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Abstract
Background: Ovarian metastasis (OM) results in poor survival of gastric can-
cer (GC) patients. While immunotherapy has emerged as a promising approach 
for late-stage GC, validated immune-related prognostic signatures still remain in 
need. In this study, we constructed an ovarian metastasis- and immune-related 
prognostic signature (OMIRPS), characterized the molecular and immune fea-
tures of OMIRPS-categorized subgroups and predicted their potential response 
to immunotherapy.
Methods: Three individual cohorts were used to construct and evaluate OMIRPS: 
RNA-seq of matched primary GC and OM from Fudan University Shanghai 
Cancer Center (FUSCC) (discovery cohort, n  =  4), The Cancer Genome Atlas 
(TCGA) (training cohort, n = 544) and GSE84437 (validation cohort, n = 433). 
Differentially expressed genes (DEGs) identified between primary GC and OM 
and immune-related genes (IRGs) from the ImmPort and InnateDB databases 
were used to identify immune-related prognostic hub genes, which were further 
used to construct OMIRPS by using LASSO regression analysis. Prognosis, molec-
ular characteristics, immune features, and differential immunotherapy efficacy 
between different OMIRPS subgroups were analyzed.
Results: Functional analyses of DEGs revealed the significance of immune-
related signatures and pathways in the OM. Immune-related prognostic hub 
genes including TNFRSF18, CARD11, BCL11B, NRP1, BNIP3L, and ATF3 were 
utilized to construct OMIRPS, which was identified as an independent prognostic 
factor. Comprehensive analyses unveiled the distinctive molecular and immune 
characteristics of OMIRPS-high and -low subgroup in regard to enriched path-
ways, mutation rate, tumor mutation burden, microsatellite instability status, 
infiltrated immune cell, immune exclusion score, and the prediction of immuno-
therapy efficacy. Additionally, OMIRPS was associated with Immune Subtypes 
with borderline significance.

www.wileyonlinelibrary.com/journal/cam4
https://orcid.org/0000-0002-4627-6278
https://orcid.org/0000-0003-3638-0845
mailto:﻿
https://orcid.org/0000-0003-2455-609X
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:panhongda1987@163.com
mailto:liuxw1129@hotmail.com


914  |      GAO et al.

1   |   INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-
related deaths worldwide and distant metastasis is one 
of the largest threats to its poor prognosis.1 Ovarian me-
tastasis (OM) is one unique type of metastasis in female 
patients, with its incidence ranging from 0.3% to 6.7%.2,3 
Despite the combined efforts of mastectomy and sys-
temic chemotherapy, the median survival period remains 
<19 months,4,5 indicating the limited efficacy of current 
therapeutics and the urgent need to develop new ap-
proaches to the treatment of OM.

In recent years, immunotherapy has emerged as a prom-
ising method in cancer treatment.6 Notably, monoclonal 
antibodies targeting immune checkpoints such as pro-
grammed death-1 (PD-1) and programmed death-ligand 1 
(PD-L1) have shown efficacy in melanoma, non-small cell 
lung cancer, renal cell carcinoma, as well as gastrointesti-
nal malignancy.7 With respect to GC, clinical trials have 
demonstrated antitumor activity with PD-1/PD-L1 in-
hibitors,8 with the milestone clinical trial Checkmate 649 
leading to the Food and Drug Administration approval of 
the PD-1 inhibitor nivolumab for advanced or metastatic 
GC.9 However, immune checkpoint inhibitor (ICI)-based 
immunotherapy has not been widely applied in the treat-
ment of GC patients with OM to date. Moreover, the re-
sponse rate of GC patients to ICI is reportedly low,10 which 
could be partially explained by the distinctive molecular 
and immune characteristics such as tumor immune mi-
croenvironment (TIME) of different patients.11 To identify 
the subgroup of GC patients who are more likely to benefit 
from immunotherapy, immune-related predictive models 
such as TMEscore have been developed.12,13 Nevertheless, 
effective immune-related prognostic and therapeutic indi-
cators have not been constructed in GC patients with OM 
so far.

In the present study, we aimed to establish an OM-
related signature which could predict the prognosis of 
GC patients and their response to immunotherapy. RNA-
seq analyses of DEGs between paired primary GC and 
OM from FUSCC cohort uncovered the significance of 
immune-related signatures and pathways. Based on DEGs 

and public databases-derived immune-related genes 
(IRGs), we identified a total number of 19 immune-related 
hub prognostic genes. We further utilized a LASSO regres-
sion to construct an OM- and immune-related prognostic 
signature (OMIRPS). We validated the prognostic value 
of OMIRPS in both TCGA-STAD and GSE84437 cohort, 
characterized the molecular and immunological features 
of different OMRIPS subgroups and evaluated its pre-
dictive ability of immunotherapy efficacy. We compared 
the OMIRPS scoring with other classification systems 
and unveiled that OMIRPS was independent from TNM 
staging and was associated with Immune Subtypes (IS) 
with borderline significance. These results suggested that 
OMIRPS, which was originated from the bioinformatic 
studies of FUSCC cohort and public databases (TCGA-
STAD and GSE84437 cohort), served as a promising OM-
related immune biomarker for the prediction of patient 
prognosis and immunotherapy efficacy.

2   |   MATERIALS AND METHODS

2.1  |  RNA sequencing of paired primary 
GCs and OMs from Fudan University 
Shanghai Cancer Center

The formalin-fixed paraffin-embedded (FFPE) tissues of 
primary gastric tumors and matching metastatic ovarian 
lesions (n  =  4) were collected from patients undergo-
ing extended radical gastrectomy without neoadjuvant 
chemotherapy or radiotherapy between 2016 and 2020 at 
the Fudan University Shanghai Cancer Center (FUSCC 
in short). Their tissues were used for RNA sequencing 
(RNA-seq in short), and this dataset was used as the dis-
covery cohort. Histological and tumor cellularity were de-
termined (tumor cellularity over 60%) by two individual 
pathologists before sequencing. The 8th edition of UICC 
TNM classification was applied to determine the patho-
logical stage of patients. This study was approved by the 
Ethics Committee of FUSCC, and informed consents were 
received from all patients. For RNA-seq, RNAstormTM 
FFPE kit (CELLDATA) was used to isolate total RNA. 

Conclusions: RNA-seq of paired primary and ovarian metastatic tumors un-
veiled the significance of immune-related pathways and tumor immune micro-
environment in OM. OMIRPS served as a promising biomarker to predict the 
prognosis of GC patients and distinguish the molecular features, immune charac-
teristics, and efficacy of immunotherapy between different subgroups.
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SMARTer Stranded Total RNA-Seq Kit-Pico Input 
Mammalian Library preparation kit (Clontech) was used 
to prepare a strand-specific RNA-seq library. Qubit fluo-
rometer (Thermo Fisher Scientific) and Qsep100 (BiOptic) 
were used to check the quality of library. Illumina se-
quencing platform with 150 bp paired-end run metrics 
was used for performing RNA-seq.

2.2  |  Data analysis of RNA-seq

FastQC was applied to filter raw reads and remove low 
quality bases and adaptor sequences. HISAT2 was applied 
to map the reads to the GRCh38 human genome assembly. 
FPKM (Fragments Per Kilobase of transcript per Million 
mapped reads) was applied for the calculation of gene ex-
pression level by normalizing gene counts from feature 
counts. The Pearson correlation coefficient was calculated 
to compare the global gene expression in the samples. The 
analysis was carried out by R software (version 3.6.1) with 
the “limma” package, and the significance threshold was 
set as |log2[fold change (FC)]| > 1, and False Discovery 
Rates (FDR) <0.05.

2.3  |  Data acquisition and preprocessing

RNA-seq and somatic mutation data of 407 GC samples, 
including 375 cancer samples and 32 para-cancer samples, 
and their corresponding clinicopathological information 
were downloaded from the Stomach Adenocarcinoma 
dataset of The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/proje​cts/TCGA-STAD). In addi-
tion, microarray expression profiling data of 433 GC sam-
ples (GSE84437) and the clinicopathological information 
were downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/). The TCGA dataset served as the 
training cohort and the GSE84437 dataset was used as 
a validation cohort to verify the predictive ability of the 
ovarian metastasis-related immune and prognostic signa-
ture (OMIRPS). The TCGA molecular classification and 
Immune Subtypes (IS) of GC samples were extracted from 
the supplementary files of the article of Thorsson et al.14 
“ComBat” tool from the “sva” package was applied to ad-
just for systematic batch effects between TCGA and GEO 
dataset.

2.4  |  Immune-related genes (IRGs) lists

Two lists of IRGs were downloaded from the ImmPort 
(https://www.immpo​rt.org/share​d/home)15 and InnateDB 	
(https://www.innat​eDBdb.com/) databases.16 A final list 

of IRGs was created by combining ImmPort and InnateDB 
lists and removing the overlapped genes. Differential ex-
pressed IRGs (DEIRGs) were selected by intersecting the 
list of DEGs and the list of IRG.

2.5  |  Functional annotation

To explore the biological functions of DEIRGs, Gene 
Ontology (GO) with biological process (BP) analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were performed by using the “cluster-
Profiler” package in R software. To determine the sign-
aling pathway of the gene set of different groups, a gene 
set enrichment analysis (GSEA) based on the Hallmark 
gene sets was carried out with the “GSVA” package of R. 
DEGs between paired primary and ovarian metastatic le-
sions were submitted for canonical pathway analysis by 
QIAGEN Ingenuity Pathway Analysis (IPA). Gene lists 
containing the gene probe set IDs and corresponding 
p values were uploaded to the IPA software (Ingenuity 
Systems; www.ingen​uity.com/) to identify significantly 
activated and inhibited signaling pathways between sam-
ples. The −log (p value) > 2 and |Z score| > 2 were used as 
the threshold of significance, with a Z-score > 2 indicating 
significant activation while a Z-score < −2 indicating sig-
nificant inhibition.

2.6  |  Construction and validation of  
ovarian metastasis- and immune-related  
and prognostic signature (OMIRPS)

A univariate Cox proportional hazards regression analy-
sis was conducted to identify prognostic hub genes as-
sociated with overall survival (OS). A least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion model were performed on prognostic hub genes 
with “glmnet” and “survival” packages. The coefficient 
for each gene was calculated, and genes that remained 
in the model were used to construct the ovarian me-
tastasis-  and immune-related and prognostic signature 
(OMIRPS). The OMIRPS score was calculated by sum-
ming up the products of gene expressions and their 
corresponding coefficients. Patients were divided into 
OMIRPS-high or OMIRPS-low groups according to its 
median score. A Kaplan–Meier survival analysis with 
log-rank test was performed with the R package “sur-
vminer” to reveal the survival difference between differ-
ent OMIRPS subgroups in both training and validation 
cohorts. A time-dependent receiver operating charac-
teristic (ROC) curve analysis was conducted using the 
“survivalROC” package. The values of the area under 

https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/shared/home
https://www.innatedbdb.com/
http://www.ingenuity.com/
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the curve (AUC) at 1, 3, and 5 years were calculated to 
determine the prognostic predicting ability of OMIRPS. 
A multivariate Cox proportional hazards regression 
analysis was conducted to identify the independent 
prognostic predictor using the “survival” package. A 
risk heatmap comparing OMIRPS score, OS status and 
time, and gene expression were created using the R 
package “pheatmap.”

2.7  |  Somatic variants analysis

Somatic mutation data were downloaded from the 
Stomach Adenocarcinoma dataset of The Cancer Genome 
Atlas (TCGA) (https://portal.gdc.cancer.gov/proje​cts/
TCGA-STAD). Somatic mutations of prognostic hub genes 
were analyzed by using the “maftools” package of R. Top 
20 mutated genes were compared between IRPS-risk and 
IRPS-low groups.

2.8  |  Immune cell infiltration analysis

CIBERSORT (https://ciber​sort.stanf​ord.edu/) is a 
computational method for quantifying cell fractions 
from bulk tissue gene expression profiles. We used the 
CIBERSORT to estimate the proportion of 22 types of 
immune cells in GC sample in TCGA cohort. The differ-
ence of immune cells abundance between OMIRPS-high 
and OMIRPS-low groups was analyzed. The prognostic 
significance of immune cells was evaluated through a 
Kalan–Meier analysis.

2.9  |  Prediction of 
immunotherapy efficacy

Tumor Immune Dysfunction and Exclusion (TIDE, 
http://tide.dfci.harva​rd.edu/) is a computational frame-
work developed to evaluate the potential of tumor im-
mune escape from the gene expression profiles of cancer 
samples. The TIDE score computed for each tumor sam-
ples can serve as a surrogate biomarker to predict the 
response to immune checkpoint blockade, including 
anti-PD1 and anti-CTLA4 for multiple types of cancer. 
The TIDE score along with immune dysfunction and 
exclusion scores were compared between OMIRPS-
high and OMIRPS-low groups. The correlation between 
OMIRPS score and expression levels of immune check-
point molecules (PD-1, PD-L1, CTLA4, and LAG3) were 
analyzed and visualized using the “limma”, “reshape2”, 
and “ggpubr” packages.

2.10  |  Statistical analysis

Statistical analyses were conducted using R (version 4.1.0). 
Continuous variables were presented as mean stand-
ard error of the mean (SEM) and were compared with 
Student's t-tests or Wilcoxon rank-sum tests. Categorical 
data were compared using the chi-square test. A p value 
<0.05 was considered to be significant. Statistical signifi-
cance is shown as *p < 0.05, **p < 0.01, ***p < 0.001.

3   |   RESULTS

3.1  |  Identification and functional 
annotation of differentially expressed 
immune-related genes (DEIRGs) between 
primary gastric tumors and matching 
ovarian metastases

A flowchart of the establishment and validation of the 
ovarian metastasis-  and immune-related prognostic sig-
nature (OMIRPS) is presented in Figure  1. The FUSCC 
cohort (n  =  4), TCGA cohort (n  =  544), and GSE84437 
cohort (n = 433) were used as the discovery dataset, train-
ing dataset, and validation dataset, respectively. Thus, a 
total of 981 GC patients were included in the analysis. 
Transcriptome sequencing of four pairs of primary GCs 
and matching OMs from FUSCC cohort were performed. 
Differential expression analysis in the FUSCC cohort iden-
tified 1088 differentially expressed genes (DEGs) between 
primary and ovarian metastatic lesions (|log2FC| > 1, 
FDR < 0.05), among which 609 genes were upregulated 
and 479 genes were downregulated in primary GC when 
compared to OM (Figure 2A). To characterize the biologi-
cal function and activated signaling pathways underlying 
DEGs, we conducted both Gene Ontology (GO) analysis of 
biological process and Ingenuity Pathway Analysis (IPA). 
The GO analysis revealed that T-cell activation and lym-
phocyte differentiation were the most enriched signatures 
in DEGs (Table S1). The IPA unveiled the significant ac-
tivation of immune-related signaling such as crosstalk be-
tween dendritic cells and natural killer cells, natural killer 
cell signaling, Th1, and Th2 Pathway, and PD-1/PD-L1 
cancer immunotherapy pathway in the comparison be-
tween primary GC and OM (Figure 2B). These analyses 
strongly indicated the significance of immune-related fac-
tors such as tumor immune microenvironment (TIME) in 
the ovarian metastasis of GC.

Consequently, we focused on deciphering the roles 
of immune-related factors in this specific type of dis-
tant metastasis. First, 1794 and 1226 immune-related 
genes (IRGs) were downloaded from the ImmPort and 

https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://portal.gdc.cancer.gov/projects/TCGA-STAD
https://cibersort.stanford.edu/
http://tide.dfci.harvard.edu/
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F I G U R E  1   Schematic layout of constructing ovarian metastasis- and immune-related prognostic signature (OMIRPS).

F I G U R E  2   Analysis of differentially expressed genes between paired primary and ovarian metastatic lesions of four GC patients from 
FUSCC cohort. (A) Volcano plot of log2 fold change and -log10 (FDR) of differentially expressed genes between primary GC and OM. Red 
dots represent upregulated gene and green dots represent up- and downregulated genes in primary GC in comparison with OM. (B) The 
most changed signaling pathways between primary GC and OM revealed by the canonical pathway analysis of Ingenuity Pathway Analysis 
(IPA), which were denoted by the horizontal bars based on the Z-scores. Z score > 2 (red bars) and <−2 (blue bars) indicates significantly 
activated and inhibited pathways in primary GC over OM, respectively. (C) Differential expressed immune-related genes (DEIRGs) between 
DEGs and IRGs demonstrated by Venn diagram. (D, E) KEGG analysis identified most enriched signaling pathways in the upregulated (D) 
and downregulated (E) genes of primary GCs when compared to OMs.
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InnateDB databases, respectively (Table S2). By combin-
ing those two IRG lists and removing the overlapped 711 
genes, we obtained a total of 2660 IRGs. Then, 182 differ-
entially expressed immune-related genes (DEIRGs) were 
identified by intersecting the DEGs and IRGs (Figure 2C), 
among which 44 DEIRGs were upregulated whereas the 
other 138 DEIRGs were downregulated in GC samples in 
comparison with normal samples. Next, we conducted a 
KEGG pathway analysis to further gain insight into the 
enriched functional pathways of DEIRGs. Using a thresh-
old of FDR < 0.05, we identified multiple pathways which 
were enriched in dysregulated DEIRGs. It was revealed 
that upregulated DEIRGs were significantly involved 
in immune-related pathways such as natural killer cell-
mediated cytotoxicity, primary immunodeficiency, T-cell 
and B-cell receptor signaling pathway whereas downreg-
ulated DEIRGs were mainly associated with metabolism-
related pathways such as glycosaminoglycan biosynthesis 
and fatty acid metabolism. The top 10 KEGG pathways of 
upregulated and downregulated genes were demonstrated 
as Circos plots in Figure 2D,E, respectively.

3.2  |  Construction and validation of the 
ovarian metastasis- and immune-related 
prognostic signature (OMIRPS)

To obtain immune-related prognostic hub genes that 
were significantly involved in OM, we initially conducted 
Kaplan–Meier survival analysis and univariate Cox re-
gression analysis to evaluate the prognostic significance 
of DEIRGs. The Kaplan–Meier analysis showed that the 
expression levels of 19 genes were significantly corre-
lated with the survival of GC patients (Figure S1). Among 
them, 16 genes (CARD11, NPR3, TIE1, ADM, ATF3, RGS2, 
TSC22D3, PDGFRA, KCNJ8, ZFPM2, GLI1, NRP1, ENG, 
PDGFC, ANGPTL2, and BNIP3L) were recognized as 
unfavorable prognostic genes with hazard ratios (HRs) 
>1, while three genes (TNFRSF18, BCL11B, and TAP1) 
were deemed as favorable prognostic genes with HRs <1 
(Figure 3A). The somatic mutations and copy number var-
iations of these 19 genes were also investigated. As shown 
in Figure  3B, missense mutations were the most com-
mon mutation type, and CARD11 and TIE1 exhibited the 
highest mutation frequency (5%) followed by GLI1 (3%), 
ZFPM2 (3%), NRP1(3%), NPR3 (3%), and PDGFRA (3%).

Next, the 19 immune-related prognostic hub genes 
identified in the TCGA training set were submitted for 
LASSO regression analysis to construct the ovarian me-
tastasis-  and immune-related and prognostic signature 
(OMIRPS) (Figure 3C,D). The coefficient of each gene was 
calculated, followed by the establishment of a signature 
which consists of six immune-related genes (TNFRSF18, 

CARD11, BCL11B, NRP1, BNIP3L, and ATF3). The 
OMIRPS score  =  TNFRSF18 × (−0.25) + CARD11 × 0.2
1 + BCL11B × (−0.37) + NRP1 × 0.42 + BNIP3L × 0.29 + A
TF3 × 0.15. The patients were divided into OMIRPS-low 
(n = 182) and OMIRPS-high (n = 180) subgroups accord-
ing to the median risk score.

The prognostic value of OMIRPS was validated by using 
the TCGA cohort and GSE84437 cohort. First, the Kaplan–
Meier survival analysis revealed that GC patients in the 
OMIRPS-high subgroup had a significantly worse over-
all survival (OS) than those who were in the OMIRPS-low 
subgroup for both the TCGA (p <  0.001) (Figure  3E) and 
GSE84437 (p = 0.020) (Figure 3F) cohorts. Next, the time-
dependent ROC analysis showed that the AUC values of 
OMIRPS for predicting OS in the TCGA cohort were 0.69, 
0.71, and 0.73 at 1, 3, and 5 years, respectively, suggesting 
a good predictive accuracy (Figure  3G). Consistent with 
this result, AUC values in the GSE84437 cohort were 0.58, 
0.657, and 0.60 at 1, 3, and 5 years, respectively (Figure 3H). 
Furthermore, both univariate and multivariate Cox regres-
sion analyses were conducted in the TCGA cohort to inves-
tigate if OMIRPS could serve as an independent prognostic 
factor of GC patients. The univariate Cox regression analysis 
indicated that age, TNM stage, and OMIRPS were signifi-
cantly associated with the OS of patients. The multivariate 
Cox regression analysis confirmed that OMIRPS remained 
an independent prognostic factor (Figure 3I,J). Accordingly, 
OMIRPS-low and -high subgroups were defined as low- and 
high-risk subgroups, respectively.

3.3  |  Molecular characteristics of 
OMIRPS-high and -low subgroup

To gain insight into the biological features of differ-
ent OMIRPS subgroups, we performed a Gene Set 
Enrichment Analysis (GSEA) regarding Hallmark sign-
aling pathways in the TCGA cohort. The genes of the 
OMIRPS-high samples were mainly enriched in cancer-
related pathways such as epithelial–mesenchymal tran-
sition (EMT). Considering the critical role of aberrant 
CDH1, the protein coding gene of E-cadherin, in both 
the EMT process and hereditary diffuse GC progres-
sion, we compared the CDH1 expression between the 
OMIRPS-high and-low subgroup and did not identify 
any significant differences. Additionally, the OMIRPS 
score between CDH1 mutant and wild-type GC patients 
were also similar (Figure  S2). On the other hand, the 
genes of the OMIRPS-low samples were enriched in cell 
cycle and metabolism-related pathways, such as E2F 
targets, G2M checkpoint, and Oxidative phosphoryla-
tion pathways. The top five enriched signaling pathways 
in the OMIRPS-low and OMIRPS-high subgroups are 
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displayed in Figure  4A,B, respectively. Detailed GSEA 
results are listed in Table S3.

Somatic mutations in different OMIRPS subgroups 
were also investigated. As shown in Figure 4C,D, TTN, 
TP53, MUC16, ARID1A, and LRP1B were the most 
commonly mutated genes in both subgroups. Notably, 
the overall mutation rate was significantly higher in 
the OMIRPS-low subgroup compared to the OMIRPS-
high subgroup (91.21% vs. 85.00%, p < 0.001). Mutation 

of each of the top 20 genes was more common in the 
OMIRPS-low subgroup than in the OMIRPS-high sub-
group. Next, we investigated the correlation between 
OMIRPS score and tumor mutation burden (TMB). It 
was demonstrated that TMB was significantly higher in 
the OMIRPS-low subgroup than in the OMIRPS-high 
subgroup (p < 0.001, Figure  4E), and TMB was nega-
tively correlated with the OMIRPS score (r  =  −0.24, 
p < 0.001, Figure 4F).

F I G U R E  3   Construction and evaluation of the prognostic value of OMIRPS. (A) Univariate Cox analysis of 19 immune-related 
prognostic hub genes from DEIRGs. (B) Profiles of mutation status of 19 immune-related prognostic hub genes. (C, D) Construction of 
OMIRPS by LASSO regression analysis. (E, F) Kaplan–Meier survival analysis of OMIRPS-high and -low subgroup in the TCGA cohort (E) 
and GEO cohort (F). (G, H) Time-dependent ROC analysis of OMIRPS-high and -low subgroup in the TCGA cohort (G) and GEO cohort 
(H). (I, J) Univariate and multivariate Cox analysis of clinicopathological factors and the OMIRPS to identify independent prognostic factors.
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3.4  |  Immune characteristics of 
OMIRPS-high and -low subgroup

Immune checkpoints represent an immunosuppressive 
mechanism that allows cancer cells to escape antitumor 
immunity. Key immune checkpoint molecules such as 
PD-1 (encoded by PDCD1), PD-L1 (encoded by CD274), 
CTLA4, and LAG3 have been identified as potential im-
munotherapeutic targets. We analyzed the association 
between the OMIRPS score and the expression of im-
mune checkpoint molecules. It was shown that PDCD-1 
but not CD274 was significantly overexpressed in 
OMIRPS-low subgroup compared to the OMIRPS-high 
subgroup and the expression level of PD-1 was nega-
tively correlated with the OMIRPS score (Figure 5A–D). 
Alternatively, the expression levels of CTLA4 and LAG3 
were similar between the two subgroups (Figure  S3). 
In addition, as multiple immune regulatory molecules 
such as IFN-γ and TGF-β play essential roles in the 
immune microenvironment, we compared the expres-
sion levels of IFNG, TGFB1, and TGFB2 between the 
OMIRPS-high and-low groups. It was demonstrated 
that the TGFB1 and TGFB2 expressions were signifi-
cantly higher in the OMIRPS-high group, while the 
IFNG expression was significantly higher in OMIRPS-
low group (Figure S4).

To gain further insights into the correlation between 
infiltrating immune cells and OMIRPS subgroups, we 
compared the distribution of 22 types of immune cells in 
different subgroups using the CIBERSORT algorithm. The 
landscape of immune cells distribution in each sample 
within the TCGA cohort is illustrated in Figure 5E. The 
analysis revealed that memory B cells and follicular help-
er-T cells were more abundant in the OMIRPS-low sub-
group, suggesting a robust antitumor immune response. 
In contrast, monocytes, M2 macrophages, and resting 
dendritic cells were more enriched in the OMIRPS-high 
subgroup (Figure 5F), indicating its immunosuppressive 
status and poor prognosis. In addition to this, we evalu-
ated the prognostic significance of 22 immune cells in the 
TCGA cohort. It was found that higher infiltration levels of 
resting dendritic cells, neutrophils, and M2 Macrophages 
were significantly associated with worse prognoses, while 
higher infiltration levels of M0 Macrophages, resting Mast 
cells, CD8 T-cells, and CD4 memory T-cells activated were 

markedly correlated with favorable survival outcomes 
(Figure S5). Furthermore, it was noted that in addition to 
immune cells, stromal components in the tumor immune 
microenvironment may also contribute to both tumor 
immunity and progression. Therefore, we evaluated the 
ESTIMATE score which consists of both the stromal and 
immune score in the TCGA-STAD cohort with the appli-
cation of an ESTIMATE algorithm. Our follow-up analy-
sis showed that OMIRPS was significantly correlated with 
the stromal score (R  =  0.44) but not with the immune 
score (R = 0.14) (Figure 5G–I), indicating the significance 
of active interaction between tumor, stroma, and immune 
cells in GC ovarian metastasis.

3.5  |  Predicting immunotherapy 
efficacy and immune escape in GC patients 
by OMIRPS

The Tumor Immune Dysfunction and Exclusion (TIDE) 
online tool (http://tide.dfci.harva​rd.edu/) was used to 
evaluate the potential benefit from immunotherapy ef-
ficacy by assessing the TIDE score, immune dysfunction 
score, immune exclusion score, and MSI status in the 
TCGA cohort. The TIDE score was positively correlated 
with immune escape, resulting in less benefit from im-
munotherapy, and an unfavorable survival outcome. 
Although TIDE score and immune dysfunction score 
were comparable between OMIRPS-high and -low sub-
groups (Figure  6A,B), the immune exclusion score was 
significantly higher in OMIRPS-high subgroup than in 
the OMIRPS-low subgroup (p < 0.05) (Figure  6C), im-
plying that GC patients in OMIRPS-high subgroup had 
worse prognosis and might benefit less from immuno-
therapy than OMIRPS-low patients. Meanwhile, we 
compared OMIRPS with the MSI status in TCGA cohort. 
It was demonstrated that the proportion of MSI-high in 
the OMIRPS-low group was significantly higher than 
that in the OMIRPS-high group (Figure 6D) whereas the 
OMIRPS score of the MSI-high group was significantly 
lower than those of the MSI-low and Microsatellite Stable 
(MSS) groups (Figure  6E). Considering the remarkably 
improved immunotherapy response in MSI-high tumor, 
these results indicated the potential value of OMIRPS for 
the prediction of immunotherapy efficacy.

F I G U R E  4   Molecular characteristics of different OMIRPS subgroups. (A, B) Enriched gene sets in OMIRPS-high (A) and OMIRPS-low 
(B) subgroup (p < 0.05, FDR < 0.25) revealed by GSEA analysis. (C, D). Significantly mutated genes in the mutated samples of OMIRPS-high 
(C) and OMIRPS-low (D) subgroup demonstrated by waterfall plots. The names of top mutated genes and their corresponding mutation 
rate were listed on the left and right side whereas the total number of mutations and the mutation types were listed on the top and bottom, 
respectively. Different mutation types were represented by various colors. (E) Differential tumor mutation burden (TMB) between OMIRPS-
high and -low subgroup analyzed by Wilcoxon rank-sum tests. (F) Correlation between TMB and OMIRPS score analyzed by Pearson 
correlation analysis.

http://tide.dfci.harvard.edu/
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3.6  |  Comparison between OMIRPS 
grouping and other classifications

Next, we compared the clinicopathologic characteristics 
of patients between OMIRPS-low and OMIRPS-high sub-
groups in TCGA cohort. It was noted that high-risk group 
tended to have higher proportion of advanced pathologi-
cal T stage (p < 0.05) whereas the rest of the clinicopatho-
logic characteristics were comparable between the two 

subgroups (Figure 7A). We further analyzed the relation-
ship between OMIRPS grouping and TNM classification 
and found no correlation between them (p = 0.138, chi-
square test) (Figure  7B), indicating that the prognostic 
value of OMIRPS scoring was independent of pathological 
classification.

On the other hand, OMIRPS grouping was com-
pared to Immune Subtype (IS),14 which was charac-
terized by a distinct distribution of scores over the five 

F I G U R E  5   Immune characteristics of different OMIRPS subgroups. (A) Differential expression of PDCD-1 between OMIRPS-high and 
-low subgroup analyzed by Wilcoxon rank-sum tests. (B) Correlation between PDCD-1 expression and OMIRPS score analyzed by Pearson 
correlation analysis. (C) Comparable expression of CD274 between OMIRPS-high and -low subgroup analyzed by Wilcoxon rank-sum 
tests. (D) Correlation between CD274 expression and OMIRPS score analyzed by Pearson correlation analysis. (E) CIBERSORT analyses 
uncovered the proportions of tumor microenvironment cells in OMIRPS-high and -low subgroup. The immune score of different subgroups 
was represented by the scattered dots, with the median value and interquartile range represented by the thick lines and bottom and top 
of the boxes, respectively. (F) Heatmap demonstrating the proportions of 22 different TME cells for patients in OMIRPS-high and -low 
subgroup, respectively. (G–I) ESTIMATE and OMIRPS score in TCGA-STAD cohort. (G) Significant correlation between StromalScore 
and OMIRPS score, (H) Insignificant correlation between ImmuneScore and OMIRPS score and (I) Correlation between overall 
ESTIMATEScore and OMIRPS score.

F I G U R E  6   The predictive value 
of OMIRPS in patients receiving 
immunotherapy response. (A, B) 
Comparable TIDE and dysfunction 
score between OMIRPS-high and -low 
subgroup. (C) Differential exclusion 
score between OMIRPS-high and 
-low subgroups. (D) Differential MSI 
status between OMIRPS-high and -low 
subgroup. (E) Differential OMIRPS score 
between subgroups of patients with 
various microsatellite status.
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immune expression signatures: C1 (Wound Healing), C2 
(IFN-γ Dominant), C3 (Inflammatory), C4 (Lymphocyte 
Depleted), C5 (Immunologically Quiet), and C6 (TGF-β 
Dominant). As shown in Figure  7C, the OMIRPS-high 
group had more IS-C1 and IS-C3, while IS-C2 and IS-C4 
were more likely to be enriched in OMIRPS-low group. 
Statistical analysis showed that OMIRPS grouping was 
associated with Immune Subtypes with borderline signif-
icance (p = 0.05).

4   |   DISCUSSION

Ovarian metastasis considerably threatens the clinical 
outcome and contributes to treatment failure of female 
GC patients.3 Although mounting evidence showed the ef-
fectiveness of immunotherapy in GC,9,17,18 it has not been 
extensively applied to the treatment of patients with OM 
yet. Moreover, only a limited number of patients can ben-
efit from ICI due to the low overall response rate.10 These 

F I G U R E  7   Distribution of 
clinicopathological parameters and 
Immune Subtype (IS) in different 
OMIRPS subgroups. (A) Distribution of 
clinicopathological parameters including 
age, gender, tumor grade, pathological 
T, N, and M stage in OMIRPS-high and 
-low subgroup, respectively. Map. (B) 
Distribution of pathological stages (I to 
IV) in OMIRPS-high and -low subgroup, 
respectively. (C) Distribution of Immune 
Subtypes (IS) (C1 to C4) in OMIRPS-high 
and -low subgroup, respectively. Data are 
shown in the form of heatmap.
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findings highlight the urgent need to construct validated 
signatures to identify patients who could be responsive to 
and benefit from immunotherapy. Unlike most gene sig-
natures derived from analyses of TCGA, GEO, and other 
public databases,19–22 we utilized transcriptome profil-
ing data of paired primary and ovarian metastatic lesions 
from our own FUSCC cohort and integrated it with multi-
ple public databases to develop a predictive biomarker. To 
our knowledge, this is the first OM-related gene signature 
to predict the prognosis and immunotherapy efficacy for 
GC patients.

By intersecting DEGs between GC and OM from 
the FUSCC cohort and IRGs from the ImmPort and 
InnateDB, we identified 19 immune-related hub genes 
and constructed OMIRPS based on six genes (TNFRSF18, 
CARD11, BCL11B, NRP1, BNIP3L, and ATF3), among 
which TNFRSF18 and BCL11B was positively associ-
ated with patient OS while the rest were the opposite. 
TNFRSF18, also known as the glucocorticoid-induced 
tumor necrosis factor receptor-related protein (GITR), was 
highly expressed in activated T cells and regulatory T cells 
(Tregs).23 TNFRSF18 has emerged as a novel immunother-
apy target as it induces a robust proliferation of T effector 
cells and hampers the suppression of Tregs.24 Studies have 
demonstrated the immune effects and mechanistic evi-
dence of GITR agonism-based T-cell reinvigoration com-
bined with ICI in the treatment of solid tumors.25,26 As 
for BCL11B, a C2H2 zinc finger transcription factor and a 
haploinsufficient tumor suppressor, it exerts inhibitory ef-
fects on tumor progression through a wide range of mech-
anisms.27–29 Notably, it is required for the development 
and activation of mature T cells and participates in the de-
velopment of invariant natural killer T (iNKT) cells, which 
play a key role in immune regulation and antitumor re-
sponses.30 Mechanism studies revealed that BCL11B pre-
vents cancer immune evasion by acting as a competitive 
endogenous RNA to upregulate MICA and MICB, which 
essentially control tumor immune surveillance.31 On the 
other hand, the remaining four immune-related genes are 
reportedly oncogenic. For instance, CARD11, also known 
as CARMA1, is mainly expressed in lymphoid tissues and 
is involved in both adaptive immunity and carcinogene-
sis.32 Disruption of the CARMA1–BCL10–MALT1 (CBM) 
signalosome complex by genetic deletion of CARMA1 
resulted in antitumor effects through the loss of suppres-
sive function and the gain of effector activity by Tregs.33 
CARMA1 deletion combined with ICI improved the pa-
tient response to anti-PD-1 monotherapy and induced 
tumor suppression.33 NRP1 intrinsically regulates both 
Treg cell and CD8+ T-cell functions to collectively impede 
antitumor immunity in the tumor microenvironment.34 
It also contributes to tumor angiogenesis by acting as a 
co-receptor with VEGFR as a recent study demonstrated 

that anti-NRP1 monoclonal antibody (MNRP1685A) in-
hibited the VEGF pathway in solid tumors.35 ATF3 is an 
environmental stress-induced transcription factor. It reg-
ulates immunity and oncogenesis through transcriptional 
activation or repression and reciprocally functions as an 
oncogene or tumor suppressor in several malignancies.36 
In GC, ATF3 was found to be upregulated by EBV infec-
tions, whereas the downregulation of ATF3 suppressed 
the proliferation of EBV-infected gastric cells.37 In con-
trast, Huang et al. showed that ATF3 overexpression in-
hibited cell invasiveness and decreased stemness and 
EMT-promoting genes, indicating a suppressive role of 
ATF3 in tumor progression.38 BNIP3L, a member of the 
BCL-2 family, is reportedly induced by p53 under hypoxia 
and is critically involved in p53-mediated autophagy.39 It 
serves as a predictive marker for both prognosis and re-
sponse to angiogenesis inhibitors in GC.40,41 In summary, 
the construction of OMIRPS was based on a collection 
of immune-related oncogenic and/or tumor suppressor 
genes which originated from the gene expression and mu-
tation data of FUSCC and public databases.

To characterize the molecular features underlying dif-
ferent OMIRPS subgroups, we studied the functionally 
enriched signaling pathways and gene mutations of each 
group. In line with previous reports, GSEA analyses re-
vealed that genes in different subgroups were enriched 
in distinctive sets.42–44 For instance, TGF-β signaling and 
EMT pathways were enriched in the OMIRPS-high sub-
group, which partially explained its poor prognosis, espe-
cially considering that TGF-β promotes cancer progression 
by pressing cancer cells into EMT which results in metas-
tasis and chemotherapy resistance.45 In the OMIRPS-low 
subgroup, however, cell cycle-related pathways such as 
E2F targets pathway were enriched. It was reported that 
the E2F expression is correlated with tumor suppression 
and immune infiltration in GC.46,47 Apart from func-
tional enrichment analyses, we also conducted somatic 
mutation studies of OMIRPS subgroups. Although the 
top mutated genes such as TTN, TP53, MUC16, ARID1A, 
and LRP1B were identical between the two subgroups, the 
tumor mutation burden (TMB) was significantly higher in 
the OMIRPS-low subgroup and the TMB was negatively 
correlated with the OMIRPS score. Notably, mutations 
of TTN and MUC16 were associated with the TMB and 
could predict the immunotherapy efficacy in GC and pan-
cancer.48 TMB, the number of non-synonymous single 
nucleotide variants (nsSNVs) in a tumor, affects the odds 
of producing immunogenic peptides and thereby influ-
ences T-cell-mediated antitumor activity and the patient's 
response to ICI.49,50 Consequently, TMB is proposed as a 
key biomarker to predict both the efficacy and prognosis 
of patients receiving immunotherapy in multiple malig-
nancies such as lung, colon, and gastric cancer,51–53 which 
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is consistent with our results demonstrating that TMB 
is different between OMIRPS subgroups. Therefore, our 
molecular characterization shed light on the mechanisms 
underlying the survival difference between different 
OMIRPS subgroups.

In addition to TMB, expressions of immune checkpoint 
molecules such as PD-1 and PD-L1 are also recognized as 
key biomarkers of immunotherapy efficacy.50 Our analy-
ses demonstrated a significant increase of PD-1, the target 
of monoclonal antibody (pembrolizumab) approved for 
late-stage GC and a marker of tumor-reactive T cells and 
enhanced T-cell receptor signaling,54 in the OMIRPS-low 
subgroup. In fact, PD-1 expression was correlated with 
CD8+ T-cell density at the invasion front of the microsatel-
lite unstable GC tissues,55 whereas TCGA-based profiling 
of PD gene expression showed the significant association 
of PD-1 expression with the improved prognosis of GC 
patients.56 As for PD-L1, although emerging data sug-
gests that patients with its overexpression have improved 
clinical outcomes with anti-PD-1 therapy,57 we observed 
a similar expression value of PD-L1 between subgroups. 
Nevertheless, IHC-based detection of PD-L1 expression 
was more widely accepted than transcriptomics-based 
measurements.58 Therefore, the relationship between 
PD-L1 expression and OMIRPS requires further clarifi-
cation. Furthermore, we also introduced the TIDE score 
to evaluate whether OMIRPS could discriminate between 
responders and non-responders to immunotherapy. The 
algorithm analyzed key factors underlying the two primary 
mechanisms of tumor immune escape including high in-
filtration of cytotoxic T lymphocytes (CTL)-induced T-cell 
dysfunction and low infiltration of CTL-induced T-cell ex-
clusion.59 In fact, TIDE outperforms known immunother-
apy biomarkers such as the expression of TMB and PD-L1 
in solid tumors such as melanoma and lung cancer.60 In 
our study, OMIRPS was correlated with the immune ex-
clusion score, which indicated that OMIRPS-high patients 
may be less responsive to immunotherapy. Additionally, 
the proportion of MSI-high was significantly lower in the 
OMIRPS-high subgroup. Considering the positive correla-
tion between MSI and increased TMB and enhanced re-
sponse to ICI,61,62 it is assumed that low responsiveness of 
the OMIRPS-high subgroup is partially attributed to less 
lymphocyte infiltration caused by the reduced neoantigen 
from tumor mutation.

In the meantime, we characterized the immunological 
nature of the OMIRPS subgroups by profiling their distinc-
tive composition of infiltrating immune cells. CIBERSORT is 
a computational algorithm used to enumerate cell fractions 
from bulk gene expression profiles. It has been extensively 
applied in profiling the composition of tumor infiltrating im-
mune cells in a wide range of tumors.63 Accordingly, follic-
ular helper-T cells and memory-B cells were more enriched 

in the OMIRPS-low subgroup whereas monocytes, M2 mac-
rophages, and resting dendritic cells were more enriched in 
the OMIRPS-high subgroup. Among them, follicular help-
er-T (Tfh) cells, a subset of CD4+ T cells, facilitate B cell-
mediated antibody response and is often correlated with 
improved survival of several solid tumors.64 In GC, Tfh cells 
suppress tumor progression by secreting diverse cytokines 
and antibodies to promote tumor-associated lymphocytes.65 
In contrast, chronic inflammation-related M2 macrophages 
have been repeatedly shown to favor invasive malignant 
phenotype and confers poor prognosis of breast, lung, ovar-
ian, prostate, gastric cancer etc..66–69 As we also compared 
OMIRPS with Immune Subtype (IS) classification based 
on distinctive immune expression signatures,14 there were 
more C1 (Wound Healing) and C3 (Inflammatory) in the 
OMIRPS-high group, while there were more C2 (IFN-γ 
Dominant) and C4 (Lymphocyte Depleted) in the OMIRPS-
low group. These results demonstrated the correlation be-
tween different types of immune cells and signatures with 
the distinctive prognosis of GC patients and reinforced our 
survival analysis.

Considering the limitations of the present study, cau-
tions must be exercised when interpreting and utilizing 
the predictive signature. Although we aimed to develop an 
OM-related predictive signature, molecular investigations 
of OM are so rare that publicized databases which can ide-
ally match our investigative scope remains null. Instead, 
we used the TCGA-STAD database as the training cohort 
and GSE84437, a representative microarray data of Asian 
population from Yonsei gastric cancer cohort, as the vali-
dation cohort. Consequently, the effectiveness and valid-
ity of OMIRPS in the application of GC patients with OM 
have not been rigidly tested yet. Moreover, we used ret-
rospective datasets to construct OMIRPS predicting both 
the prognosis and immunotherapy efficacy of patients. 
Therefore, validation of our signature in a prospective 
clinical trial with sufficient patient number is inevitably 
necessary. Additionally, only four pairs of primary and 
ovarian metastatic tumors were submitted for RNA-seq 
to identify key candidate genes regulating OM. The small 
sample size in our study limits the broad reflection of mo-
lecular landscape underlying OM, so more paired speci-
mens are needed for further investigation.

In conclusion, transcriptome profiling of paired pri-
mary and ovarian metastatic lesions revealed the signif-
icance of tumor immune microenvironment and other 
immune-related factors in OM. Based on DEGs from 
RNA-seq analysis and IRGs from immune-related da-
tabases, we constructed OMIRPS, an OM-related prog-
nostic signature which distinguishes the molecular 
features and immune characteristics between GC pa-
tients. OMIRPS serves as a robust biomarker to predict 
the prognosis of patients and their potential response to 
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immunotherapy, which requires additional studies to 
validate in the future.
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