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Abstract 

Progression from pre-cancers like ductal carcinoma in situ (DCIS) to invasive disease 

(cancer) is driven by somatic evolution and is altered by clinical interventions. We hypothesized 

that genetic and/or phenotypic intra-tumor heterogeneity would predict clinical outcomes for 

DCIS since it serves as the substrate for natural selection among cells. We profiled two samples 

from two geographically distinct foci from each DCIS in both cross-sectional (N = 119) and 

longitudinal cohorts (N = 224), with whole exome sequencing, low-pass whole genome 

sequencing, and a panel of immunohistochemical markers. In the longitudinal cohorts, the only 

statistically significant predictors of time to non-invasive DCIS recurrence were the combination 

of treatment (lumpectomy only vs mastectomy or lumpectomy with radiation, HR = 12.13, p = 

0.003, Wald test with FDR correction), ER status (HR = 0.16 for ER+ compared to ER-, p = 

0.0045), and divergence in SNVs between the two samples (HR = 1.33 per 10% divergence, p =  

0.018). SNV divergence also distinguished between pure DCIS and DCIS synchronous with 

invasive disease in the cross-sectional cohort. In contrast, the only statistically significant 

predictors of time to progression to invasive disease were the combination of the width of the 

surgical margin (HR = 0.67 per mm, p = 0.043) and the number of mutations that were 

detectable at high allele frequencies (HR = 1.30 per 10 SNVs, p = 0.02). These results imply that 

recurrence with DCIS is a clinical and biological process different from invasive progression. 

Significance 

Evolutionary measures of breast pre-cancers associate with local recurrence after surgery, 

as well as progression to cancer. Recurrence and progression are different biological processes 

impacted differently by clinical interventions. 

Introduction  

The improvement of radiological techniques and preventive screening of breast cancer 

conducted on a large scale makes it possible to identify mammary gland neoplasms at an early 

stage of development, when they are still confined within the glandular ducts. This neoplasm is 

termed ductal carcinoma in situ (DCIS) (1). Estimates from several natural history studies of 

DCIS indicate that 20-30% will progress to invasive cancer without definitive surgical treatment 
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(2,3), implying that as many as 70% of patients who have surgery for DCIS may not derive 

benefit.  

The ability to recognize which pre-cancerous tumors are likely to progress to invasive 

cancer is of great importance because it would identify high-risk patients for surgical, 

pharmacological, and/or radiation treatment. In contrast, low-risk patients could be managed by 

watchful waiting, avoiding the unnecessary harms and side effects associated with these 

therapies (4). Furthermore, selecting patients most at risk would facilitate reallocating healthcare 

resources to those who would benefit most from treatment. 

Evolutionary mechanisms drive tumor progression (5). The impairment of control 

mechanisms of genetic integrity (6) accelerates the accumulation of new genetic alterations in 

cancer cells (7).  The combination of these alterations in an increasing number of clones 

represents a critical factor in tumor progression, as these clones constitute the substrate upon 

which selection acts (8). The identification of mutations and the level of genetic (and 

phenotypic) heterogeneity have been shown to be associated with the risk of tumor progression 

in other pre-cancers, like Barrett’s esophagus (9–11). The higher the number of mutations and 

the greater the intratumor genetic heterogeneity, the higher the risk of developing clones that are 

cancerous, metastatic, and treatment-resistant (12–16). 

It is challenging to integrate the combined effect of many mutations and genetic 

alterations that act simultaneously in cancer cells (17). Investigating the number of mutations and 

the level of heterogeneity allows us to introduce a quantitative parameter independent of the 

functional consequences of specific combinations of mutations, serving as a surrogate measure 

of the degree of evolvability of the neoplastic cells (18,19). 

Both genetic and phenotypic heterogeneity can be measured by comparing different 

regions of the same tumor, ideally through analysis of longitudinal cohorts with linked clinical 

outcomes. Such studies often necessitate analysis of archival formalin-fixed paraffin-embedded 

(FFPE) samples, which is challenging due to partial degradation of the DNA, FFPE-induced 

artifacts, which manifest as sequence alterations, and low yield of nucleic acids from a limited 

number of sections. We recently published a workflow that overcomes these challenges, enabling 

the assessment of measures of genetic divergence between regions of the same tumor (20). This 

work aimed to test the hypothesis that genetic and phenotypic heterogeneity within DCIS can 

predict the recurrence of DCIS and/or progression to invasive ductal carcinoma (IDC).  
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Materials and Methods 

Experimental design 

We performed two observational studies (Fig. 1, Table 1) to study DCIS progression. In a 

cross-sectional study (Fig. 1A), we compared DCIS samples from patients with DCIS only (Pure 

DCIS, n = 58) versus DCIS samples from patients with synchronous invasive ductal carcinoma 

(Synchronous DCIS, n = 61). In a longitudinal case-control study (Fig. 1B), we collected samples 

from patients with primary DCIS who were treated and then followed until they were diagnosed 

with an IDC recurrence (Progressors, n = 56), were diagnosed with a DCIS-only recurrence 

(Recurrents, n = 69), or did not recur within their follow-up time (Nonrecurrents, n = 99, 

minimum five years). We calculated the median follow-up time using the reverse Kaplan-Meier 

method (21). In both cohorts, we characterized the genotype and phenotype of two DCIS regions 

per patient. All samples came from different FFPE blocks or were separated by at least 8mm. For 

some progressors, we also obtained a subsequent IDC sample. The Institutional Review Board 

(IRB) of Duke University Medical Center approved this study, and a waiver of consent was 

obtained according to the approved protocol. 

 

 
Figure 1. Schematic of the two study designs. A: Cross-sectional study: Synchronous DCIS tumors are presumed 

to have evolved from pure DCIS that existed before the progression of the synchronous IDC. In patients with 

synchronous DCIS, only the DCIS component was sampled and assayed unless otherwise specified. B: Longitudinal 

case-control study: pure-DCIS samples from patients treated and followed up for at least five years or until they 

progress or recur. n: number of patients per cohort. 
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Clinical specimens 

We classified breast tumors according to the World Health Organization (WHO) 

criteria (22). We graded the IDC and DCIS samples according to the Nottingham grading 

system (23) or recommendations from the Consensus Conference on DCIS classification 

(24), respectively.  

All samples were obtained from formalin-fixed paraffin-embedded (FFPE) breast 

tissue blocks. Cases from the cross-sectional studies were obtained from the Duke Pathology 

archives. Cases from the longitudinal study were obtained from Translational Breast Cancer 

Research Consortium (TBCRC) sites, a national multi-center consortium of cancer centers 

that treat breast cancer patients. All cases underwent detailed pathology review (AH) for 

histologic features and case eligibility. 

DNA extraction and sequencing  

The DNA extraction, sequencing, and data processing protocol has been previously 

reported (20). For each neoplastic sample, we extracted the DNA from multiple serial 

archival FFPE tissue block sections after macro-dissecting the areas of interest. To estimate 

the germline sequence, we also extracted DNA from either distant benign breast tissue or a 

benign lymph node. The study pathologist confirmed the presence of ≥70% neoplastic cells 

in the microdissected areas of neoplastic samples and their absence from control samples. 

After DNA extraction, hybrid capture was performed using two targeted panels (all 

exons of the 83 genes in the breast cancer gene panel and the human exome), and the 

multiplexed libraries were sequenced using either an Illumina HiSeq with 4-channel 

chemistry (cross-sectional study) or a NovaSeq 6000 machine with 2-channel chemistry 

(longitudinal study). After alignment to the Genome Reference Consortium Human Build 37 

and marking duplicates, we obtained a mean de-duplicated depth of 115.9 ± 52.2 (SD). The 

resulting BAM files were the input data for our SNV calling and heterogeneity calculation 

pipeline. We discarded samples with less than 40% of the target covered at 40X. Sequencing 

was performed at the McDonnell Genome Institute at Washington University School of 

Medicine in St. Louis. 
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Additionally, we performed low-pass whole genome sequencing for the longitudinal 

study as previously described (25). The resulting BAM files were used as the input data for 

the CNA characterization pipeline. 

SNV characterization 

We used our previously reported software ITHE (20) to calculate by-patient SNV 

burden and divergence, leveraging the two neoplastic geographically distant samples and a 

control sample from the same patient. We recently developed, optimized, and validated this 

pipeline using 28 pairs of technical replicates (same extracted DNA, two aliquots were 

independently sequenced) of macrodissected FFPE DCIS samples similar to the specimens 

analyzed here. We used the filtering parameters we found optimal previously (20). ITHE was 

optimized for accurate divergence estimation and thus tries to maximize variant calling’s 

precision. We measured SNV divergence as the percentage of mutations detected in the 

union of the mutations from the two samples that are not shared by both samples. We 

required that the union set of mutations had at least five mutations to calculate divergence. 

SNV burden was calculated as the union of mutations in both samples. When comparing 

DCIS and IDC samples in the cross-sectional study, we report the mean of the two 

comparisons between one of the two DCIS samples and the IDC sample. 

Functional analysis 

We performed the functional enrichment analysis of genes that harbored non-
synonymous SNV mutations with PANTHER (26) and DAVID (27,28). We corrected the fold 
enrichment p-values considering the false discovery rate (FDR). 

CNA characterization 

We followed our previously published protocols for low-pass WGS data processing 

and CNA calling (25). Briefly, we used Nextflow-base’s Sarek pipeline to align the lpWGS 

data to the GRCh38/hg38 reference genome, marked duplicates, and re-calibrated quality 

scores. We used the resulting alignments to call autosomal CNA variants using QDNAseq 

(29) on 50-kb genomic bins after filtering genomic regions and reads for mappability and QC 

content while estimating ploidy and purity. We corrected the log2 ratio for the latter. CNAs 
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with |𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝑙𝑜𝑔2	𝑟𝑎𝑡𝑖𝑜| > 0.3 were considered as altered and normal otherwise. To 

maximize the robustness of our statistics, we measured CNA burden per sample as the 

proportion of the genome that was altered (over the total genome considered) and CNA 

divergence per patient as the proportion of the altered genome that is not shared between the 

two samples over the altered genome per patient (i.e.,	𝐶𝑁𝐴	𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = !△#
!∪#

, with A and B 

defined as the set of altered genomic regions of each homonymous sample, and Δ the set 

symmetric difference operator). 

Immunohistochemistry characterization 

We chose a series of 15 candidate proteins (Supplementary Table S1) representing 

several categories including essential breast cancer drivers (ER, PR, HER2), immune-related 

(FOXP3, CD68), resource and microenvironmental measures (GLUT1, CA9, CD31, FASN), 

myoepithelial and basement membrane (TP63, COL15A1) and progenitor or stem cell-related 

(ALDH1 and RANK) markers. Additional proteins included the proliferation marker KI-67, the 

adhesion marker phospho-FAK, and COX2 (PTGS2), which were previously described as being 

associated with DCIS progression. In the longitudinal study, these were reduced to ER and 

GLUT1 only (Supplementary Tables S2-3), based on the results from the cross-sectional study 

and the paucity of samples. We measured stain intensity using detailed expert scoring. In most 

cases, the study pathologist used a scoring system that captures the distribution of intensities in 

an IHC profile, while for a smaller number of markers, it was binary (Supplementary Table S1). 

The IHC profile was quantified as the percentage of the slide presenting different levels of 

increasing staining intensity: absence, low, medium, and high. Medium staining was deemed as 

approximately twice as intense as low staining and high staining three times as intense as low 

staining.  

We evaluated the IHC at three different scales of comparison:  

1. The average intensity of immunofluorescence across samples for each patient, measuring 

the typical intensity of IHC signal per patient. 

2. The variance of the intensity between samples for each patient, measuring the variations 

of IHC signal between distant locations in each patient.  

3. The variance of intensity within samples, measuring the variations of IHC signal at short 

distances in each patient. 
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These three measures are quantified by the Mean of Intensity Score, the Earth Mover’s Distance, 

and the Cumulative Density Index. Briefly, the Intensity Score is the weighted sum of the IHC 

profile proportions normalized by the maximum possible staining, the Earth Mover’s Distance 

represents the minimum cost of turning one profile into another (30), and the Cumulative 

Density Index represents how close from a uniform distribution the observed profile is and 

ranges from 0 (all the profile weight in one of the extreme categories) to 1 (uniform profile). See 

a detailed description of these statistics in Supplementary Text 1.   

Statistical analysis 

Cohort characterization 

For each study, we compared differences in the central tendency of genetic and 

phenotypic variables per patient between cohorts using the Kruskal-Wallis Rank Sum or the 

Mann-Whitney U tests for many or two cohorts, respectively. We followed the Kruskal-Wallis 

Rank Sum test with Dunn’s post-hoc test while controlling for multiple tests using the Holm-

Šidák adjustment (31). Exceptionally, CNA divergence met the assumptions of a parametric test, 

and thus, we used an ANOVA followed by Tukey HSD post-hoc tests. In cases where we used 

multiple measurements per patient (CNA burden), we used a Mixed-effects ANOVA with 

different random effect intercepts per patient to account for data dependencies (on the square-

root-transformed variable), followed by Tukey’s HSD on the estimated marginal means. 

Distinguishing Pure DCIS from Synchronous DCIS 

We performed variable selection among the phenotypic measurements with significant 

differences between cohorts using a Random Forest classification model (32) under the Gini 

impurity criterion to return the importance ranking of each feature given by their predictive 

power. We used the two top measurements to build a generalized linear logistic model. 

Similarly, we built a generalized linear logistic model with the genetic measurements that 

showed significant differences between cohorts and the combination of the three. Due to missing 

data, we compared the models under the Akaike information criterion (AIC) on the smallest 

dataset for all models (33). 
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Association with clinical outcomes 

Using our longitudinal study, we determined whether genetic and phenotypic statistics 

were independently associated with the time to clinical outcome (non-invasive recurrence or 

progression) using Cox regression analyses after checking they met the proportional hazards 

assumption. Nonrecurrent patients were right-censored using their follow-up time, and 

progressors’ recurrence time was used as their time to clinical outcome. Recurrents were 

discarded when considering progression, and progressors were discarded when considering non-

invasive recurrence. We also provide supplementary results in which the clinical outcomes are 

“any recurrence” and “progression without discarding recurrent patients.” In this case, 

recurrents were right-censored at the time of recurrence when considering progression, and 

otherwise, their recurrence time was used as their time to clinical outcome. We evaluated the 

statistical significance of Cox regressors using the Wald test. We used the proportional hazard 

regression model for one variable (SNV burden) to stratify patients into low and high SNV 

burden and plotted their event-free survival curves. We stratified using the risk relative to the 

patient with all variables (i.e., SNV burden here) set at the mean value (i.e., type = "risk", 

reference = "sample", in the predict.coxph function of the survival R package). We chose the 

threshold that maximized Youden’s J statistic (34) using the true outcomes. In all cases, we used 

the log-rank test to compare the survival trends of two or more groups. 

We also integrated 18 clinical covariates (Supplementary Table S4) with our eight 

genetic and phenotypic measurements to model time to non-invasive recurrence and time to 

progression. We performed variable selection using Cox LASSO and chose the regularization 

parameter that minimized the partial-likelihood deviance via 10-fold cross-validation. To reduce 

the stochasticity of the results, we performed this process 100 independent times per model and 

selected the variables that were selected in at least 90% of them. To reduce missingness, we 

performed mean imputation on the clinical covariates before variable selection. The selected 

variables were used to build the final Cox regression models using all patients with available 

(imputed) data for those variables. Alternatively, we selected patients with data for all covariates 

chosen without imputation. We used the final models to stratify patients as in the univariate 

proportional hazards regression above. In all cases, the model used to stratify patients and plot 

their event-free survival curves includes all the variables included in the forest plot. All variables 
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were standardized to make hazard ratios (HRs) comparable, and thus, HRs are relative to a 

change of 1 standard deviation unless specified otherwise.   

Data Availability 

All the sequencing data used in this manuscript is publicly available. The cross-sectional 

WES data at SRA with IDs (SRP298346 and XX) and the longitudinal WGS and WES data at 

HTAN dbGaP’s study accession phs002371.v6.p1. 

Reproducibility 

Scripts to reproduce most data pre-processing and statistical analysis can be found at 

https://github.com/adamallo/ManuscriptScripts_DCISRecurrenceVsProgression. 

Results 

Study cohorts 

We investigated DCIS progression to invasive cancer using two independent 

observational studies with different patients: a cross-sectional study and a longitudinal study 

(Fig. 1, Table 1). In the cross-sectional study (Fig. 1A), we compared DCIS samples from 

patients with DCIS only (Pure DCIS, n = 58) versus DCIS samples from patients with 

synchronous DCIS with invasive ductal carcinoma (Synchronous DCIS, n = 61). In the separate 

longitudinal study (Fig. 1B), we compared pure DCIS samples from patients who were treated 

and had long-term follow-up (median = 117 months,  95% CI [104, 132]). This cohort consisted 

of patients who progressed to IDC (progressors) (n = 56), patients who had a DCIS-only 

recurrence (recurrents, n = 69), or patients who did not recur during the follow-up interval 

(nonrecurrents, n = 99). In both studies, we characterized the genotype and phenotype of two 

formalin-fixed paraffin-embedded DCIS samples per patient, enabling measures of evolutionary 

divergence (see Methods). We also obtained a single sample of their IDC recurrence for some 

progressors. 
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Table 1. Patient Cohorts with WES data, lpWGS, or IHC data. Unk. = Unknown. 

 

Cross-sectional study 

Single Nucleotide Mutational Burden 

Pure DCIS carried fewer SNVs per patient (mean 7.5 ± 10.6 standard deviation) than 

synchronous DCIS (10.4 ± 15.3), but this difference was not statistically significant (Fig. 2A).  

The invasive component in synchronous DCIS patients showed a statistically 

significantly increased number of SNVs (18.1 ± 31.5, Fig. 2B) compared with their DCIS 

counterpart (Paired-samples sign test, p = 0.04) largely due to four cases of IDC with a dramatic 

increase in mutation burden. 

Study Cross-sectional Longitudinal
Assays WES/IHC WES/lpWGS/IHC

Cohort Pure Synchronous Non 
recurrent Recurrent Progressor

Number of patients 58 61 99 69 56
Year of Diagnosis

Median 

[min, max]

2010 

[1998, 2015]

2010.5 

[2000, 2017]

2009

[2000, 2014]

2008

[1998, 2017]

2006.5

[1999, 2016]

Age at Diagnosis
Median 


[min, max] 
57.2 


[34.0, 74.9]
57.9 


[40.9, 74.0]
55.0 


[41.0, 75.0]
54.9 


[40.0, 76.0]
50.6 


[38.0, 73.0]
Grade

1 1 [1.7%] 1 [1.6%] 2 [2.0%] 6 [8.7%] 4 [7.1%]
2 23 [39.7%] 22 [36.1%] 38 [38.4%] 29 [42.0%] 17 [30.4%]
3 34 [58.6%] 38 [62.3%] 59 [59.6%] 34 [49.3%] 35 [62.5%]

Pathologic Tumor Size
Median 


[min, max]
3.3


[0.8, 12.4]
4.0 


[0.2, 10.8]
2.5 


[0.3, 10.2]
1.7 


[0.2, 10.0]
1.85 


[0.4, 14.0]
Marker Status

ER (+) 43 [74.1%] 40 [65.6%] 65 [65.7%] 42 [60.9%] 27 [48.2%]
ER (-) 8 [13.8%] 21 [34.4%] 25 [25.3%] 17 [24.6%] 10 [17.9%]

ER (unknown) 7 [12.1%] 0 9 [9.1%] 10 [14.5%] 19 [33.9%]
Treatment

Lumpectomy (Lump.) 5 [5.1%] 17 [24.6%] 15 [26.8%]
Lump. + Radiation (Rad.) 60 [60.6%] 44 [63.8%] 20 [35.7%]

Mastectomy 22 [37.9%] 24 [39.3%] 33 [33.3%] 7 [10.1%] 19 [33.9%]
Lump. (Unk. Rad.) 36 [62.1%] 37 [60.7%] 1 [1.0%] 1 [1.4%] 2 [3.6%]

Time to Event (months)
Median


 [min, max]
98 


[60, 228]
37 


[12, 196]
55 


[12, 176]
Margins

Ink on tumor 0 0 0
<2mm 23 [23.2%] 28 [40.6%] 15  [26.8%]

At least 2mm 35 [35.4%] 22 [31.9%] 20 [35.7%]
Clear, NA mm 41 [41.4%] 19 [27.5%] 21 [37.5%]

Race
White 34 [58.6%] 43 [70.5%] 67 [67.7%] 41 [59.4%] 28 [50.0%]
Black 22 [37.9%] 15 [24.6%] 22 [22.2%] 21 [30.4%] 23 [41.1%]
Other 2 [3.4%] 3 [4.9%] 2 [2.0%] 2 [2.9%] 2 [3.6%]

Unknown 0 0 8 [8.1%] 5 [7.2%] 3 [5.4%]

1
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Figure 2. Cross-sectional SNV burden and divergence. Distribution of the number of SNVs per patient in the two 

cross-sectional cohorts A and the two lesion types (DCIS vs. IDC) present in the synchronous cohort B. Distribution 

of SNV genetic divergence (percentage of private mutations) per patient in the two cross-sectional cohorts C. We 

calculated divergence for tumors with at least five mutations in the union of the two samples, which explains the 

lower number of tumors per group. P-values shown if p ≤ 0.1, A, C: Mann-Whitney U, B: Paired-samples sign test. 

Interquartile range (vertical line) and median (point) in burgundy, N: number of patients. 

SNV Genetic Divergence 

We measured the SNV genetic divergence as the percentage of mutations that are private 

to either sample per patient. Synchronous DCIS showed higher genetic divergence (21.5% ± 

17.5%) than pure DCIS (10.8% ± 17.4%, Fig. 2C) (Mann-Whitney U test, p = 0.009). 

Additionally, we also characterized the genetic divergence between the two synchronous 

components (i.e., DCIS vs. IDC in synchronous patients) (44.5% ± 29.0%), which is higher than 

the paired synchronous DCIS divergence (Supplementary Fig. S1, Paired-samples sign test, p = 

0.002).  

Phenotypic characterization 

Synchronous DCIS samples presented higher levels of GLUT1 staining (p = 0.004) and lower 

levels of CA9 staining (p = 0.01) than pure DCIS samples (Fig. 3A, pairwise Mann-Whitney U 

tests of mean intensity scores [MIS], unadjusted p-values); all other markers showed non-

significant differences between groups. This result holds when one of the two DCIS samples per 

patient is used randomly instead of the MIS (Supplementary Fig. S2). 
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Figure 3. Cross-sectional phenotypic characterization and divergence. Distribution of mean intensity scores 

(MIS) per patient (see Methods) A, between-sample divergence (B, Earth Mover’s Distance [EMD]) and within-

sample divergence (C, Cumulative Density  Index [CDI]). A: for each patient and IHC marker, B and C: only 

markers with significant differences between cohorts (unadjusted p-values). Unadjusted pairwise Mann-Whitney U 

p-values shown if p ≤ 0.1. Interquartile range (vertical line) and median (point) in burgundy. N: number of patients. 

Phenotypic Divergence 

We characterized the between-sample phenotypic divergence for each marker using a 

distance between staining intensity profiles (Earth Mover’s Distance) and the within-sample 

divergence using a measure of staining intensity uniformity (Cumulative Density Index; see 

Supplementary Methods for detailed definition of these indices). 

Multiple markers presented differences in between-sample divergence between pure 

DCIS and synchronous DCIS samples, with the latter showing increased divergence for GLUT1 

(p = 0.01),  FOXP3 (p = 0.01), and HER2 (p = 0.04) staining, but decreased divergence of ER (p 

= 0.01) staining (Fig. 3B, Supplementary Fig. S3, Pairwise Mann-Whitney U tests, unadjusted p-

values). This reduction of ER phenotypic divergence in synchronous DCIS samples was 

replicated in the within-sample measures (p = 0.01) and mimicked by CA9 (p = 0.01) (Fig. 3C, 
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Supplementary Fig. S4,  Pairwise Mann-Whitney U tests, unadjusted p-values). A reduction in 

the phenotypic divergence for ER in synchronous DCIS samples indicates larger uniformity 

across and within samples, while the mean intensity of ER signal is not markedly different (Fig. 

3A). 

Distinguishing Pure DCIS from Synchronous DCIS 

All eight significant phenotypic divergence features—MIS for GLUT1 and CA9 (Fig. 

3A), EMD for GLUT1, FOXP3, ER and HER2 (Fig. 3B), and CDI for ER and CA9 (Fig. 3C)—

were combined in a mixed logistic regression to model the progression status of the samples, 

from which the most important features were selected according to their relative predictive 

power. A reduced logistic model including between-sample diversity (EMD) for GLUT1 and 

within-sample diversity (CID) for ER had statistically significant coefficients (GLUT1 EMD, p = 

0.01; ER CDI, p = 0.01) and spanned 40 pure DCIS cases and 52 synchronous DCIS cases.  

Therefore, we selected these two IHC markers (GLUT1 and ER) as the targets for phenotypic 

divergence to be included in the longitudinal study.  

Logistic regression showed that the only statistically significant genetic measurement 

(SNV divergence) was strongly associated with the cohort, with p = 0.0136, so it was also 

selected for evaluation in the longitudinal study.   

Longitudinal Study: Associations with Recurrence and Progression 

We used the cross-sectional cohort as a discovery cohort, using the synchronous DCIS as 

a proxy for high-risk DCIS likely to progress to IDC. Samples in our validation cohorts come 

from patients with pure DCIS with known outcomes (nonrecurrent, recurred as DCIS, 

progressed to IDC) and were obtained before treatment (Fig. 1B). We sequenced the exomes of 

two regions of each index DCIS in the longitudinal cohorts, mirroring the methods for the cross-

sectional cohorts, and also performed low-pass whole genome sequencing data for most samples. 

Mutational burden 

Primary DCIS tissue from nonrecurrent patients carried the fewest SNVs (13.4 ± 18.2), 

followed by that of recurrent patients (19.2 ± 26.4) and progressors (39.7 ± 46.2). These 

relationships between cohorts were mirrored by the CNA alteration burden (nonrecurrents: 
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15.9% ± 15.0% genome altered, recurrents: 17.3% ± 14.8%, progressors: 24.6% ± 17.1%) but 

presented higher p-values. Thus, SNV burden shows statistically significant differences between 

nonrecurrents and progressors (p = 0.003) and between recurrents and progressors (p = 0.05, 

Dunn’s test corrected for multiple tests with the Holm-Šidák adjustment) (Fig. 4A). In contrast, 

CNA burden was significantly different only between nonrecurrents and progressors (p = 0.03, 

Tukey HSD) (Fig. 4B). 

 

 
Figure 4. Longitudinal mutational burden and divergence. Distribution of SNV (A, C) and CNA (B, D) 

mutational burdens (A, B) and divergences (C, D) in the three longitudinal cohorts (Nonrec: nonrecurrents, Rec: 

recurrents, Prog: progressors). A: number of SNVs per patient; Omnibus test: Kruskal-Wallis Rank Sum, Post-hoc 

test: Dunn’s test with control for multiple tests using the Holm-Šidák adjustment. B: proportion of genome with 

copy number alterations per sample; Omnibus test: Mixed-effects ANOVA on the square-root-transformed 

proportion of genome altered, Post-hoc test: Tukey HSD on estimated marginal means. C: percentage of private 

SNV mutations per patient; Omnibus test: Kruskal-Wallis Rank Sum. D: percentage of the genome with copy 

number alterations private to either sample per patient; Omnibus test: ANOVA, Post-hoc test: Tukey HSD. P-values 

shown if adjusted p ≤ 0.1. Interquartile range (vertical line) and median (point) in burgundy, N: number of data 

points (A, C, and D: patients, B: samples). We only calculated divergence for tumors with at least five mutations in 

the union of the two samples, which explains the lower number of tumors in C.  

Genetic Divergence 

Similar to SNV divergence, we measured CNA divergence as the percentage of the 

altered genome that is private to either sample per patient. SNV divergence was highest in 
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recurrent patients but not statistically different between cohorts (nonrecurrents: 17.0% ± 13.8%, 

recurrents: 28.2% ± 25.5%, progressors: 18.4% ± 19.3%, Fig. 4C). In contrast, CNA divergence 

followed a decreasing pattern of divergence with progression (Fig. 4D), by which nonrecurrents 

were the most divergent (77.4% ± 16.4%), followed by recurrents (67.7% ± 23.4%) and 

progressors (63.7% ± 21.7%). Only progressors and nonrecurrents showed statistically 

significant differences in CNA divergence in pairwise comparisons (Fig. 7B, p = 0.03, Tukey 

HSD). 

Functional analysis of non-synonymous SNV mutations 

The functional analyses highlighted significant differences between the three cohorts. 

According to DAVID, recurrent patients showed enrichment of mutated genes involved in taste 

reception (TAS2R30, TAS2R31, TAS2R43, and TAS2R46), while progressors showed 

enrichment of genes typically mutated in cancers such as endometrial, small cell lung, prostate, 

and breast cancer, glioma and melanoma (PIK3CA, ERBB2, PTEN, AKT1, PIK3R2, TP53, 

PIK3CG), and genes involved in the determination of cell shape, arrangement of transmembrane 

proteins, and organization of organelles (SPTA1, SPTBN5, DST, SPTAN1). Nonrecurrents did 

not show significant functional enrichment (Supplementary Table S5). In addition, PANTHER 

functional analysis revealed an enrichment of several pathways only in progressors 

(Supplementary Table S6), such as Hypoxia response via HIF activation (p < 0.001, false 

discovery rate correction herein this section), Insulin/IGF pathway-protein kinase B signaling 

cascade (p < 0.001), p53 pathway (p = 0.003), Endothelin signaling pathway (p = 0.003), 

Hedgehog signaling pathway (p = 0.02), and PI3 kinase pathway (p = 0.03). 

Phenotypic Characterization and Divergence 

We characterized the DCIS phenotypes of the three cohorts using the 

immunohistochemical profiles of the two markers that showed the highest discriminating power 

between the two cross-sectional cohorts, ER and GLUT1 (within-sample and between-sample 

divergence, respectively; see Immunohistochemistry characterization methods section). GLUT1 

intensity was different between longitudinal cohorts (Fig. 5A, p = 0.04, Kruskal-Wallis Rank 

Sum), like in the cross-sectional study (Fig. 3A), with progressors having a generally higher 

intensity than nonprogressor cohorts, but the pairwise differences were not statistically 
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significant (vs. nonrecurrents p = 0.06, vs. recurrents p = 0.07). ER intensity (Fig. 5B) was 

higher in ER+ progressors (p = 0.02) and recurrents (p = 0.03) than in nonrecurrents (Dunn’s 

test corrected for multiple tests with the Holm-Šidák adjustment). This new pattern was not 

found in the cross-sectional study, and the difference between progressors and nonrecurrents is 

robust to ER status stratification (Supplementary Fig. S5). 

 

 
Figure 5. Longitudinal phenotypic characterization. Distribution of mean normalized intensities (MIS) per 

patient (see Methods) in the three longitudinal cohorts (Nonrec: nonrecurrents, Rec: recurrents, Prog: progressors). 

A: GLUT1 marker, B: ER marker in ER+ patients only. Omnibus test: Kruskal-Wallis Rank Sum, Post-hoc test: 

Dunn’s test with control for multiple tests using the Holm-Šidák adjustment. P-values shown if adjusted p ≤ 0.1. 

Interquartile range (vertical line) and median (point) in burgundy. N: number of patients. 

 

We assessed the phenotypic divergence for these two markers using the same 

methodology as in the cross-sectional study, evaluating ER within-sample divergence and 

GLUT1 between-sample divergence, but neither showed a statistically significant difference 

between longitudinal cohorts (Supplementary Fig. S6).  

Association with clinical outcomes 

We tested if our genetic and phenotypic markers were independently associated with the 

time to non-invasive recurrence or progression using Cox regression analyses. Additionally, 

alternative clinical outcomes (recurrence [including progression] and progression with non-

invasive recurrents right-censored) can be found in the supplementary materials (Supplementary 

Figs. S7-S8, S10, Supplementary Tables S7-S8).  

 Time to non-invasive recurrence was associated with divergences: SNV (p = 

0.024), within-sample ER (p = 0.026), and CNA (p = 0.038), while time to progression was 

primarily associated with totals: SNV burden (p < 0.0001), ER intensity (p = 0.025), GLUT1 
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intensity (p = 0.027), and CNA burden (p = 0.045), but also CNA divergence (p = 0.025) 

(Supplementary Tables S9-S10, Wald test). The association between SNV burden and 

progression was the only one that survived multiple-test correction (Supplementary Tables S7-

S8, progression adjusted p < 0.0001, Holm correction). Accordingly, we show the capability of 

this genetic measurement to stratify patients’ non-invasive-recurrence-free (Fig. 6A) and 

progression-free (Fig. 6B) survival by splitting patients into low and high SNV burden categories 

and comparing their event-free survival curves. The Kaplan-Meier plots show differences in the 

event-free survival curves, with median times to event that differ between groups 100 months for 

non-invasive recurrence (Fig. 6A, p = 0.026) and 57 months for progression (Fig 6B, p < 0.0001, 

Log-rank test). 

 

 
Figure 6. Event-free survival curves of patients stratified by SNV burden. Kaplan-Meier plots of stratified 

patients. A: Non-invasive-recurrence-free survival. B: Progression-free survival. SNV burden thresholds maximize 

Youden’s J statistic of the outcomes (17 SNVs for non-invasive recurrence and 21 for progression). Log-rank test. 

The table below the Kaplan-Meier plot shows the number of samples at risk at different times.  

  

Finally, we integrated 18 clinical covariates (Supplementary Table S4) with our genetic 

and phenotypic measurements to develop comprehensive models of DCIS non-invasive 
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LASSO contained three significant variables for non-invasive recurrence (Fig. 7A, treatment 

option p < 0.001, ER status p = 0.003, and SNV divergence p = 0.018, Wald test) and two for 

progression (Fig. 7C, surgical margin p = 0.017, and SNV burden p = 0.004, Wald test), and 

event-free survival curves of patients stratified using their relative risk were highly significant, 

with median time to events that differ between groups in 123 months for non-invasive recurrence 

(Fig. 7B) and > 69 months for progression (Fig. 7D). An alternative parameterization of the 

surgical margin as a 2mm threshold showed very similar results (Supplementary Fig. S9, p = 

0.048, Wald test). The associations with the treatment option and ER status were repeatable 

without using covariate imputation (Supplementary Fig. S10), while the surgical margin 

association was only robust when not excluding recurrent patients (Supplementary Figs. S11-

S12). No other significant variables in these models were imputed. 

  

 
Figure 7. Associations with time to clinical outcome. Forest plots describing proportional hazard regressions using 

variables selected with LASSO (A, C) and corresponding Kaplan-Meier plots of patients stratified by the relative 

risk threshold that maximizes Youden’s J statistic of the outcomes (B, D). A-B: Non-invasive-recurrence-free 

survival. C-D: Progression-free survival. Hazard Ratios (second column, A, C) are relative to 1 standard deviation. 

Lumpectomy Only is compared to Lumpectomy + Radiation and Mastectomy and ER+ is compared to ER-. No 

microcalc(ification)s is compared to having microcalcifications in DCIS-only and/or benign ducts. Tables below 

Kaplan-Meier plots show the number of samples at risk at different times. Log-rank test.   
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Discussion 

Evolutionary measurements summarize the results of complex evolutionary dynamics, 

and equivalent observations may result from very different evolutionary scenarios. For example, 

both a low mutation rate under neutral evolution and a hard selective sweep can generate low 

divergence of high allele-frequency mutations. Divergence also has multiple scales, and multiple 

evolutionary processes may affect scales differently or even in opposite directions. Clonal 

expansion may reduce within-sample divergence but increase between-sample divergence. Intra-

tumor heterogeneity provides the fuel for natural selection, but it is not clear what form of intra-

tumor heterogeneity (genetic, epigenetic, or phenotypic) is most relevant to the clinical outcomes 

of a particular tumor, and it is not clear how best to measure it (18).  

The improved efficacy of preventive screenings provided the ability to identify many 

tumors in the earliest phases of their evolution, demanding the development of new approaches 

to stratify the risk to these patients to avoid over- and undertreatment. However, every neoplasm 

develops a unique set of alterations through somatic evolution (18), making it unlikely that any 

given set of molecular markers will be universally applicable, even within a given cancer type. In 

contrast, measures of the evolvability of a neoplasm, such as the number of mutations and 

measures of intra-tumor heterogeneity, may be universal biomarkers that predict neoplastic 

progression in many different types of cancers and pre-cancers (9,10,15). By taking two spatially 

distinct samples for each primary pre-cancer, we measured genetic and phenotypic divergence 

within and between samples, and their relationship with two key clinical processes: 1) recurrence 

of precancer following treatment and 2) progression of precancer to invasive cancer. 

DCIS recurrence and progression are different biological processes 

Based on our results, progression from DCIS to invasive breast cancer appears to be a 

qualitatively and biologically different process from recurrence of DCIS. We had assumed that 

progression to invasion first requires recurrence of the DCIS and so expected that the factors that 

predicted recurrence would also predict progression. We were surprised that there was no 

overlap in their multivariate models (Fig. 7).  

Among all genetic and phenotypic variables, SNV burden, as measured with our 

previously released software ITHE (20), was the variable that showed the largest differences 

between the patients that did not recur, the patients that recurred with DCIS, and the patients that 
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progressed to IDC. SNV burden also had the strongest independent association with time to 

progression and was an essential component of its best multivariate model. The lpWGS CNA 

burden from the same samples corroborated this finding with higher p-values. Theoretically, this 

increase in mutation burden may result from an increase in mutation rate, evolutionary time, or 

self-renewing cell population size. However, due to limitations in detecting variants at low allele 

frequency, measured mutation burdens are biased towards high allele frequency mutations and 

are thus most sensitive to early increases in mutation rates or the selective evolutionary forces 

that drive clonal expansion (35,36). This bias is especially true when using our program ITHE 

since, by design, it maximizes specificity in exchange for a lower sensitivity for low-frequency 

mutations in a sample. For these reasons, we do not necessarily expect SNV burden measured 

differently to show the associations found here.  

Progression was also associated with two other magnitude measurements (i.e., totals: ER 

and GLUT1 intensities) but did not provide enough additional information over the SNV burden 

to be included as significant variables in the best multivariate model, which also included the 

size of the surgical margin as a significant predictor.  

Previous studies have shown that surgical margins are clinically important in reducing the 

risk of ipsilateral breast tumor recurrence after breast-conserving surgery (37,38). Positive 

margins (i.e., DCIS at the edge of the resected tissue) clearly increase recurrence risk, but 

patients with positive margins were excluded from our study. Instead, we analyzed how the size 

of the negative margins associate with the clinical outcome. The evidence for this association is 

mixed in the literature (37,39), but current consensus guidelines consider margins >2mm 

adequate. Notably, these studies do not typically differentiate recurrence of DCIS from 

progression to invasive disease in their endpoints, as we did here. We found that the size of the 

surgical margins was one of the strongest predictors of progression but was not a statistically 

significant predictor of recurrence with DCIS, neither in the selected multivariate model nor in 

isolation. This negative result may be due to a type II error, but even if such an association 

exists, it is likely to be weaker than that observed for progression. We hypothesize that a micro-

invasive phenotype could reduce the probability of obtaining large surgical margins, or a 

phenotype that makes DCIS cells more independent could allow small clusters of cells left over 

during surgical treatment to survive and further progress to invasive disease more readily. This 

finding highlights the importance of segregating non-invasive recurrence from progression and 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.15.24311949doi: medRxiv preprint 

https://paperpile.com/c/owxq9Z/TH0C+Z2ga
https://paperpile.com/c/owxq9Z/nDqS+TPvl
https://paperpile.com/c/owxq9Z/D1ch+nDqS
https://doi.org/10.1101/2024.08.15.24311949
http://creativecommons.org/licenses/by-nc/4.0/


 

how associations with recurrence (of any kind) are primarily a composite of the associations with 

non-invasive recurrence and progression (Supplementary Fig. S8A). We confirmed our results 

using the consensus guideline >2mm threshold instead of treating surgical margins as a 

continuous variable, obtaining equivalent though weaker results. This observation shows 

prognostic information in the size of the surgical margin. The fact that all associations with 

progression held independently of whether we excluded recurrent patients or right-censored them 

at the time of DCIS recurrence (Supplementary Fig. S8C-D) shows their robustness and adds 

evidence towards non-invasive recurrence and progression being qualitatively different 

phenomena. 

In contrast, time to non-invasive recurrence was associated with the extent of genetic 

divergence of SNVs between the two assayed regions of DCIS. We could not corroborate this 

finding with CNA divergence, which followed the opposite trend but was also correlated to time 

to recurrence in the univariate models. The true (i.e., known without error) amount of genetic 

divergence measured using different mutation types should yield equivalent results if large 

enough mutational burdens of both types are accumulated. A few estimation biases may explain 

the discordance we observed between SNV and CNA divergences. A low CNA burden may 

increase the estimated divergence due to a higher false positive rate in the segmentation process 

without a broad range of true relative intensity values. In fact, CNA burden and CNA divergence 

were moderately anticorrelated across the study (ρ = -0.36, p < 0.001), and this anticorrelation 

was driven by the cohort with the lowest CNA burden. High within-sample heterogeneity is also 

expected to reduce the accuracy of between-sample divergence estimates and lead to the 

underestimation of the mutation burden. Low SNV burden also leads to missing data in SNV 

divergence estimates since divergence cannot be calculated accurately with few alterations. ER 

divergence followed the same direction as CNA divergence, with greater divergence associated 

with a lower risk of recurrence, but SNV divergence followed the opposite trend. These 

divergences were the only three measurements associated with time to non-invasive recurrence 

in the univariate analyses (Supplementary Table S9). Non-invasive recurrence is associated 

exclusively with divergence statistics, while progression was primarily associated with totals 

(SNV burden and mean GLUT1 intensity). Intratumor heterogeneity can arise from an increase 

in the amount of evolution (same mechanisms as mutation burden above) but also with 
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diversifying selection, and we have previously associated it with poor prognosis in other pre-

cancers (9).  

Non-invasive recurrence was also associated with the type of DCIS treatment and 

estrogen-negative status. The fact that patients treated with lumpectomy alone were more likely 

to recur than those treated with lumpectomy and radiation or mastectomy has been well 

described. Adjuvant radiation therapy has been previously shown to reduce the risk of recurrence 

(40), and after mastectomy, patients are no longer screened using mammograms, making it 

unlikely that asymptomatic noninvasive recurrences would be detected. The association between 

recurrence and ER status may be unsurprising since patients with ER+ breast cancers have better 

prognoses than ER- ones (41,42). However, its association with DCIS recurrence is unclear (43–

45), and the balance of evidence points against it (46). As for surgical margins, most studies are 

limited by not differentiating between recurrence and progression endpoints. At least one of the 

studies that made this distinction (43) found a decrease in non-invasive, but not in invasive 

recurrences in ER+ patients, which is consistent with our results. Different endpoints may 

partially explain the mixed evidence on the association between ER and DCIS recurrence and 

progression.    

Functional genetic analysis also showed a difference between the three cohorts, 

particularly between those DCIS that recurred compared to those that progressed. DCIS that will 

recur without invasion shows enrichment of mutations in genes involved in the TAS2R signaling 

network. The activation of these genes determines a pro-apoptotic, anti-proliferative, and anti-

migratory response action in highly metastatic breast cancer cell lines (47). These genes also 

appear to be involved in the regulation of apoptosis in head and neck squamous cell carcinoma, 

and their impairment could favor the survival of cancer cells (48). On the other hand, DCIS that 

will progress to invasion demonstrates a broader variety of biological processes and pathways 

involved, such as hypoxia response, insulin/IGF, endothelin, hedgehog, p53, and PI3 kinase 

signaling pathways. These biological processes are typically altered in various types of cancer 

and also show an enrichment of mutations in genes involved in the reorganization of the 

cytoskeleton. The ability to metastasize outside the mammary gland and to relapse observed in 

these patients is supported by mutations in those pathways. 
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Synchronous DCIS is not a good model for DCIS progression 

Cross-sectional studies are much less resource-intensive, faster, and simpler to conduct 

than longitudinal cohort studies. If synchronous DCIS (adjacent to IDC) was a good model for 

primary DCIS that later progressed to IDC, cross-sectional studies could be more readily 

employed as relevant surrogates for cancer progression. However, our results show this is not 

possible for our purpose, and in fact, synchronous DCIS shares more similarities with DCIS that 

will recur as DCIS than with DCIS that will progress.  

The pure DCIS samples in our cross-sectional study are equivalent to a mixture of 

samples from the three cohorts in our longitudinal study since their future outcomes are not 

considered. Thus, characteristics associated with clinical outcomes are expected to be mixed in 

the cross-sectional study. We found that DCIS adjacent to IDC showed increased divergence, 

which may result from divergent evolution facilitated by longer evolutionary times, the 

interaction with IDC, or an intrinsic characteristic of early-progression DCIS. If we assume that 

IDC originates from DCIS (stepwise progression model), synchronous DCIS samples are (on 

average) evolutionarily older than pure DCIS samples, representing a later evolutionary stage 

than samples from either study. In this case, the cross-sectional study would reveal differences 

between early and late DCIS. Alternatively, if we assume that an early progression model is also 

possible (i.e., born to be bad (49)), synchronous DCIS would be enriched with this DCIS sub-

type. In this case, the cross-sectional study would show evolutionary characteristics that 

distinguish those DCIS fated for invasive progression. Additionally, the presence of IDC near 

synchronous DCIS may also alter its characteristics, modifying its environment systemically 

(e.g., immune response) and locally (e.g., microenvironment and cell composition through cell 

migration).  

The higher between-sample genetic divergence we found in synchronous DCIS compared 

to pure DCIS aligns better with stepwise DCIS progression, in which late DCIS would have had 

more evolutionary time to undergo divergent evolution. Under the early progression model, this 

may be an intrinsic characteristic of such a DCIS subtype that could facilitate the rapid invasion 

of nearby tissues. Most (75%) markers with significantly different between-sample divergences 

showed higher divergence in synchronous DCIS, and all markers with significantly different 

within-sample divergences showed the opposite trend. These results are concordant with the 
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genetic results and our expectations under a stepwise progression model but did not survive 

multiple-test correction. 

Integrating the results with clonal evolution in neoplastic progression 

The two observational studies we conducted here are complementary and together 

improve our understanding of the evolutionary process leading to DCIS progression and 

recurrence. We find that primary DCIS that will progress to IDC is more genetically and 

phenotypically evolved, with higher SNV and CNA burden and more aggressive phenotypes, 

both metabolically and with respect to its estrogen sensitivity. At least one selective sweep is 

likely a part of their evolutionary history, which would reduce genetic divergence in the tumor. 

Higher cell motility could also reduce between-sample heterogeneity. Surgical margins show the 

strongest association with progression, suggesting that there may be features of the growth 

pattern of these lesions that make it more difficult to completely excise surgically. In contrast, 

DCIS recurrence may be primarily enabled by suboptimal clinical management. The few 

evolutionary features associated with DCIS recurrence suggest an increased accumulation of 

evolutionary changes in those lesions compared to those that do not recur, which nevertheless do 

not attain the degree of divergence necessary for invasive progression. In aggregate, the 

evolutionary history of DCIS recurrences may lack the strong selective sweeps that may be 

necessary conditions to invade other tissues successfully. DCIS adjacent to IDC shows increased 

divergence, which may result from divergent evolution facilitated by longer evolutionary times, 

the interaction with IDC, or an intrinsic characteristic of early-progression DCIS (i.e., born to be 

bad). 

Conclusions 

In summary, the evolutionary and clinical measures that predict the recurrence of DCIS 

differ from those that predict progression to IDC. Furthermore, DCIS adjacent to concurrent 

invasive cancer appears to be distinct from DCIS that will progress to invasive cancer over time. 

These findings suggest that the biological dynamics that make DCIS likely to recur differ from 

those that make it likely to progress, and those dynamics interact differently with our clinical 

interventions. These insights have the potential to improve both risk stratification and 

individualized patient management for high-risk DCIS. 
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