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Abstract
Background: Ovarian	metastasis	 (OM)	results	 in	poor	 survival	of	gastric	can-
cer	(GC)	patients.	While	immunotherapy	has	emerged	as	a	promising	approach	
for	late-	stage	GC,	validated	immune-	related	prognostic	signatures	still	remain	in	
need.	In	this	study,	we	constructed	an	ovarian	metastasis-		and	immune-	related	
prognostic	 signature	 (OMIRPS),	 characterized	 the	molecular	and	 immune	 fea-
tures	of	OMIRPS-	categorized	subgroups	and	predicted	 their	potential	 response	
to	immunotherapy.
Methods: Three	individual	cohorts	were	used	to	construct	and	evaluate	OMIRPS:	
RNA-	seq	 of	 matched	 primary	 GC	 and	 OM	 from	 Fudan	 University	 Shanghai	
Cancer	 Center	 (FUSCC)	 (discovery	 cohort,	 n  =  4),	 The	 Cancer	 Genome	 Atlas	
(TCGA)	(training	cohort,	n = 544)	and	GSE84437	(validation	cohort,	n = 433).	
Differentially	expressed	genes	(DEGs)	 identified	between	primary	GC	and	OM	
and	 immune-	related	 genes	 (IRGs)	 from	 the	 ImmPort	 and	 InnateDB	 databases	
were	used	to	identify	immune-	related	prognostic	hub	genes,	which	were	further	
used	to	construct	OMIRPS	by	using	LASSO	regression	analysis.	Prognosis,	molec-
ular	characteristics,	 immune	features,	and	differential	 immunotherapy	efficacy	
between	different	OMIRPS	subgroups	were	analyzed.
Results: Functional	 analyses	 of	 DEGs	 revealed	 the	 significance	 of	 immune-	
related	 signatures	 and	 pathways	 in	 the	 OM.	 Immune-	related	 prognostic	 hub	
genes	including	TNFRSF18,	CARD11,	BCL11B,	NRP1,	BNIP3L,	and	ATF3	were	
utilized	to	construct	OMIRPS,	which	was	identified	as	an	independent	prognostic	
factor.	Comprehensive	analyses	unveiled	the	distinctive	molecular	and	immune	
characteristics	of	OMIRPS-	high	and	-	low	subgroup	in	regard	to	enriched	path-
ways,	 mutation	 rate,	 tumor	 mutation	 burden,	 microsatellite	 instability	 status,	
infiltrated	immune	cell,	immune	exclusion	score,	and the	prediction	of immuno-
therapy	efficacy.	Additionally,	OMIRPS	was	associated	with	Immune	Subtypes	
with	borderline	significance.
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1 	 | 	 INTRODUCTION

Gastric	cancer	(GC)	is	the	third	leading	cause	of	cancer-	
related	 deaths	 worldwide	 and	 distant	 metastasis	 is	 one	
of	the	largest	threats	to	its	poor	prognosis.1	Ovarian	me-
tastasis	(OM)	is	one	unique	type	of	metastasis	 in	female	
patients,	with	its	incidence	ranging	from	0.3%	to	6.7%.2,3	
Despite	 the	 combined	 efforts	 of	 mastectomy	 and	 sys-
temic	chemotherapy,	the	median	survival	period	remains	
<19	months,4,5	 indicating	 the	 limited	 efficacy	 of	 current	
therapeutics	 and	 the	 urgent	 need	 to	 develop	 new	 ap-
proaches	to	the	treatment	of	OM.

In	recent	years,	immunotherapy	has	emerged	as	a	prom-
ising	method	 in	cancer	 treatment.6	Notably,	monoclonal	
antibodies	 targeting	 immune	 checkpoints	 such	 as	 pro-
grammed	death-	1	(PD-	1)	and	programmed	death-	ligand	1	
(PD-	L1)	have	shown	efficacy	in	melanoma,	non-	small	cell	
lung	cancer,	renal	cell	carcinoma,	as	well	as	gastrointesti-
nal	malignancy.7	With	respect	 to	GC,	clinical	 trials	have	
demonstrated	 antitumor	 activity	 with	 PD-	1/PD-	L1	 in-
hibitors,8	with	the	milestone	clinical	trial	Checkmate	649	
leading	to	the	Food	and	Drug	Administration	approval	of	
the	PD-	1	inhibitor	nivolumab	for	advanced	or	metastatic	
GC.9	However,	immune	checkpoint	inhibitor	(ICI)-	based	
immunotherapy	has	not	been	widely	applied	in	the	treat-
ment	of	GC	patients	with	OM	to	date.	Moreover,	the	re-
sponse	rate	of	GC	patients	to	ICI	is	reportedly	low,10	which	
could	be	partially	explained	by	the	distinctive	molecular	
and	 immune	 characteristics	 such	 as	 tumor	 immune	 mi-
croenvironment	(TIME)	of	different	patients.11	To	identify	
the	subgroup	of	GC	patients	who	are	more	likely	to	benefit	
from	immunotherapy,	immune-	related	predictive	models	
such	as	TMEscore	have	been	developed.12,13	Nevertheless,	
effective	immune-	related	prognostic	and	therapeutic	indi-
cators	have	not	been	constructed	in	GC	patients	with	OM	
so	far.

In	 the	 present	 study,	 we	 aimed	 to	 establish	 an	 OM-	
related	 signature	 which	 could	 predict	 the	 prognosis	 of	
GC	patients	and	their	response	to	immunotherapy.	RNA-	
seq	 analyses	 of	 DEGs	 between	 paired	 primary	 GC	 and	
OM	 from	 FUSCC	 cohort	 uncovered	 the	 significance	 of	
immune-	related	signatures	and	pathways.	Based	on	DEGs	

and	 public	 databases-	derived	 immune-	related	 genes	
(IRGs),	we	identified	a	total	number	of	19	immune-	related	
hub	prognostic	genes.	We	further	utilized	a	LASSO	regres-
sion	to	construct	an	OM-		and	immune-	related	prognostic	
signature	 (OMIRPS).	 We	 validated	 the	 prognostic	 value	
of	 OMIRPS	 in	 both	TCGA-	STAD	 and	 GSE84437	 cohort,	
characterized	the	molecular	and	immunological	features	
of	 different	 OMRIPS	 subgroups	 and	 evaluated	 its	 pre-
dictive	 ability	 of	 immunotherapy	 efficacy.	We	 compared	
the	 OMIRPS	 scoring	 with	 other	 classification	 systems	
and	unveiled	 that	OMIRPS	was	 independent	 from	TNM	
staging	 and	 was	 associated	 with	 Immune	 Subtypes	 (IS)	
with	borderline	significance.	These	results	suggested	that	
OMIRPS,	 which	 was	 originated	 from	 the	 bioinformatic	
studies	 of	 FUSCC	 cohort	 and	 public	 databases	 (TCGA-	
STAD	and	GSE84437	cohort),	served	as	a	promising	OM-	
related	 immune	 biomarker	 for	 the	 prediction	 of	 patient	
prognosis	and	immunotherapy	efficacy.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 RNA sequencing of paired primary 
GCs and OMs from Fudan University 
Shanghai Cancer Center

The	 formalin-	fixed	 paraffin-	embedded	 (FFPE)	 tissues	 of	
primary	gastric	tumors	and	matching	metastatic	ovarian	
lesions	 (n  =  4)	 were	 collected	 from	 patients	 undergo-
ing	 extended	 radical	 gastrectomy	 without	 neoadjuvant	
chemotherapy	or	radiotherapy	between	2016	and	2020	at	
the	 Fudan	 University	 Shanghai	 Cancer	 Center	 (FUSCC	
in	 short).	 Their	 tissues	 were	 used	 for	 RNA	 sequencing	
(RNA-	seq	in	short),	and	this	dataset	was	used	as	the	dis-
covery	cohort.	Histological	and	tumor	cellularity	were	de-
termined	(tumor	cellularity	over	60%)	by	 two	 individual	
pathologists	before	sequencing.	The	8th	edition	of	UICC	
TNM	 classification	 was	 applied	 to	 determine	 the	 patho-
logical	stage	of	patients.	This	study	was	approved	by	the	
Ethics	Committee	of	FUSCC,	and	informed	consents	were	
received	 from	 all	 patients.	 For	 RNA-	seq,	 RNAstormTM	
FFPE	 kit	 (CELLDATA)	 was	 used	 to	 isolate	 total	 RNA.	

Conclusions: RNA-	seq	 of	 paired	 primary	 and	 ovarian	 metastatic	 tumors	 un-
veiled	the	significance	of	immune-	related	pathways	and	tumor	immune	micro-
environment	 in	 OM.	 OMIRPS	 served	 as	 a	 promising	 biomarker	 to	 predict	 the	
prognosis	of	GC	patients	and	distinguish	the	molecular	features,	immune	charac-
teristics,	and	efficacy	of	immunotherapy	between	different	subgroups.
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SMARTer	 Stranded	 Total	 RNA-	Seq	 Kit-	Pico	 Input	
Mammalian	Library	preparation	kit	(Clontech)	was	used	
to	prepare	a	strand-	specific	RNA-	seq	library.	Qubit	fluo-
rometer	(Thermo	Fisher	Scientific)	and	Qsep100	(BiOptic)	
were	 used	 to	 check	 the	 quality	 of	 library.	 Illumina	 se-
quencing	 platform	 with	 150	bp	 paired-	end	 run	 metrics	
was	used	for	performing	RNA-	seq.

2.2	 |	 Data analysis of RNA- seq

FastQC	 was	 applied	 to	 filter	 raw	 reads	 and	 remove	 low	
quality	bases	and	adaptor	sequences.	HISAT2	was	applied	
to	map	the	reads	to	the	GRCh38	human	genome	assembly.	
FPKM	(Fragments	Per	Kilobase	of	transcript	per	Million	
mapped	reads)	was	applied	for	the	calculation	of	gene	ex-
pression	 level	 by	 normalizing	 gene	 counts	 from	 feature	
counts.	The	Pearson	correlation	coefficient	was	calculated	
to	compare	the	global	gene	expression	in	the	samples.	The	
analysis	was	carried	out	by	R	software	(version	3.6.1)	with	
the	“limma”	package,	and	the	significance	threshold	was	
set	 as	 |log2[fold	 change	 (FC)]|	>	1,	 and	 False	 Discovery	
Rates	(FDR)	<0.05.

2.3	 |	 Data acquisition and preprocessing

RNA-	seq	and	somatic	mutation	data	of	407	GC	samples,	
including	375	cancer	samples	and	32	para-	cancer	samples,	
and	 their	 corresponding	 clinicopathological	 information	
were	 downloaded	 from	 the	 Stomach	 Adenocarcinoma	
dataset	 of	 The	 Cancer	 Genome	 Atlas	 (TCGA)	 (https://
portal.gdc.cancer.gov/proje	cts/TCGA-	STAD).	 In	 addi-
tion,	microarray	expression	profiling	data	of	433	GC	sam-
ples	(GSE84437)	and	the	clinicopathological	information	
were	downloaded	from	the	GEO	database	(https://www.
ncbi.nlm.nih.gov/geo/).	The	TCGA	dataset	served	as	the	
training	 cohort	 and	 the	 GSE84437	 dataset	 was	 used	 as	
a	 validation	 cohort	 to	 verify	 the	 predictive	 ability	 of	 the	
ovarian	metastasis-	related	immune	and	prognostic	signa-
ture	 (OMIRPS).	 The	 TCGA	 molecular	 classification	 and	
Immune	Subtypes	(IS)	of	GC	samples	were	extracted	from	
the	supplementary	files	of	the	article	of	Thorsson	et	al.14	
“ComBat”	tool	from	the	“sva”	package	was	applied	to	ad-
just	for	systematic	batch	effects	between	TCGA	and	GEO	
dataset.

2.4	 |	 Immune- related genes (IRGs) lists

Two	 lists	 of	 IRGs	 were	 downloaded	 from	 the	 ImmPort	
(https://www.immpo	rt.org/share	d/home)15	 and	 InnateDB		
(https://www.innat	eDBdb.com/)	 databases.16	 A	 final	 list	

of	IRGs	was	created	by	combining	ImmPort	and	InnateDB	
lists	and	removing	the	overlapped	genes.	Differential	ex-
pressed	IRGs	(DEIRGs)	were	selected	by	intersecting	the	
list	of	DEGs	and	the	list	of	IRG.

2.5	 |	 Functional annotation

To	 explore	 the	 biological	 functions	 of	 DEIRGs,	 Gene	
Ontology	(GO)	with	biological	process	(BP)	analysis	and	
Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes	 (KEGG)	
pathway	analyses	were	performed	by	using	the	“cluster-
Profiler”	 package	 in	 R	 software.	 To	 determine	 the	 sign-
aling	pathway	of	the	gene	set	of	different	groups,	a	gene	
set	 enrichment	 analysis	 (GSEA)	 based	 on	 the	 Hallmark	
gene	sets	was	carried	out	with	the	“GSVA”	package	of	R.	
DEGs	between	paired	primary	and	ovarian	metastatic	le-
sions	 were	 submitted	 for	 canonical	 pathway	 analysis	 by	
QIAGEN	 Ingenuity	 Pathway	 Analysis	 (IPA).	 Gene	 lists	
containing	 the	 gene	 probe	 set	 IDs	 and	 corresponding	
p	 values	 were	 uploaded	 to	 the	 IPA	 software	 (Ingenuity	
Systems;	 www.ingen	uity.com/)	 to	 identify	 significantly	
activated	and	inhibited	signaling	pathways	between	sam-
ples.	The	−log	(p	value)	>	2	and	|Z	score|	>	2	were	used	as	
the	threshold	of	significance,	with	a	Z-	score	>	2	indicating	
significant	activation	while	a	Z-	score	<	−2	indicating	sig-
nificant	inhibition.

2.6	 |	 Construction and validation of  
ovarian metastasis-  and immune- related  
and prognostic signature (OMIRPS)

A	univariate	Cox	proportional	hazards	regression	analy-
sis	was	conducted	 to	 identify	prognostic	hub	genes	as-
sociated	 with	 overall	 survival	 (OS).	 A	 least	 absolute	
shrinkage	 and	 selection	 operator	 (LASSO)	 Cox	 regres-
sion	 model	 were	 performed	 on	 prognostic	 hub	 genes	
with	“glmnet”	and	“survival”	packages.	The	coefficient	
for	each	gene	was	calculated,	and	genes	that	remained	
in	 the	 model	 were	 used	 to	 construct	 the	 ovarian	 me-
tastasis-		 and	 immune-	related	 and	 prognostic	 signature	
(OMIRPS).	The	OMIRPS	score	was	calculated	by	sum-
ming	 up	 the	 products	 of	 gene	 expressions	 and	 their	
corresponding	 coefficients.	 Patients	 were	 divided	 into	
OMIRPS-	high	 or	 OMIRPS-	low	 groups	 according	 to	 its	
median	 score.	 A	 Kaplan–	Meier	 survival	 analysis	 with	
log-	rank	 test	 was	 performed	 with	 the	 R	 package	 “sur-
vminer”	to	reveal	the	survival	difference	between	differ-
ent	OMIRPS	subgroups	in	both	training	and	validation	
cohorts.	 A	 time-	dependent	 receiver	 operating	 charac-
teristic	 (ROC)	 curve	 analysis	 was	 conducted	 using	 the	
“survivalROC”	 package.	 The	 values	 of	 the	 area	 under	

https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/shared/home
https://www.innatedbdb.com/
http://www.ingenuity.com/
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the	curve	(AUC)	at	1,	3,	and	5	years	were	calculated	to	
determine	the	prognostic	predicting	ability	of	OMIRPS.	
A	 multivariate	 Cox	 proportional	 hazards	 regression	
analysis	 was	 conducted	 to	 identify	 the	 independent	
prognostic	 predictor	 using	 the	 “survival”	 package.	 A	
risk	heatmap	comparing	OMIRPS	score,	OS	status	and	
time,	 and	 gene	 expression	 were	 created	 using	 the	 R	
package	“pheatmap.”

2.7	 |	 Somatic variants analysis

Somatic	 mutation	 data	 were	 downloaded	 from	 the	
Stomach	Adenocarcinoma	dataset	of	The	Cancer	Genome	
Atlas	 (TCGA)	 (https://portal.gdc.cancer.gov/proje	cts/
TCGA-	STAD).	Somatic	mutations	of	prognostic	hub	genes	
were	analyzed	by	using	the	“maftools”	package	of	R.	Top	
20	mutated	genes	were	compared	between	IRPS-	risk	and	
IRPS-	low	groups.

2.8	 |	 Immune cell infiltration analysis

CIBERSORT	 (https://ciber	sort.stanf	ord.edu/)	 is	 a	
computational	 method	 for	 quantifying	 cell	 fractions	
from	bulk	tissue	gene	expression	profiles.	We	used	the	
CIBERSORT	 to	 estimate	 the	 proportion	 of	 22	 types	 of	
immune	cells	in	GC	sample	in	TCGA	cohort.	The	differ-
ence	of	immune	cells	abundance	between	OMIRPS-	high	
and	OMIRPS-	low	groups	was	analyzed.	The	prognostic	
significance	 of	 immune	 cells	 was	 evaluated	 through	 a	
Kalan–	Meier	analysis.

2.9	 |	 Prediction of 
immunotherapy efficacy

Tumor	 Immune	 Dysfunction	 and	 Exclusion	 (TIDE,	
http://tide.dfci.harva	rd.edu/)	 is	a	computational	 frame-
work	 developed	 to	 evaluate	 the	 potential	 of	 tumor	 im-
mune	escape	from	the	gene	expression	profiles	of	cancer	
samples.	The	TIDE	score	computed	for	each	tumor	sam-
ples	 can	 serve	 as	 a	 surrogate	 biomarker	 to	 predict	 the	
response	 to	 immune	 checkpoint	 blockade,	 including	
anti-	PD1	 and	 anti-	CTLA4	 for	 multiple	 types	 of	 cancer.	
The	 TIDE	 score	 along	 with	 immune	 dysfunction	 and	
exclusion	 scores	 were	 compared	 between	 OMIRPS-	
high	and	OMIRPS-	low	groups.	The	correlation	between	
OMIRPS	score	and	expression	levels	of	 immune	check-
point	molecules	(PD-	1,	PD-	L1,	CTLA4,	and	LAG3)	were	
analyzed	and	visualized	using	the	“limma”,	“reshape2”,	
and	“ggpubr”	packages.

2.10	 |	 Statistical analysis

Statistical	analyses	were	conducted	using	R	(version	4.1.0).	
Continuous	 variables	 were	 presented	 as	 mean	 stand-
ard	 error	 of	 the	 mean	 (SEM)	 and	 were	 compared	 with	
Student's	t-	tests	or	Wilcoxon	rank-	sum	tests.	Categorical	
data	were	compared	using	the	chi-	square	test.	A	p	value	
<0.05	was	considered	to	be	significant.	Statistical	signifi-
cance	is	shown	as	*p	<	0.05,	**p	<	0.01,	***p	<	0.001.

3 	 | 	 RESULTS

3.1	 |	 Identification and functional 
annotation of differentially expressed 
immune- related genes (DEIRGs) between 
primary gastric tumors and matching 
ovarian metastases

A	 flowchart	 of	 the	 establishment	 and	 validation	 of	 the	
ovarian	 metastasis-		 and	 immune-	related	 prognostic	 sig-
nature	 (OMIRPS)	 is	 presented	 in	 Figure  1.	 The	 FUSCC	
cohort	 (n  =  4),	 TCGA	 cohort	 (n  =  544),	 and	 GSE84437	
cohort	(n = 433)	were	used	as	the	discovery	dataset,	train-
ing	 dataset,	 and	 validation	 dataset,	 respectively.	 Thus,	 a	
total	 of	 981	 GC	 patients	 were	 included	 in	 the	 analysis.	
Transcriptome	 sequencing	 of	 four	 pairs	 of	 primary	 GCs	
and	matching	OMs	from	FUSCC	cohort	were	performed.	
Differential	expression	analysis	in	the	FUSCC	cohort	iden-
tified	1088	differentially	expressed	genes	(DEGs)	between	
primary	 and	 ovarian	 metastatic	 lesions	 (|log2FC|	>	1,	
FDR	<	0.05),	 among	 which	 609	 genes	 were	 upregulated	
and	479	genes	were	downregulated	in	primary	GC	when	
compared	to	OM	(Figure 2A).	To	characterize	the	biologi-
cal	function	and	activated	signaling	pathways	underlying	
DEGs,	we	conducted	both	Gene	Ontology	(GO)	analysis	of	
biological	process	and	Ingenuity	Pathway	Analysis	(IPA).	
The	GO	analysis	revealed	that	T-	cell	activation	and	lym-
phocyte	differentiation	were	the	most	enriched	signatures	
in	DEGs	(Table S1).	The	IPA	unveiled	the	significant	ac-
tivation	of	immune-	related	signaling	such	as	crosstalk	be-
tween	dendritic	cells	and	natural	killer	cells,	natural	killer	
cell	 signaling,	 Th1,	 and	 Th2	 Pathway,	 and	 PD-	1/PD-	L1	
cancer	 immunotherapy	 pathway	 in	 the	 comparison	 be-
tween	primary	GC	and	OM	(Figure 2B).	These	analyses	
strongly	indicated	the	significance	of	immune-	related	fac-
tors	such	as	tumor	immune	microenvironment	(TIME)	in	
the	ovarian	metastasis	of	GC.

Consequently,	 we	 focused	 on	 deciphering	 the	 roles	
of	 immune-	related	 factors	 in	 this	 specific	 type	 of	 dis-
tant	 metastasis.	 First,	 1794	 and	 1226	 immune-	related	
genes	 (IRGs)	 were	 downloaded	 from	 the	 ImmPort	 and	

https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://cibersort.stanford.edu/
http://tide.dfci.harvard.edu/
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F I G U R E  1  Schematic	layout	of	constructing	ovarian	metastasis-		and	immune-	related	prognostic	signature	(OMIRPS).

F I G U R E  2  Analysis	of	differentially	expressed	genes	between	paired	primary	and	ovarian	metastatic	lesions	of	four	GC	patients	from	
FUSCC	cohort.	(A)	Volcano	plot	of	log2	fold	change	and	-	log10	(FDR)	of	differentially	expressed	genes	between	primary	GC	and	OM.	Red	
dots	represent	upregulated	gene	and	green	dots	represent	up-		and	downregulated	genes	in	primary	GC	in	comparison	with	OM.	(B)	The	
most	changed	signaling	pathways	between	primary	GC	and	OM	revealed	by	the	canonical	pathway	analysis	of	Ingenuity	Pathway	Analysis	
(IPA),	which	were	denoted	by	the	horizontal	bars	based	on	the	Z-	scores.	Z	score	>	2	(red	bars)	and	<−2	(blue	bars)	indicates	significantly	
activated	and	inhibited	pathways	in	primary	GC	over	OM,	respectively.	(C)	Differential	expressed	immune-	related	genes	(DEIRGs)	between	
DEGs	and	IRGs	demonstrated	by	Venn	diagram.	(D,	E)	KEGG	analysis	identified	most	enriched	signaling	pathways	in	the	upregulated	(D)	
and	downregulated	(E)	genes	of	primary	GCs	when	compared	to	OMs.
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InnateDB	databases,	 respectively	 (Table S2).	By	combin-
ing	those	two	IRG	lists	and	removing	the	overlapped	711	
genes,	we	obtained	a	total	of	2660	IRGs.	Then,	182	differ-
entially	expressed	immune-	related	genes	(DEIRGs)	were	
identified	by	intersecting	the	DEGs	and	IRGs	(Figure 2C),	
among	which	44	DEIRGs	were	upregulated	whereas	the	
other	138	DEIRGs	were	downregulated	in	GC	samples	in	
comparison	with	normal	samples.	Next,	we	conducted	a	
KEGG	 pathway	 analysis	 to	 further	 gain	 insight	 into	 the	
enriched	functional	pathways	of	DEIRGs.	Using	a	thresh-
old	of	FDR	<	0.05,	we	identified	multiple	pathways	which	
were	 enriched	 in	 dysregulated	 DEIRGs.	 It	 was	 revealed	
that	 upregulated	 DEIRGs	 were	 significantly	 involved	
in	 immune-	related	 pathways	 such	 as	 natural	 killer	 cell-	
mediated	 cytotoxicity,	 primary	 immunodeficiency,	T-	cell	
and	B-	cell	receptor	signaling	pathway	whereas	downreg-
ulated	DEIRGs	were	mainly	associated	with	metabolism-	
related	pathways	such	as	glycosaminoglycan	biosynthesis	
and	fatty	acid	metabolism.	The	top	10	KEGG	pathways	of	
upregulated	and	downregulated	genes	were	demonstrated	
as	Circos	plots	in	Figure 2D,E,	respectively.

3.2	 |	 Construction and validation of the 
ovarian metastasis-  and immune- related 
prognostic signature (OMIRPS)

To	 obtain	 immune-	related	 prognostic	 hub	 genes	 that	
were	significantly	involved	in	OM,	we	initially	conducted	
Kaplan–	Meier	 survival	 analysis	 and	 univariate	 Cox	 re-
gression	 analysis	 to	 evaluate	 the	 prognostic	 significance	
of	DEIRGs.	The	Kaplan–	Meier	analysis	 showed	that	 the	
expression	 levels	 of	 19	 genes	 were	 significantly	 corre-
lated	with	the	survival	of	GC	patients	(Figure S1).	Among	
them,	16	genes	(CARD11,	NPR3,	TIE1,	ADM,	ATF3,	RGS2,	
TSC22D3,	 PDGFRA,	 KCNJ8,	 ZFPM2,	 GLI1,	 NRP1,	 ENG,	
PDGFC,	 ANGPTL2,	 and	 BNIP3L)	 were	 recognized	 as	
unfavorable	 prognostic	 genes	 with	 hazard	 ratios	 (HRs)	
>1,	 while	 three	 genes	 (TNFRSF18,	 BCL11B,	 and	 TAP1)	
were	deemed	as	favorable	prognostic	genes	with	HRs	<1	
(Figure 3A).	The	somatic	mutations	and	copy	number	var-
iations	of	these	19	genes	were	also	investigated.	As	shown	
in	 Figure  3B,	 missense	 mutations	 were	 the	 most	 com-
mon	mutation	type,	and	CARD11	and	TIE1	exhibited	the	
highest	mutation	frequency	(5%)	followed	by	GLI1	 (3%),	
ZFPM2	(3%),	NRP1(3%),	NPR3	(3%),	and	PDGFRA	(3%).

Next,	 the	 19	 immune-	related	 prognostic	 hub	 genes	
identified	 in	 the	 TCGA	 training	 set	 were	 submitted	 for	
LASSO	 regression	 analysis	 to	 construct	 the	 ovarian	 me-
tastasis-		 and	 immune-	related	 and	 prognostic	 signature	
(OMIRPS)	(Figure 3C,D).	The	coefficient	of	each	gene	was	
calculated,	 followed	 by	 the	 establishment	 of	 a	 signature	
which	consists	of	six	immune-	related	genes	(TNFRSF18,	

CARD11,	 BCL11B,	 NRP1,	 BNIP3L,	 and	 ATF3).	 The	
OMIRPS	 score  =  TNFRSF18	×	(−0.25)	+	CARD11	×	0.2
1	+	BCL11B	×	(−0.37)	+	NRP1	×	0.42	+	BNIP3L	×	0.29	+	A
TF3	×	0.15.	 The	 patients	 were	 divided	 into	 OMIRPS-	low	
(n = 182)	and	OMIRPS-	high	(n = 180)	subgroups	accord-
ing	to	the	median	risk	score.

The	prognostic	value	of	OMIRPS	was	validated	by	using	
the	TCGA	cohort	and	GSE84437	cohort.	First,	the	Kaplan–	
Meier	 survival	 analysis	 revealed	 that	 GC	 patients	 in	 the	
OMIRPS-	high	 subgroup	 had	 a	 significantly	 worse	 over-
all	survival	(OS)	than	those	who	were	in	the	OMIRPS-	low	
subgroup	 for	 both	 the	 TCGA	 (p <  0.001)	 (Figure  3E)	 and	
GSE84437	(p = 0.020)	(Figure 3F)	cohorts.	Next,	 the	time-	
dependent	 ROC	 analysis	 showed	 that	 the	 AUC	 values	 of	
OMIRPS	for	predicting	OS	in	the	TCGA	cohort	were	0.69,	
0.71,	 and	0.73	at	1,	 3,	 and	5	years,	 respectively,	 suggesting	
a	 good	 predictive	 accuracy	 (Figure  3G).	 Consistent	 with	
this	result,	AUC	values	in	the	GSE84437	cohort	were	0.58,	
0.657,	and	0.60	at	1,	3,	and	5	years,	respectively	(Figure 3H).	
Furthermore,	both	univariate	and	multivariate	Cox	regres-
sion	analyses	were	conducted	in	the	TCGA	cohort	to	inves-
tigate	if	OMIRPS	could	serve	as	an	independent	prognostic	
factor	of	GC	patients.	The	univariate	Cox	regression	analysis	
indicated	 that	age,	TNM	stage,	and	OMIRPS	were	signifi-
cantly	associated	with	the	OS	of	patients.	The	multivariate	
Cox	regression	analysis	confirmed	that	OMIRPS	remained	
an	independent	prognostic	factor	(Figure 3I,J).	Accordingly,	
OMIRPS-	low	and	-	high	subgroups	were	defined	as	low-		and	
high-	risk	subgroups,	respectively.

3.3	 |	 Molecular characteristics of 
OMIRPS- high and - low subgroup

To	 gain	 insight	 into	 the	 biological	 features	 of	 differ-
ent	 OMIRPS	 subgroups,	 we	 performed	 a	 Gene	 Set	
Enrichment	Analysis	(GSEA)	regarding	Hallmark	sign-
aling	 pathways	 in	 the	 TCGA	 cohort.	 The	 genes	 of	 the	
OMIRPS-	high	samples	were	mainly	enriched	in	cancer-	
related	pathways	such	as	epithelial–	mesenchymal	tran-
sition	 (EMT).	 Considering	 the	 critical	 role	 of	 aberrant	
CDH1,	 the	 protein	 coding	 gene	 of	 E-	cadherin,	 in	 both	
the	 EMT	 process	 and	 hereditary	 diffuse	 GC	 progres-
sion,	 we	 compared	 the	 CDH1	 expression	 between	 the	
OMIRPS-	high	 and-	low	 subgroup	 and	 did	 not	 identify	
any	 significant	 differences.	 Additionally,	 the	 OMIRPS	
score	between	CDH1	mutant	and	wild-	type	GC	patients	
were	 also	 similar	 (Figure  S2).	 On	 the	 other	 hand,	 the	
genes	of	the	OMIRPS-	low	samples	were	enriched	in	cell	
cycle	 and	 metabolism-	related	 pathways,	 such	 as	 E2F	
targets,	 G2M	 checkpoint,	 and	 Oxidative	 phosphoryla-
tion	pathways.	The	top	five	enriched	signaling	pathways	
in	 the	 OMIRPS-	low	 and	 OMIRPS-	high	 subgroups	 are	
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displayed	 in	 Figure  4A,B,	 respectively.	 Detailed	 GSEA	
results	are	listed	in	Table S3.

Somatic	 mutations	 in	 different	 OMIRPS	 subgroups	
were	also	investigated.	As	shown	in	Figure 4C,D,	TTN,	
TP53,	 MUC16,	 ARID1A,	 and	 LRP1B	 were	 the	 most	
commonly	 mutated	 genes	 in	 both	 subgroups.	 Notably,	
the	 overall	 mutation	 rate	 was	 significantly	 higher	 in	
the	 OMIRPS-	low	 subgroup	 compared	 to	 the	 OMIRPS-	
high	subgroup	(91.21%	vs.	85.00%,	p	<	0.001).	Mutation	

of	 each	 of	 the	 top	 20	 genes	 was	 more	 common	 in	 the	
OMIRPS-	low	subgroup	than	 in	 the	OMIRPS-	high	sub-
group.	 Next,	 we	 investigated	 the	 correlation	 between	
OMIRPS	 score	 and	 tumor	 mutation	 burden	 (TMB).	 It	
was	demonstrated	that	TMB	was	significantly	higher	in	
the	 OMIRPS-	low	 subgroup	 than	 in	 the	 OMIRPS-	high	
subgroup	 (p	<	0.001,	 Figure  4E),	 and	 TMB	 was	 nega-
tively	 correlated	 with	 the	 OMIRPS	 score	 (r  =  −0.24,	
p	<	0.001,	Figure 4F).

F I G U R E  3  Construction	and	evaluation	of	the	prognostic	value	of	OMIRPS.	(A)	Univariate	Cox	analysis	of	19	immune-	related	
prognostic	hub	genes	from	DEIRGs.	(B)	Profiles	of	mutation	status	of	19	immune-	related	prognostic	hub	genes.	(C,	D)	Construction	of	
OMIRPS	by	LASSO	regression	analysis.	(E,	F)	Kaplan–	Meier	survival	analysis	of	OMIRPS-	high	and	-	low	subgroup	in	the	TCGA	cohort	(E)	
and	GEO	cohort	(F).	(G,	H)	Time-	dependent	ROC	analysis	of	OMIRPS-	high	and	-	low	subgroup	in	the	TCGA	cohort	(G)	and	GEO	cohort	
(H).	(I,	J)	Univariate	and	multivariate	Cox	analysis	of	clinicopathological	factors	and	the	OMIRPS	to	identify	independent	prognostic	factors.
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3.4	 |	 Immune characteristics of 
OMIRPS- high and - low subgroup

Immune	checkpoints	represent	an	immunosuppressive	
mechanism	that	allows	cancer	cells	to	escape	antitumor	
immunity.	Key	immune	checkpoint	molecules	such	as	
PD-	1	(encoded	by	PDCD1),	PD-	L1	(encoded	by	CD274),	
CTLA4,	and	LAG3	have	been	identified	as	potential	im-
munotherapeutic	 targets.	 We	 analyzed	 the	 association	
between	 the	 OMIRPS	 score	 and	 the	 expression	 of	 im-
mune	checkpoint	molecules.	It	was	shown	that	PDCD-	1	
but	 not	 CD274	 was	 significantly	 overexpressed	 in	
OMIRPS-	low	subgroup	compared	to	the	OMIRPS-	high	
subgroup	 and	 the	 expression	 level	 of	 PD-	1	 was	 nega-
tively	correlated	with	the	OMIRPS	score	(Figure 5A–	D).	
Alternatively,	the	expression	levels	of	CTLA4	and	LAG3	
were	 similar	 between	 the	 two	 subgroups	 (Figure  S3).	
In	addition,	as	multiple	 immune	regulatory	molecules	
such	 as	 IFN-	γ	 and	 TGF-	β	 play	 essential	 roles	 in	 the	
immune	 microenvironment,	 we	 compared	 the	 expres-
sion	 levels	 of	 IFNG,	 TGFB1,	 and	 TGFB2	 between	 the	
OMIRPS-	high	 and-	low	 groups.	 It	 was	 demonstrated	
that	 the	 TGFB1	 and	 TGFB2	 expressions	 were	 signifi-
cantly	 higher	 in	 the	 OMIRPS-	high	 group,	 while	 the	
IFNG	expression	was	 significantly	higher	 in	OMIRPS-	
low	group	(Figure S4).

To	 gain	 further	 insights	 into	 the	 correlation	 between	
infiltrating	 immune	 cells	 and	 OMIRPS	 subgroups,	 we	
compared	the	distribution	of	22	types	of	immune	cells	in	
different	subgroups	using	the	CIBERSORT	algorithm.	The	
landscape	 of	 immune	 cells	 distribution	 in	 each	 sample	
within	 the	TCGA	cohort	 is	 illustrated	 in	Figure 5E.	The	
analysis	revealed	that	memory	B	cells	and	follicular	help-
er-	T	cells	were	more	abundant	 in	 the	OMIRPS-	low	sub-
group,	 suggesting	a	 robust	antitumor	 immune	 response.	
In	 contrast,	 monocytes,	 M2	 macrophages,	 and	 resting	
dendritic	cells	were	more	enriched	 in	 the	OMIRPS-	high	
subgroup	(Figure 5F),	 indicating	 its	 immunosuppressive	
status	and	poor	prognosis.	 In	addition	 to	 this,	we	evalu-
ated	the	prognostic	significance	of	22	immune	cells	in	the	
TCGA	cohort.	It	was	found	that	higher	infiltration	levels	of	
resting	dendritic	cells,	neutrophils,	and	M2	Macrophages	
were	significantly	associated	with	worse	prognoses,	while	
higher	infiltration	levels	of	M0	Macrophages,	resting	Mast	
cells,	CD8	T-	cells,	and	CD4	memory	T-	cells	activated	were	

markedly	 correlated	 with	 favorable	 survival	 outcomes	
(Figure S5).	Furthermore,	it	was	noted	that	in	addition	to	
immune	cells,	stromal	components	in	the	tumor	immune	
microenvironment	 may	 also	 contribute	 to	 both	 tumor	
immunity	 and	 progression.	 Therefore,	 we	 evaluated	 the	
ESTIMATE	score	which	consists	of	both	the	stromal	and	
immune	score	in	the	TCGA-	STAD	cohort	with	the	appli-
cation	of	an	ESTIMATE	algorithm.	Our	follow-	up	analy-
sis	showed	that	OMIRPS	was	significantly	correlated	with	
the	 stromal	 score	 (R  =  0.44)	 but	 not	 with	 the	 immune	
score	(R = 0.14)	(Figure 5G–	I),	indicating	the	significance	
of	active	interaction	between	tumor,	stroma,	and	immune	
cells	in	GC	ovarian	metastasis.

3.5	 |	 Predicting immunotherapy 
efficacy and immune escape in GC patients 
by OMIRPS

The	Tumor	 Immune	Dysfunction	and	Exclusion	 (TIDE)	
online	 tool	 (http://tide.dfci.harva	rd.edu/)	 was	 used	 to	
evaluate	 the	 potential	 benefit	 from	 immunotherapy	 ef-
ficacy	by	assessing	the	TIDE	score,	immune	dysfunction	
score,	 immune	 exclusion	 score,	 and	 MSI	 status	 in	 the	
TCGA	 cohort.	 The	 TIDE	 score	 was	 positively	 correlated	
with	 immune	 escape,	 resulting	 in	 less	 benefit	 from	 im-
munotherapy,	 and	 an	 unfavorable	 survival	 outcome.	
Although	 TIDE	 score	 and	 immune	 dysfunction	 score	
were	 comparable	 between	 OMIRPS-	high	 and	 -	low	 sub-
groups	 (Figure  6A,B),	 the	 immune	 exclusion	 score	 was	
significantly	 higher	 in	 OMIRPS-	high	 subgroup	 than	 in	
the	 OMIRPS-	low	 subgroup	 (p	<	0.05)	 (Figure  6C),	 im-
plying	 that	 GC	 patients	 in	 OMIRPS-	high	 subgroup	 had	
worse	 prognosis	 and	 might	 benefit	 less	 from	 immuno-
therapy	 than	 OMIRPS-	low	 patients.	 Meanwhile,	 we	
compared	OMIRPS	with	the	MSI	status	in	TCGA	cohort.	
It	 was	 demonstrated	 that	 the	 proportion	 of	 MSI-	high	 in	
the	 OMIRPS-	low	 group	 was	 significantly	 higher	 than	
that	in	the	OMIRPS-	high	group	(Figure 6D)	whereas	the	
OMIRPS	 score	 of	 the	 MSI-	high	 group	 was	 significantly	
lower	than	those	of	the	MSI-	low	and	Microsatellite	Stable	
(MSS)	 groups	 (Figure  6E).	 Considering	 the	 remarkably	
improved	 immunotherapy	 response	 in	 MSI-	high	 tumor,	
these	results	indicated	the	potential	value	of	OMIRPS	for	
the	prediction	of	immunotherapy	efficacy.

F I G U R E  4  Molecular	characteristics	of	different	OMIRPS	subgroups.	(A,	B)	Enriched	gene	sets	in	OMIRPS-	high	(A)	and	OMIRPS-	low	
(B)	subgroup	(p	<	0.05,	FDR	<	0.25)	revealed	by	GSEA	analysis.	(C,	D).	Significantly	mutated	genes	in	the	mutated	samples	of	OMIRPS-	high	
(C)	and	OMIRPS-	low	(D)	subgroup	demonstrated	by	waterfall	plots.	The	names	of	top	mutated	genes	and	their	corresponding	mutation	
rate	were	listed	on	the	left	and	right	side	whereas	the	total	number	of	mutations	and	the	mutation	types	were	listed	on	the	top	and	bottom,	
respectively.	Different	mutation	types	were	represented	by	various	colors.	(E)	Differential	tumor	mutation	burden	(TMB)	between	OMIRPS-	
high	and	-	low	subgroup	analyzed	by	Wilcoxon	rank-	sum	tests.	(F)	Correlation	between	TMB	and	OMIRPS	score	analyzed	by	Pearson	
correlation	analysis.

http://tide.dfci.harvard.edu/
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3.6	 |	 Comparison between OMIRPS 
grouping and other classifications

Next,	 we	 compared	 the	 clinicopathologic	 characteristics	
of	patients	between	OMIRPS-	low	and	OMIRPS-	high	sub-
groups	in	TCGA	cohort.	It	was	noted	that	high-	risk	group	
tended	to	have	higher	proportion	of	advanced	pathologi-
cal	T	stage	(p	<	0.05)	whereas	the	rest	of	the	clinicopatho-
logic	 characteristics	 were	 comparable	 between	 the	 two	

subgroups	(Figure 7A).	We	further	analyzed	the	relation-
ship	between	OMIRPS	grouping	and	TNM	classification	
and	found	no	correlation	between	them	(p = 0.138,	chi-	
square	 test)	 (Figure  7B),	 indicating	 that	 the	 prognostic	
value	of	OMIRPS	scoring	was	independent	of	pathological	
classification.

On	 the	 other	 hand,	 OMIRPS	 grouping	 was	 com-
pared	 to	 Immune	 Subtype	 (IS),14	 which	 was	 charac-
terized	 by	 a	 distinct	 distribution	 of	 scores	 over	 the	 five	

F I G U R E  5  Immune	characteristics	of	different	OMIRPS	subgroups.	(A)	Differential	expression	of	PDCD-	1	between	OMIRPS-	high	and	
-	low	subgroup	analyzed	by	Wilcoxon	rank-	sum	tests.	(B)	Correlation	between	PDCD-	1	expression	and	OMIRPS	score	analyzed	by	Pearson	
correlation	analysis.	(C)	Comparable	expression	of	CD274	between	OMIRPS-	high	and	-	low	subgroup	analyzed	by	Wilcoxon	rank-	sum	
tests.	(D)	Correlation	between	CD274	expression	and	OMIRPS	score	analyzed	by	Pearson	correlation	analysis.	(E)	CIBERSORT	analyses	
uncovered	the	proportions	of	tumor	microenvironment	cells	in	OMIRPS-	high	and	-	low	subgroup.	The	immune	score	of	different	subgroups	
was	represented	by	the	scattered	dots,	with	the	median	value	and	interquartile	range	represented	by	the	thick	lines	and	bottom	and	top	
of	the	boxes,	respectively.	(F)	Heatmap	demonstrating	the	proportions	of	22	different	TME	cells	for	patients	in	OMIRPS-	high	and	-	low	
subgroup,	respectively.	(G–	I)	ESTIMATE	and	OMIRPS	score	in	TCGA-	STAD	cohort.	(G)	Significant	correlation	between	StromalScore	
and	OMIRPS	score,	(H)	Insignificant	correlation	between	ImmuneScore	and	OMIRPS	score	and	(I)	Correlation	between	overall	
ESTIMATEScore	and	OMIRPS	score.

F I G U R E  6  The	predictive	value	
of	OMIRPS	in	patients	receiving	
immunotherapy	response.	(A,	B)	
Comparable	TIDE	and	dysfunction	
score	between	OMIRPS-	high	and	-	low	
subgroup.	(C)	Differential	exclusion	
score	between	OMIRPS-	high	and	
-	low	subgroups.	(D)	Differential	MSI	
status	between	OMIRPS-	high	and	-	low	
subgroup.	(E)	Differential	OMIRPS	score	
between	subgroups	of	patients	with	
various	microsatellite	status.
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immune	expression	signatures:	C1	(Wound	Healing),	C2	
(IFN-	γ	 Dominant),	 C3	 (Inflammatory),	 C4	 (Lymphocyte	
Depleted),	 C5	 (Immunologically	 Quiet),	 and	 C6	 (TGF-	β	
Dominant).	 As	 shown	 in	 Figure  7C,	 the	 OMIRPS-	high	
group	had	more	IS-	C1	and	IS-	C3,	while	IS-	C2	and	IS-	C4	
were	 more	 likely	 to	 be	 enriched	 in	 OMIRPS-	low	 group.	
Statistical	 analysis	 showed	 that	 OMIRPS	 grouping	 was	
associated	with	Immune	Subtypes	with	borderline	signif-
icance	(p = 0.05).

4 	 | 	 DISCUSSION

Ovarian	 metastasis	 considerably	 threatens	 the	 clinical	
outcome	 and	 contributes	 to	 treatment	 failure	 of	 female	
GC	patients.3	Although	mounting	evidence	showed	the	ef-
fectiveness	of	immunotherapy	in	GC,9,17,18	it	has	not	been	
extensively	applied	to	the	treatment	of	patients	with	OM	
yet.	Moreover,	only	a	limited	number	of	patients	can	ben-
efit	from	ICI	due	to	the	low	overall	response	rate.10	These	

F I G U R E  7  Distribution	of	
clinicopathological	parameters	and	
Immune	Subtype	(IS)	in	different	
OMIRPS	subgroups.	(A)	Distribution	of	
clinicopathological	parameters	including	
age,	gender,	tumor	grade,	pathological	
T,	N,	and	M	stage	in	OMIRPS-	high	and	
-	low	subgroup,	respectively.	Map.	(B)	
Distribution	of	pathological	stages	(I	to	
IV)	in	OMIRPS-	high	and	-	low	subgroup,	
respectively.	(C)	Distribution	of	Immune	
Subtypes	(IS)	(C1	to	C4)	in	OMIRPS-	high	
and	-	low	subgroup,	respectively.	Data	are	
shown	in	the	form	of	heatmap.
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findings	highlight	the	urgent	need	to	construct	validated	
signatures	to	identify	patients	who	could	be	responsive	to	
and	benefit	from	immunotherapy.	Unlike	most	gene	sig-
natures	derived	from	analyses	of	TCGA,	GEO,	and	other	
public	 databases,19–	22	 we	 utilized	 transcriptome	 profil-
ing	data	of	paired	primary	and	ovarian	metastatic	lesions	
from	our	own	FUSCC	cohort	and	integrated	it	with	multi-
ple	public	databases	to	develop	a	predictive	biomarker.	To	
our	knowledge,	this	is	the	first	OM-	related	gene	signature	
to	predict	the	prognosis	and	immunotherapy	efficacy	for	
GC	patients.

By	 intersecting	 DEGs	 between	 GC	 and	 OM	 from	
the	 FUSCC	 cohort	 and	 IRGs	 from	 the	 ImmPort	 and	
InnateDB,	 we	 identified	 19	 immune-	related	 hub	 genes	
and	constructed	OMIRPS	based	on	six	genes	(TNFRSF18,	
CARD11,	 BCL11B,	 NRP1,	 BNIP3L,	 and	 ATF3),	 among	
which	 TNFRSF18	 and	 BCL11B	 was	 positively	 associ-
ated	 with	 patient	 OS	 while	 the	 rest	 were	 the	 opposite.	
TNFRSF18,	 also	 known	 as	 the	 glucocorticoid-	induced	
tumor	necrosis	factor	receptor-	related	protein	(GITR),	was	
highly	expressed	in	activated	T	cells	and	regulatory	T	cells	
(Tregs).23	TNFRSF18	has	emerged	as	a	novel	immunother-
apy	target	as	it	induces	a	robust	proliferation	of	T	effector	
cells	and	hampers	the	suppression	of	Tregs.24	Studies	have	
demonstrated	 the	 immune	 effects	 and	 mechanistic	 evi-
dence	of	GITR	agonism-	based	T-	cell	reinvigoration	com-
bined	 with	 ICI	 in	 the	 treatment	 of	 solid	 tumors.25,26	 As	
for	BCL11B,	a	C2H2	zinc	finger	transcription	factor	and	a	
haploinsufficient	tumor	suppressor,	it	exerts	inhibitory	ef-
fects	on	tumor	progression	through	a	wide	range	of	mech-
anisms.27–	29	 Notably,	 it	 is	 required	 for	 the	 development	
and	activation	of	mature	T	cells	and	participates	in	the	de-
velopment	of	invariant	natural	killer	T	(iNKT)	cells,	which	
play	a	key	role	 in	 immune	regulation	and	antitumor	re-
sponses.30	Mechanism	studies	revealed	that	BCL11B	pre-
vents	cancer	immune	evasion	by	acting	as	a	competitive	
endogenous	RNA	to	upregulate	MICA	and	MICB,	which	
essentially	control	tumor	immune	surveillance.31	On	the	
other	hand,	the	remaining	four	immune-	related	genes	are	
reportedly	oncogenic.	For	instance,	CARD11,	also	known	
as	CARMA1,	is	mainly	expressed	in	lymphoid	tissues	and	
is	 involved	 in	both	adaptive	 immunity	and	carcinogene-
sis.32	Disruption	of	the	CARMA1–	BCL10–	MALT1	(CBM)	
signalosome	 complex	 by	 genetic	 deletion	 of	 CARMA1	
resulted	in	antitumor	effects	through	the	loss	of	suppres-
sive	function	and	the	gain	of	effector	activity	by	Tregs.33	
CARMA1	deletion	combined	with	 ICI	 improved	 the	pa-
tient	 response	 to	 anti-	PD-	1	 monotherapy	 and	 induced	
tumor	 suppression.33	 NRP1	 intrinsically	 regulates	 both	
Treg	cell	and	CD8+	T-	cell	functions	to	collectively	impede	
antitumor	 immunity	 in	 the	 tumor	 microenvironment.34	
It	 also	 contributes	 to	 tumor	 angiogenesis	 by	 acting	 as	 a	
co-	receptor	with	VEGFR	as	a	recent	study	demonstrated	

that	 anti-	NRP1	 monoclonal	 antibody	 (MNRP1685A)	 in-
hibited	the	VEGF	pathway	in	solid	tumors.35	ATF3	is	an	
environmental	stress-	induced	transcription	factor.	It	reg-
ulates	immunity	and	oncogenesis	through	transcriptional	
activation	or	repression	and	reciprocally	 functions	as	an	
oncogene	or	tumor	suppressor	in	several	malignancies.36	
In	GC,	ATF3	was	found	to	be	upregulated	by	EBV	infec-
tions,	 whereas	 the	 downregulation	 of	 ATF3	 suppressed	
the	 proliferation	 of	 EBV-	infected	 gastric	 cells.37	 In	 con-
trast,	Huang	et	al.	 showed	 that	ATF3	overexpression	 in-
hibited	 cell	 invasiveness	 and	 decreased	 stemness	 and	
EMT-	promoting	 genes,	 indicating	 a	 suppressive	 role	 of	
ATF3	 in	 tumor	progression.38	BNIP3L,	a	member	of	 the	
BCL-	2	family,	is	reportedly	induced	by	p53	under	hypoxia	
and	is	critically	involved	in	p53-	mediated	autophagy.39	It	
serves	as	a	predictive	marker	 for	both	prognosis	and	 re-
sponse	to	angiogenesis	inhibitors	in	GC.40,41	In	summary,	
the	 construction	 of	 OMIRPS	 was	 based	 on	 a	 collection	
of	 immune-	related	 oncogenic	 and/or	 tumor	 suppressor	
genes	which	originated	from	the	gene	expression	and	mu-
tation	data	of	FUSCC	and	public	databases.

To	characterize	the	molecular	features	underlying	dif-
ferent	 OMIRPS	 subgroups,	 we	 studied	 the	 functionally	
enriched	signaling	pathways	and	gene	mutations	of	each	
group.	 In	 line	 with	 previous	 reports,	 GSEA	 analyses	 re-
vealed	 that	 genes	 in	 different	 subgroups	 were	 enriched	
in	distinctive	sets.42–	44	For	instance,	TGF-	β	signaling	and	
EMT	pathways	were	enriched	 in	 the	OMIRPS-	high	sub-
group,	which	partially	explained	its	poor	prognosis,	espe-
cially	considering	that	TGF-	β	promotes	cancer	progression	
by	pressing	cancer	cells	into	EMT	which	results	in	metas-
tasis	and	chemotherapy	resistance.45	In	the	OMIRPS-	low	
subgroup,	 however,	 cell	 cycle-	related	 pathways	 such	 as	
E2F	targets	pathway	were	enriched.	It	was	reported	that	
the	E2F	expression	is	correlated	with	tumor	suppression	
and	 immune	 infiltration	 in	 GC.46,47	 Apart	 from	 func-
tional	 enrichment	 analyses,	 we	 also	 conducted	 somatic	
mutation	 studies	 of	 OMIRPS	 subgroups.	 Although	 the	
top	mutated	genes	such	as	TTN,	TP53,	MUC16,	ARID1A,	
and	LRP1B	were	identical	between	the	two	subgroups,	the	
tumor	mutation	burden	(TMB)	was	significantly	higher	in	
the	OMIRPS-	low	subgroup	and	 the	TMB	was	negatively	
correlated	 with	 the	 OMIRPS	 score.	 Notably,	 mutations	
of	 TTN	 and	 MUC16	 were	 associated	 with	 the	TMB	 and	
could	predict	the	immunotherapy	efficacy	in	GC	and	pan-	
cancer.48	 TMB,	 the	 number	 of	 non-	synonymous	 single	
nucleotide	variants	(nsSNVs)	in	a	tumor,	affects	the	odds	
of	 producing	 immunogenic	 peptides	 and	 thereby	 influ-
ences	T-	cell-	mediated	antitumor	activity	and	the	patient's	
response	to	ICI.49,50	Consequently,	TMB	is	proposed	as	a	
key	biomarker	to	predict	both	the	efficacy	and	prognosis	
of	 patients	 receiving	 immunotherapy	 in	 multiple	 malig-
nancies	such	as	lung,	colon,	and	gastric	cancer,51–	53	which	
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is	 consistent	 with	 our	 results	 demonstrating	 that	 TMB	
is	 different	 between	 OMIRPS	 subgroups.	 Therefore,	 our	
molecular	characterization	shed	light	on	the	mechanisms	
underlying	 the	 survival	 difference	 between	 different	
OMIRPS	subgroups.

In	addition	to	TMB,	expressions	of	immune	checkpoint	
molecules	such	as	PD-	1	and	PD-	L1	are	also	recognized	as	
key	biomarkers	of	immunotherapy	efficacy.50	Our	analy-
ses	demonstrated	a	significant	increase	of	PD-	1,	the	target	
of	 monoclonal	 antibody	 (pembrolizumab)	 approved	 for	
late-	stage	GC	and	a	marker	of	tumor-	reactive	T	cells	and	
enhanced	T-	cell	receptor	signaling,54	in	the	OMIRPS-	low	
subgroup.	 In	 fact,	 PD-	1	 expression	 was	 correlated	 with	
CD8+	T-	cell	density	at	the	invasion	front	of	the	microsatel-
lite	unstable	GC	tissues,55	whereas	TCGA-	based	profiling	
of	PD	gene	expression	showed	the	significant	association	
of	 PD-	1	 expression	 with	 the	 improved	 prognosis	 of	 GC	
patients.56	 As	 for	 PD-	L1,	 although	 emerging	 data	 sug-
gests	that	patients	with	its	overexpression	have	improved	
clinical	outcomes	with	anti-	PD-	1	 therapy,57	we	observed	
a	similar	expression	value	of	PD-	L1	between	subgroups.	
Nevertheless,	 IHC-	based	 detection	 of	 PD-	L1	 expression	
was	 more	 widely	 accepted	 than	 transcriptomics-	based	
measurements.58	 Therefore,	 the	 relationship	 between	
PD-	L1	 expression	 and	 OMIRPS	 requires	 further	 clarifi-
cation.	Furthermore,	we	also	 introduced	the	TIDE	score	
to	evaluate	whether	OMIRPS	could	discriminate	between	
responders	 and	 non-	responders	 to	 immunotherapy.	 The	
algorithm	analyzed	key	factors	underlying	the	two	primary	
mechanisms	of	tumor	immune	escape	including	high	in-
filtration	of	cytotoxic	T	lymphocytes	(CTL)-	induced	T-	cell	
dysfunction	and	low	infiltration	of	CTL-	induced	T-	cell	ex-
clusion.59	In	fact,	TIDE	outperforms	known	immunother-
apy	biomarkers	such	as	the	expression	of	TMB	and	PD-	L1	
in	solid	tumors	such	as	melanoma	and	lung	cancer.60	In	
our	study,	OMIRPS	was	correlated	with	the	 immune	ex-
clusion	score,	which	indicated	that	OMIRPS-	high	patients	
may	 be	 less	 responsive	 to	 immunotherapy.	 Additionally,	
the	proportion	of	MSI-	high	was	significantly	lower	in	the	
OMIRPS-	high	subgroup.	Considering	the	positive	correla-
tion	between	MSI	and	 increased	TMB	and	enhanced	re-
sponse	to	ICI,61,62	it	is	assumed	that	low	responsiveness	of	
the	OMIRPS-	high	subgroup	is	partially	attributed	to	less	
lymphocyte	infiltration	caused	by	the	reduced	neoantigen	
from	tumor	mutation.

In	the	meantime,	we	characterized	the	 immunological	
nature	of	the	OMIRPS	subgroups	by	profiling	their	distinc-
tive	composition	of	infiltrating	immune	cells.	CIBERSORT	is	
a	computational	algorithm	used	to	enumerate	cell	fractions	
from	bulk	gene	expression	profiles.	It	has	been	extensively	
applied	in	profiling	the	composition	of	tumor	infiltrating	im-
mune	cells	in	a	wide	range	of	tumors.63	Accordingly,	follic-
ular	helper-	T	cells	and	memory-	B	cells	were	more	enriched	

in	the	OMIRPS-	low	subgroup	whereas	monocytes,	M2	mac-
rophages,	and	resting	dendritic	cells	were	more	enriched	in	
the	OMIRPS-	high	subgroup.	Among	them,	follicular	help-
er-	T	(Tfh)	cells,	a	subset	of	CD4+	T	cells,	facilitate	B	cell-	
mediated	 antibody	 response	 and	 is	 often	 correlated	 with	
improved	survival	of	several	solid	tumors.64	In	GC,	Tfh	cells	
suppress	tumor	progression	by	secreting	diverse	cytokines	
and	antibodies	to	promote	tumor-	associated	lymphocytes.65	
In	contrast,	chronic	inflammation-	related	M2	macrophages	
have	 been	 repeatedly	 shown	 to	 favor	 invasive	 malignant	
phenotype	and	confers	poor	prognosis	of	breast,	lung,	ovar-
ian,	prostate,	gastric	cancer	etc..66–	69	As	we	also	compared	
OMIRPS	 with	 Immune	 Subtype	 (IS)	 classification	 based	
on	distinctive	immune	expression	signatures,14	there	were	
more	C1	 (Wound	Healing)	and	C3	 (Inflammatory)	 in	 the	
OMIRPS-	high	 group,	 while	 there	 were	 more	 C2	 (IFN-	γ	
Dominant)	and	C4	(Lymphocyte	Depleted)	in	the	OMIRPS-	
low	group.	These	results	demonstrated	the	correlation	be-
tween	different	types	of	immune	cells	and	signatures	with	
the	distinctive	prognosis	of	GC	patients	and	reinforced	our	
survival	analysis.

Considering	the	limitations	of	the	present	study,	cau-
tions	 must	 be	 exercised	 when	 interpreting	 and	 utilizing	
the	predictive	signature.	Although	we	aimed	to	develop	an	
OM-	related	predictive	signature,	molecular	investigations	
of	OM	are	so	rare	that	publicized	databases	which	can	ide-
ally	match	our	investigative	scope	remains	null.	Instead,	
we	used	the	TCGA-	STAD	database	as	the	training	cohort	
and	GSE84437,	a	representative	microarray	data	of	Asian	
population	from	Yonsei	gastric	cancer	cohort,	as	the	vali-
dation	cohort.	Consequently,	the	effectiveness	and	valid-
ity	of	OMIRPS	in	the	application	of	GC	patients	with	OM	
have	 not	 been	 rigidly	 tested	 yet.	 Moreover,	 we	 used	 ret-
rospective	datasets	to	construct	OMIRPS	predicting	both	
the	 prognosis	 and	 immunotherapy	 efficacy	 of	 patients.	
Therefore,	 validation	 of	 our	 signature	 in	 a	 prospective	
clinical	 trial	with	sufficient	patient	number	 is	 inevitably	
necessary.	 Additionally,	 only	 four	 pairs	 of	 primary	 and	
ovarian	 metastatic	 tumors	 were	 submitted	 for	 RNA-	seq	
to	identify	key	candidate	genes	regulating	OM.	The	small	
sample	size	in	our	study	limits	the	broad	reflection	of	mo-
lecular	 landscape	underlying	OM,	so	more	paired	speci-
mens	are	needed	for	further	investigation.

In	conclusion,	transcriptome	profiling	of	paired	pri-
mary	and	ovarian	metastatic	lesions	revealed	the	signif-
icance	of	 tumor	 immune	microenvironment	and	other	
immune-	related	 factors	 in	 OM.	 Based	 on	 DEGs	 from	
RNA-	seq	 analysis	 and	 IRGs	 from	 immune-	related	 da-
tabases,	we	constructed	OMIRPS,	an	OM-	related	prog-
nostic	 signature	 which	 distinguishes	 the	 molecular	
features	 and	 immune	 characteristics	 between	 GC	 pa-
tients.	OMIRPS	serves	as	a	robust	biomarker	to	predict	
the	prognosis	of	patients	and	their	potential	response	to	
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immunotherapy,	 which	 requires	 additional	 studies	 to	
validate	in	the	future.
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