantage to ancestral
streptococci that evolved into human pathogens, whereas
streptococci that succeeded as commensals did not experience
the same selective pressure to retain them.
CATABOLIC SIGNALS THAT
REGULATE PCVRs

The Impact of Glucose on PCVRs
Glucose is a preferred carbon source and is also involved in
influencing both AtxA- and Mga-regulated virulence genes (Pine
and Reeves, 1978; Ribardo and McIver, 2006; Chiang et al.,
2011). A recent transcriptomic study in M1T1 S. pyogenes grown
in either a glucose rich medium (THY) or glucose-limited
medium (C media) showed a distinct difference in the Mga
regulon under these two different growth conditions
(Valdes et al., 2018). Surprisingly, high glucose resulted in
phosphorylated Mga, whereas phosphorylated Mga was
reduced when grown in low glucose. These results indicate that
glucose alters the phosphorylation state and subsequent activity
of Mga in S. pyogenes. One possible explanation for the observed
glucose-induced Mga phosphorylation phenotypes could be
that glucose may have a lesser effect on modulating PTS than
other undefined sugar sources. Glucose can enter the cell
independently of the PTS (Fiegler et al., 1999) and Sundar and
colleagues showed that glucose transport in S. pyogenes is
primarily through the non-PTS GlcU transporter and
converted to glucose-6-phosphate by the NagC glucose kinase
(Sundar et al., 2018). Nevertheless, results from Hondorp et al.,
2013 and Valdes et al., 2018 suggest that Mga activity is a direct
consequence of glucose availability, which in turn alters the
October 2021 | Volume 11 | Article 772874

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Rom et al. PRD-Containing Virulence Regulators (PCVRs)
availability of phosphates that can be transferred from PTS
proteins to Mga (Hondorp et al., 2013; Valdes et al., 2018).

Although Mga is phosphorylated in the presence of glucose
(Valdes et al., 2018), its expression is also impacted by CcpA
(Almengor et al., 2007). In B. anthracis, addition of glucose
increased the expression of pagA in an AtxA-mediated manner
and it was noted that this also required a functional CcpA
(Chiang et al., 2011). Conversely, Bier and colleagues reported
no such alterations in atxA expression in the presence of glucose
in the media, nor were they able to detect a difference in atxA
expression between a WT and ccpA deletion strain (Bier et al.,
2020). Thus, changes in the availability of glucose could alter
both AtxA and Mga expression through CCR rather than
through direct interaction with EI/HPr/EIIB proteins.

The Impact of Other Sugars on PCVRs
Limited studies have comprehensively investigated whether
other sugars impact the phosphorylation state of PCVRs. In
S. pyogenes, a ptsI deletion mutant resulted in a strain defective in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
sugar uptake as well as relaying any PTS-signals to regulatory
proteins (Gera et al., 2014). When this mutant was grown in
chemically defined media only containing individual sugars,
numerous sugars were found to be taken up exclusively
through PTS-uptake pathways, and importantly, subsequent
mutations to specific EIIC transporters associated with the
identified sugars revealed that many of these pathways may
serve redundant functions (Sundar et al., 2017). The EII
complex that was most redundant in this regard was the
mannose-specific EII (encoded by manLMN), which
transported 63% of the other carbon sources tested (Sundar
et al., 2017). These studies suggest that non-preferred carbon
sources may play a more important role in the activation and
regulatory functions of Mga than glucose in S. pyogenes.

Like S. pyogenes, E. faecalis encodes numerous PTS-sugar
uptake pathways (Paulsen et al., 2003), and microarray analysis
found that MafR differentially regulated PTS genes for fructose,
lactose, and mannose (Ruiz-Cruz et al., 2015). There is also
evidence that some of these sugars serve as important signals that
FIGURE 4 | Distribution of PCVRs in streptococcal species. Left: Depicted are the major streptococcal species and clades organized based on their evolutionary
divergence. Beta-hemolytic streptococci are located in the top clade in red. Divergent viridans species are organized below. Right: The abundance of Mga/RALP
(red) or Mga/RALP-like (green/blue/pink/tan/black) PCVRs are listed for each respective streptococcal species. The Mga/RALP-like PCVRs were identified based on
sequence similarities to the M1 S. pyogenes strain 5448 using BLAST analysis.
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allow E. faecalis to colonize epithelial surfaces and survive in the
bloodstream (Zuniga et al., 2005; Vebø et al., 2009; Lindenstrauss
et al., 2014). However, to date, no studies have shown that MafR
can be directly phosphorylated by the PTS. Unlike AcpA, AcpB,
and MgaSpn, each of which share conserved histidine residues
within PRDs of MtlR, AtxA, and Mga, MafR appears to have no
closely aligning histidine residues in putative PRDs (Figure 2). It
is possible that for MafR, and even AcpA, AcpB, and MgaSpn,
that the PRDs are vestigial, and these putative PCVRs have
evolved to work independently of PTS input signals. Further
studies must be performed in order to better understand how, if
at all, the PTS directly modulates PCVRs and which carbon
sources act as signals to sense host microenvironments in
divergent bacterial species.
NEW ADVANCES TO STUDY PCVR
PHOSPHORYLATION

Limitations in Current Technology
PRD phosphorylation in both PCVRs, as well as classical PRD-
containing regulators, can have very different outcomes on the
activity of the protein, thus complicating the understanding of
how these proteins function. Phospho-mimetic/-ablative studies
have proven useful in showing a cause-and-effect relationship
between predicted PTS-histidine residues and protein function.
Coupled with in vivo phosphate labeling and subsequent
detection using Phos-tag™ (non-radioactive) and 32P-labeled
(radioactive) PCVR immunoprecipitation assays have provided
some insight as to whether or not PCVRs are phosphorylated
inside the cell (Tsvetanova et al., 2007; Valdes et al., 2018).
However, these methods have proven difficult to reproduce and
don't show which amino-acid residues undergo phosphorylation
in vivo. Phosphorylation is an important PTM that both
eukaryotic and prokaryotic cells rely on for a multitude of
cellular processes, and phospho-proteomics studies have
proven to be essential in studying proteins that undergo
phosphorylation, specifically at serine, threonine, and tyrosine
residues (Ardito et al., 2017). However, the role of phospho-
histidine (pHis) in nature has been severely underappreciated
because it has not been possible to study these signaling
pathways due to technological limitations (Kee and Muir, 2012).

Advancements in Technology
Recent advances in mass spectrometry (MS) have shown
promise for studying pHis phosphorylation in a quantitative
manner. One issue with previous approaches was that any
proteins containing pHis would often contain other
phosphorylated residues that could result in false positives.
Using a pHis-mimicking hapten (phosphoryltriazolylalanine),
Jung-min and colleagues were able to develop and optimize a
stable pan-pHis antibody that could enrich for proteins from a
cell lysate using immunoprecipitation, and then determine the
phosphorylation state with high-resolution nano-flow ultra-
performance liquid chromatography-mass spectrometry (Kee
et al., 2013; Kee et al., 2015). Indeed, advancements in
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developing pHis-recognizing antibodies are happening rapidly
(Kalagiri et al., 2021). Oslund and colleagues later determined
the neutral loss of phosphate from pHis-containing fragments
was a result of collision-induced disassociation and used this
information to develop software to predict pHis peptides,
allowing them to confirm the phosphorylation of known PTS
proteins and new pHis proteins in E. coli (Oslund et al., 2014).

Potel and colleagues have now developed a new methodology
using Fe3+ immobilized metal affinity chromatography (IMAC)
columns coupled with a more streamlined workflow to overcome
the limitation of high acidity inherent in traditional IMAC
chromatography (Potel et al., 2018). This allowed the ability to
quantify the relative abundance between different pHis-
containing proteins, thus reducing sample size and cost. New
improvements in quantifying pHis immonium ions that results
from cleavage during MS and by using electron-transfer-
dissociation-based fragmentation has allowed detection
sensitivity of pHis-containing peptides from cell lysate proteins
(Potel et al., 2019). Using this approach, the pHis proteome of E.
coli was determined and identified known (e.g., PTS
components, two-component system histidine kinases) and
novel pHis-containing proteins.

These advancements provide a means by which to rapidly
uncover the phosphorylation state of the entire proteome,
including PCVRs. Obtaining direct evidence of which histidine
residues undergo phosphorylation in vivo would be a powerful
tool to help direct subsequent phospho-mimetic/-ablative
mutagenesis experiments to better understand how novel
PCVRs function with respect to the PTS. pHis-LC-MS/MS
would also be useful in determining which sugars and cognate
EII complexes are essential in PTS-mediated PCVR signaling.
Importantly, this same experimental approach could be used to
simultaneously assess how specific PTS-sugars impact the
regulation of PCVRs or other proteins in any bacterium of interest.
PCVRs SHARE CHARACTERISTICS
WITH NUCLEOID-ASSOCIATED
PROTEINS (NAPS)

NAPs as Architectural Proteins
Both eukaryotic and prokaryotic organisms have multiple orders
of chromosome organization that are mediated through the
association between architectural proteins and DNA
(chromatin). In eukaryotes, this organization is sustained
through histones, which provide structural order to nucleic
acid while undergoing PTMs that modulate gene expression
(Venkatesh and Workman, 2015). Prokaryotes lack histones, yet
possess analogous nucleoid-associating proteins (NAPs) that
provide chromosomal order as well as transcriptional
regulation (Dame et al., 2020). Despite sharing functional
similarities, NAPs are believed to be evolutionarily distinct
from their eukaryotic DNA-organizing counterparts and their
function is a result of convergent evolution (Dame et al., 2020).
Classical examples of NAPs are histone-like nucleoid structuring
proteins (H-NS), structural maintenance of chromosomes
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proteins (SMC), factor for inversion stimulation (Fis),
integration host factor (IHF), and heat-unstable protein (HU)
(Hołówka and Zakrzewska-Czerwińska, 2020). A recent review
by Dame et al. provides a comprehensive overview of these NAPs
and their biology (Dame et al., 2020).

Despite their structural differences, NAPs share functional
similarities with one another. The first is that, like histones,
NAPs regulate gene expression and DNA-replication, often in
response to both internal and external signals. Additionally,
NAPs are highly abundant in the cytosol, spanning long
regions across the entire chromosome and forming large
multimeric clusters that can occupy hundreds of base-pairs at
once (Li et al., 2009). NAPs like H-NS and HU also appear to
mediate specific interactions with chromosome-interaction
domains by recognizing the shape of DNA rather than a
specific sequence (Le et al., 2013; Marbouty et al., 2015). These
regions are often AT-rich and lack any NAP-specific consensus
sequence (Dorman, 2014). Additionally, binding and subsequent
gene activation/repression is often a function of the overall
abundance of NAP oligomers that are sequestered to a specific
cis-regulatory elements. For instance, transitioning of H-NS from
a dimeric to a long oligomeric state has been shown to enhance
repression of its regulated genes (Giangrossi et al., 2014).

NAP-Like Properties of PCVRs
One of the most interesting observations that has emerged from
the characterization of PCVRs is how they share many functional
characteristics with NAPs. Numerous studies have found that
PCVR DNA-binding is important for gene activation despite
lacking sequence homology across different binding sites
(McIver and Myles, 2002; Solano-Collado et al., 2012; Ruiz-Cruz
et al., 2018; Toyomane et al., 2019). A recent study showed that
AtxA bound to the B. anthracis protective antigen gene (pagA)
promoter in vitro in a phosphorylation-dependent manner and,
although the binding region contained stem-loop structures, there
was no specific binding site identified (McCall et al., 2019). Like
NAPs, promoter regions targeted by AtxA, Mga, MgaSpn, and
MafR share low levels of homology, are AT-rich, and have
intrinsic curvature (Geist et al., 1993; McIver et al., 1999;
Almengor and McIver, 2004; Hadjifrangiskou and Koehler,
2008; Hause and McIver, 2012; Solano-Collado et al., 2013;
Ruiz-Cruz et al., 2018; Ruiz-Cruz et al., 2019). Additionally,
purified Mga and MgaSpn have the propensity to form insoluble
oligomers in vitro (Hondorp et al., 2012). In the case of MgaSpn,
this aggregation has been visualized using electron microscopy,
albeit in the presence of MgaSpn-specific DNA fragments (Solano-
Collado et al., 2012; Solano-Collado et al., 2013). Although
MgaSpn aggregation could be a product of in vitro conditions
that don’t accurately reflect the naturally buffered solution inside a
cell, the argument that PCVR regulation is in part a function of
oligomeric state is substantiated by the fact that purified MgaSpn
and H-NS both form higher order multimers while maintaining
reciprocal binding capabilities to one another’s DNA-binding
regions (Solano-Collado et al., 2016).

Taken together, the observations above suggest a model that
upon activation through yet discovered signaling pathways,
PCVRs will undergo a conformational change impacting
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dimerization and DNA-binding that may be mediated through
recognition of cis-element sequence specificity, DNA curvature,
or a combination of both. Initial PCVR dimers may then serve as
sites for the nucleation of long oligomers that further enhance
the activation/repression of affected open-reading frames. This
raises the possibility that PCVRs may exhibit dual modalities of
transcriptional regulation by somehow “switching” between
transcription factor and NAP modes based on the presence/
absence of certain biochemical inputs. Within the Mga regulon,
some cis-binding regions are well-conserved whereas others are
highly variable. For instance, the scpA and emm cis-elements
bound by Mga share a great level of sequence similarity amongst
different strains of S. pyogenes, however other Mga-regulated loci
are poorly conserved (Hause and McIver, 2012). Thus, Mga may
act as a prototypical transcription factor when regulating scpA
and emm genes, for example, yet control other loci that lack a
consensus sequence by acting as a NAP. This will need to be
investigated using genome-wide approaches that quantify
occupancy of proteins on DNA such as ChIP-seq.

It is also possible that any NAP-like function of PCVRs is
completely independent of oligomerization. Indeed, the EII
domains of MtlR have been shown to tether MtlR to the
cytoplasmic membrane via interaction with the mannitol
permease and this mechanism is required for activity (Bouraoui
et al., 2013). Similar mechanisms of spatial regulation were also
described for LicT from B. subtilis (Rothe et al., 2013). Like these
PRD-containing regulators, there are numerousNAPs likeNoc and
SlmA that are associated with the cell wall and remodel chromatin
during cell division (Bernhardt and de Boer, 2005; Adams et al.,
2015). Thus, it remains to be determined whether or not PCVRs
oligomerize in vivo or if they function as NAPs.
CONCLUSION

The PTS-pathway is a conserved system in Gram-positive
bacteria that couples the import of sugars while simultaneously
informing the bacteria of their respective availability and PRD-
containing regulatory proteins are the major mediators of these
signals. It is now clear that there is a class of proteins that can be
defined as PCVRs, that exist in diverse Gram-positive pathogens
and contain structural homology with classical PRD-containing
regulators. Specifically, these similarities include having two N-
terminal HTH-motif domains, two central PRD-like domains,
and a single C-terminal EIIB-like domain. In this review, we
provide a contemporary overview of the literature surrounding
PCVRs, highlighting obvious structural characteristics that they
share in divergent bacteria as well as potentially important
functional characteristics that stem from these structures. We
propose that PCVRs either evolved divergently from an ancestral
PRD-containing protein or convergently due to selective
pressures that drive yet defined structure-function paradigms
that may have or still do relate to the function of these proteins.
One possibility is that PCVRs may have acquired changes in
their regulation over time, which in turn disabled their sensitivity
to PTS signals, but sustained their role in regulating genes
involved in metabolism and the utilization of different carbon
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sources. In addition to potential PTS-mediated mechanisms of
action, there is a great deal of evidence suggesting that PCVRs
may behave like architectural proteins. Much like NAPs, PCVRs
tend to have a preference for binding DNA based on shape and
flexibility rather than specific nucleotide sequences. They also
appear to have the propensity to form oligomers, however, it is
not clear as of now whether this is physiologically relevant in the
context of transcriptional activation/repression. There is still
much to be learned about this emerging class of proteins, but
with novel technological advancements, we can begin to
interrogate the exact mechanisms by which PCVRs operate in
diverse bacterial pathogens and begin to better understand how
these proteins drive virulence.
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