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Abstract

To analyze an animal’s movement trajectory, a basic model is required that satisfies the following conditions: the model
must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of
movement patterns can be explained by that model, and equations and probability distributions in the model should be
mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements,
partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving
the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently
developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture
the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris
leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are
ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple
extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of
external factors on movement separately from the animal’s internal state. For example, maximum likelihood estimates and
model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged
its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal
direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.
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Introduction

Movement ecology is currently at the stage of unifying several

paradigms that have tended to be investigated separately [1]. For

large animals, recent technological developments in bio-logging

science have enabled us to obtain movement trajectory data with

high resolution, e.g., GPS locations at 1 s or shorter intervals [2,3].

In contrast, statistical techniques for analyzing these spatiotempo-

ral data have been developing slowly. Although various new

movement models have been introduced [4,5], for modeling the

direction of heading, most of them essentially rely on a correlated

random walk (CRW),

ht~ht{1zet, ð1Þ

where ht is the heading direction from time t to t +1, and et is

independently and identically distributed as a circular probability

distribution. Unfortunately, many real trajectories have shown

movement patterns that cannot be realized by CRW [6,7]. In

particular, during a long period of movement, animals seem to

have some ‘‘focal’’ direction (i.e., a direction that the animal

intends to move toward), and CRW can rarely realize such

oriented trajectories. Hence, we need to develop a basic time-series

model that can flexibly cover a broad range of movement patterns.

In addition, the model parameters should accompany ecological

interpretations and quantify some important aspects of animal

behavior; i.e., the modeling framework should be closely related to

the quantification process of a conceptual framework in movement

ecology. Moreover, the basic model must be mathematically

tractable [4,5,8].

Previously proposed models have not satisfied these conditions.

For example, Nams [9] introduced the following oriented

movement model. Let a be the focal direction. An animal adjusts

the direction of heading at every time step as follows:

ht~(1{w)(a{ht{1)zht{1zet: ð2Þ

If w = 0, ht = a+et, thus, the animal tries to change the direction

of heading toward a, with a stochastic error (et). If w = 1, equation
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(2) reduces to the CRW (equation (1)). If w is close to zero, a strong

adjustment operates, and model (2) continuously covers from

CRW to oriented movements. However, this model contains

unreasonable properties. First, equation (2) is not continuous at a –

p and is therefore not mathematically so tractable (see Appendix

S1). Second, previous studies have used symmetric probability

distributions for the stochastic term (et), although actual GPS

trajectories often contain asymmetry, e.g., when a bird flies under

windy conditions (see Figures 5 and 7, below).

The circular auto-regressive time-series model introduced in

Kato [10] and the asymmetric circular probability distribution

introduced in Kato and Jones [11] can solve these problems. In

addition, the applicability of these circular statistical modeling is

not limited to oriented trajectories but also to tortuous movements.

This study aimed to formulate a basic movement model and to

relate the modeling framework with the conceptual framework for

movement ecology, as a quantitative methodology.

This paper begins with the formulation of the movement

models, followed by a discussion regarding their correspondence to

the conceptual framework summarized by Nathan et al. [1]. Using

examples of the models being applied to the GPS trajectories of a

seabird, the paper explains how the model parameters can be

ecologically interpreted and how animal movements can be

quantitatively evaluated. The final section discusses unsolved issues

and future directions.

Materials and Methods

Movement Model
Here, we denote the trajectory of an animal movement by

xt = (x0, x1, …, xn) where xt = (x1t, x2t) is the location (x–y

coordinate) at time t (t = 0, 1, …, n). The direction of heading from

time t to t +1 is given by ht~ arg xtxtz1
����! (throughout the paper,

directions are as 0 = east, p/2 = north, p= west, and 3p/

2 = south), and the speed is given by vt~Dxtxtz1
����!D (t = 0, 1, …, n

–1). We assumed that locations are acquired at regular intervals

and that the direction of heading and speed was constant within

each interval.

When the model was applied to real data, we used the notation

Xt for observed locations at time t, Ht~ arg XtXtz1
����!

for the

observed direction of heading, and Vt~DXtXtz1
����!

D for the observed

speed (actually, Ht and Vt are ‘‘the observed orientation’’ and ‘‘the

observed step length,’’ but for simplicity, the above terminologies

are used in this paper).

The modeling of an animal’s movement is given by

x1 t~vt cos htzx1 t{1

x2 t~vt sin htzx2 t{1

�
: ð3Þ

Here, we formulated the direction of heading ht first, then the

speed vt and then considered other specific details after the

description of the real GPS data.

Heading Model
For modeling the direction of heading, we applied Kato’s

circular auto-regressive time-series model (C-AR) [10] given by

ht~M(ht{1; a,w)zet, ð4Þ

where

M(ht{1; a,w)~az2 tan{1fw tan ((ht{1{a)=2)g, ð5Þ

w is the regression coefficient, a is the focal direction, and et is a

random angle that is independently and identically distributed

(i.i.d.) as a circular distribution (e.g., equations (7) and (8) below).

Equation (5) gives a smooth correspondence from the previous

direction of heading (ht21) to the subsequent ht (Figure 1A) and

resolves the discontinuity of model (2).

Kato’s circular auto-regressive model is a modification of the

circular–circular regression in Downs and Mardia [12] defined as

y~az2 tan{1fw tan ((x{a)=2)gze, ð6Þ

where x and y are circular variables (–p # x, y,p), w is the

regression coefficient, and a is the focal direction. This is an

example of a generalized linear model (GLM), where

tan ((x{a)=2) is used as a link function for transforming circular

variables to linear variables. In fact, substituting

X~ tan ((x{a)=2) and Y~ tan ((y{a)=2) into the linear

regression equation Y = wX, we obtained

tan ((y{a)=2)~w tan ((x{a)=2), which is equivalent to equation

(6).

Because the link function tan ((x{a)=2) has an inflexion point,

the regression line is sigmoidal, which is commonly observed in

GLMs (e.g., logistic regression). A key difference is that the

circular–circular regression uses the link function twice because

both independent and dependent variables are circular. Conse-

quently, dependent variables tend to be attracted to the focal

direction (a), and the attraction becomes stronger if w is close to 0

(Figure 1A).

The attraction toward a could be considered inappropriate as

an extension of ‘‘linear’’ regression; however, if the model is

extended to a circular auto-regressive time-series model (equation

(4)) and applied to animal movements, the direction of heading is

adjusted toward the focal direction at every time step. This is a

desirable property for the oriented movement of an animal, as

demonstrated in Figure 1C.

Circular Probability Distribution
The commonly used circular probability distributions and their

probability density functions are [13]

VM(m, k) = von Mises distribution,

fVM (y; m,k)~ expfk cos (y{m)g=2pI0(k), ð7Þ

where k .0 and I0(k) is the modified Bessel function of the first

kind and zero order, and

WC(m, r) = wrapped Cauchy distribution,

fWC(y; m,r)~(1{r2)=f2p(1zr2{2r cos (y{m))g, ð8Þ

where 0# r ,1.

Both probability density functions reach a maximum at m and

are symmetric with respect to y = m. In model (4), we set m= 0. k in

the von Mises distribution, and r in the wrapped Cauchy

distribution determines the degree of concentration around m.

Greater values of k and r produce more strictly concentrated von

Mises and wrapped Cauchy distributions, respectively (Figure 1B).

Movement Ecology and Circular Statistical Modeling
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Kato–Jones Distribution
If observed directions of heading are not distributed symmet-

rically (such examples can be seen in Figures 5 and 7), the model

using the von Mises distribution or wrapped Cauchy distribution is

not appropriate. This study used the Kato–Jones distribution [11].

The probability density function is given by

KJ(m, k, r, n) = Kato–Jones distribution,

fKJ (y; m,k,r,n)~
1{r2

2pI0(k)
: exp

kfj cos (y{g){2r cos ng
1zr2{2r cos (y{(mzn))

� �

: 1

1zr2{2r cos (y{(mzn))
,

ð9Þ

where j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4z2r2 cos (2n)z1

p
,

g~mz tan{1 (r2 sin (2n)=(r2 cos (2n)z1)), –p # m, n,p, k .0,

0# r ,1.

This complex distribution is produced by transforming

symmetric circular random variables X , VM(0, k) to (, means

‘‘distributed as’’)

Y~ ~MM(X ; m,n,r)zm~mznz2 tan{1 1{r

1zr
tan (

X{n

2
)

� �
: ð10Þ

Kato and Jones [11] showed that the circular probability density

function of Y is given by equation (9).

Figure 1. Examples of trajectories simulated by the movement model. (A) Examples of the transformation ht = M(ht–1; a, w) (equation (5),
a= 0). (B) Examples of the probability density functions of the von Mises distribution (equation (7), m= 0). (C) Examples of trajectories produced by
equation (3) using the heading model (4) with the transformation in (A) and the von Mises distribution in (B). (D) An example of trajectory produced
by equation (3) using the heading model (12). In (C) and (D), speeds were fixed at 1, the grid unit is 10, and the first 50 steps are shown. The same
random samples from the von Mises distribution of k= 6 were used for the four red trajectories.
doi:10.1371/journal.pone.0050309.g001
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The transformation (10) is essentially the same as transformation

(6); circular variable X is first attracted to n and is then shifted

(rotated) by angle m. Alternatively, we may interpret the Kato–

Jones distribution as random variables �XX ~VVM(m,k) are trans-

formed by.

�YY~ �MM( �XX ; m,n,r)~mznz2 tan{1 1{r

1zr
tan (

�XX{m{n)

2
)

� �
ð100Þ

Depending on the combinations of the parameters (m, k, r, n),

the Kato–Jones distribution depicts various shapes (Figure 2).

Because the original �XX s were concentrated around m, the �YY s are

shifted to m+n; however, the shift is not perfect and the distribution

has a mode between m and m+n and a tail toward m (Figure 2C). If

n is very close to p, fKJ(y; m, k, r, n) may be bimodal (the bold line in

the middle row), and some combinations of the parameters

produce abnormal shapes (the bottom row in Figure 2C and

Figure 7D). If n= 0, transformation (10) just increases the

concentration at m (the middle row in Figure 2C). If n= r = 0,

fKJ(y; m, k, 0, 0) = fVM(y; m, k).

Heading Model Allowing Asymmetric Distributions
On the basis of the method of generating the distribution, we

extended model (4) using the Kato–Jones distribution as follows.

The animal originally adjusts the heading directions toward
�hht~M(ht{1; a,w)zet (et , VM(0, k), i.i.d.), or equivalently,

toward �hht
~VVM(M(ht{1; a,w),k) (i.i.d.). External forces may alter

the direction of heading. For a flying bird, wind can be a

significant force, and �hht is driven to l if the wind is blowing to l.

Then, M(ht21; a, w) corresponds to m, and l to m+n. Thus, if we set

n~l{M(ht{1; a,w) and define.

Figure 2. The method of generating the Kato–Jones distributions. If random variables of the von Mises distributions in (A) are transformed
by equation (109) shown in (B), the Kato–Jones distributions in (C) are obtained. In (C), the bold/thin lines are used when the transformation displayed
by the bold/thin line in (B) was used, and the red/blue line was used when the von Mises distribution displayed by the red/blue line in (A) was used.
The transformations in the bottom row are omitted.
doi:10.1371/journal.pone.0050309.g002
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ht~ �MM(�hht; M(ht{1; a,w),l{M(ht{1; a,w),r)

~ �MM(M(ht{1; a,w)zet; M(ht{1; a,w),l{M(ht{1; a,w),r),
ð11Þ

then, ht follows the Kato–Jones distribution and can be written as

ht
~KKJ(M(ht{1; a,w),k,r,l{M(ht{1; a,w)): ð12Þ

When we have no information on the focal direction of the animal,

we set a as an unknown parameter, and the maximum likelihood

estimates (MLEs) of the five parameters, a, w, k, r, and l, can be

obtained by numerically maximizing the logarithm of the

likelihood (conditional on H0) given by

LKJ (a,w,k,r,l)

~ P
n{1

t~1
fKJ (Ht; M(Ht{1; a,w),k,r,l{M(Ht{1; a,w))

ð13Þ

If the symmetric von Mises distribution or wrapped Cauchy

distribution is used, the right-hand side reduces to

fVM (Ht; M(Ht{1; a,w),k) or fWC(Ht; M(Ht{1; a,w),r), respec-

tively.

Kato and Jones [11] have also investigated the circular–circular

regression model in the form of equation (6) assuming e , KJ(m, k,

r, n) (i.i.d.). On the other hand, model (12) is not written in the

general form of a regression (y = f(x)+e). Instead, et in equation (11)

is distributed as VM(0, k) (i.i.d.), and parameter

n~l{M(ht{1; a,w) in equation (12) varies with time. Thus, the

probability density function of ht,

fKJ (y; M(ht{1; a,w),k,r,l{M(ht{1; a,w)), varies depending on

the value of ht–1. We can see changes in these distributions if the

graph is drawn for several different ht–1s. If some of them exhibit

abnormal shapes such as bimodal, interpreting them as effects of

wind may not be feasible, and we need to consider other

interpretations, which are demonstrated in Example 3.

Examples of Simulated Trajectories
Figure 1C shows examples of trajectories simulated by equation

(3) using the heading model (4). The speed was fixed at 1 and focal

direction was east (a= 0).

If w = 1, equation (4) reduces to the CRW (equation (1)). If 0, w

,1, an animal adjusts its direction of heading toward a. If w is

close to 0 a stronger adjustment operates (red 2+2 in Figure 1C),

whereas if w is close to 1, several time steps are needed until the

animal turns to a (red 2D2 in Figure 1C).

If k is small, stochastic errors become large and an animal may

not adequately adjust its direction of heading, resulting in a

wandering trajectory (blue 2+2 in Figure 1C).

If w ,0, this corresponds to a linear regression with a negative

correlation (2&2 in Figure 1A). ht tends to be opposite from ht–1

with respect to a. Consequently, an animal adjusts its direction of

heading reciprocally around a, resulting in a zigzag trajectory (red

2&2 in Figure 1C).

Figure 1D illustrates a trajectory simulated by equation (3) using

the heading model (12). The focal direction is east–southeast (a= –

p/8), however, the animal is forced to move toward north–

northwest (l= 5p/8). The resulting trajectory is going to east

(Figure 1D) and visually similar to the trajectory simulated by the

heading model (4) (red 2+2 in Figure 1C). Thus, by just looking

at trajectories, we can hardly identify whether the trajectory was

produced from a symmetric or asymmetric distribution. These

simple examples indicate the need for appropriate statistical

analyses, which are demonstrated in Examples 1–3.

Ecological interpretations of the parameters (a, w, k, or r) are

discussed after all the statistical methods are described. Differences

between CRW and C-AR, together with contrasts between the

von Mises distribution and wrapped Cauchy distributions, are

illustratively described in Appendix S2.

Speed Model
In general, birds fly faster in the presence of a tailwind and more

slowly in the presence of a headwind. For the real trajectory data

of the seabird described below, our exploratory analyses revealed

that observed speeds (Vt) were strongly correlated with directions

of heading (Ht), presumably as fast speeds when flying leeward and

slow speeds when flying windward. In addition, Vts were weakly or

not correlated with the previous speeds (Vt–1) and angular velocities

(Ht – Ht–1) depending on the trajectories (examples of these

analyses are shown in Appendix S3). Therefore, for a speed model,

we applied the following multivariate auto-regressive model:

vt~avt{1zb cos (ht{c)zd cos (ht{ht{1)zc0zgt: ð14Þ

Here, a, b, c, d, and c0 are unknown parameters (b .0, –p #

c,p), and gt , N(0, s2) (i.i.d.), where N(m, s2) indicates the

normal distribution of mean m and variance s2. The MLEs of the

six parameters, (a, b, c, d, c0, s2), can be obtained by the maximum

likelihood method (conditional on W0 and V0) using the observed

directions {Wt} and speeds {Vt}.

If speeds are simulated by equation (14), vt may take a negative

value. In order to avoid this problem, vt must be chosen from the

truncated normal distribution

(mean~avt{1zb cos (ht{c)zd cos (ht{ht{1)zc0,

variance~s2, only positive values are taken), and equation (14)

should be reformulated using the truncated distribution. However,

in the cases of the seabird’s flight trajectories analyzed in this

study, MLEs were almost equal, suggesting that equation (14) very

closely approximated to the model using the truncated distribu-

tion. This was because the seabird maintained high speeds during

flights, and in fact, when we simulated speeds, negative values

were produced with very low frequencies.

Therefore, for simplicity, this study used equation (14) as an

approximation in the maximum likelihood method, and when

speeds were simulated, we continued simulation until a positive

value was obtained (this was achieved mostly at the first attempt,

and in almost all cases within two attempts).

Ethics Statement
Field studies were conducted under permission from the

Ministry of the Environment and the Agency for Cultural Affairs,

government of Japan, and the Ethics Committee of the University

of Tokyo.

Study Site and GPS Data on a Seabird
The models described were applied to GPS location data for a

breeding seabird (streaked shearwater: Calonectris leucomelas) on

Sangan Island, Japan (39u189N, 141u589E). Streaked shearwaters

in this area have been previously studied by Yamamoto et al.

[14,15] and Shiomi et al. [16].

In this study, a bird was captured at nighttime on September 21,

2007 (male, 590 g). A GPS logger (Technosmart, Italy, 28 g) was

deployed along the median line of the back and the bird was

Movement Ecology and Circular Statistical Modeling

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e50309



released. It was recaptured after it returned from a 1-day foraging

trip on the Pacific Ocean [16]. GPS coordinates were recorded

every 0.5 s from September 21 at 22:39 to September 22 at 22:35.

Because GPS coordinates were measured continuously at

frequent intervals, the trajectory we obtained was almost smoothly

connected [3]. For convenience, we transformed longitude–

latitude records into x-y coordinates on the meter scale (the

UTM coordinate system) with Igor Pro (ver. 5.0, WaveMetrics,

Inc.) and Ethographer [17]. The GPS data are freely available

upon request.

To demonstrate the proposed models, we arbitrarily selected

visually oriented and homogeneous segments of 500 s (1001

locations) from periods when the bird was considered to be

airborne and continuously flying (observed speeds were mostly

.4.0 m/s, cf. [16]). The selected 15 flight sections were labeled as

F1–F15 (Figure 3) and categorized as follows: morning flights near

the island, presumably traveling to foraging areas (hereafter

‘‘outward flights,’’ F1–6), daytime flights on the Pacific Ocean,

presumably searching for food (hereafter ‘‘searching flights,’’ F7–

11) and afternoon to evening flights returning to the island

(hereafter ‘‘homeward flights,’’ F12–15) (Figure 3).

One of the most elementary summary statistics for movement

trajectories is the total flight length (DX0Xn
���!

D) (shown in the third

row in Appendix S4). F2 and F15 had similar distances (4322.6 m

and 4069.1 m, respectively); however, considerable differences

actually existed and identifying such characteristics is one of the

most elementary tasks for applying the model (Examples 1 and 2).

F10 clearly had a shorter flight distance and was weakly oriented

but was highly tortuous. The reason for selecting F10 was to

demonstrate the applicability of the model to such abnormal

patterns.

Time Unit
The GPS data were taken at 0.5 s intervals. If we resampled the

data as X0, X2, X4, …, X1000, we can apply the models to data for

‘‘time units’’ of 1 s. If resampled as X0, X4, X8, …, X1000, the time

unit becomes 2 s. Statistically, in the heading model (4), et is

assumed to be independently and identically distributed; therefore,

the residuals Ht 2 M(ht–1) should not be correlated with Ht–1 2

M(ht–2), i.e., auto-correlations should be absent. For model (12),

because et in equation (11) is independently and identically

distributed,
�MM{1(Ht; M Ht{1; a,wð Þ,l{M Ht{1; a,wð Þ,r){M Ht{1; a,wð Þ

should not be correlated, where

�MM{1(x; m,n,r)~mznz2 tan{1 1zr

1{r
tan (

x{m{n

2
)

� �
ð15Þ

is the inverse transformation of �MM(x; m,n,r)(equation (109)).

Therefore, we resampled the data of each 500-s flight section for

every T second (T = 1, 2, …, 10) and denoted them as {Xt} = (X0,

X1, …, XnT) (n1 = 500, n2 = 250, n3 = 166, …, XnT = X1000 if 500

is divisible by T). This produced 10 time-series data of length nT

+1. In this study, T is referred to as a ‘‘time unit.’’ We calculated

MLEs for these 10 data sets, and initially, we visually checked the

absence of auto-correlations using scatter diagrams. We then

approximated circular residuals by white noise and used the auto-

correlation coefficient of time-lag one (denoted by r̂r(1)); if

Dr̂r(1)Dw1:96=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nT{1
p

, the model was not applicable due to the

presence of auto-correlations ([18], section 1.4.1). The ecological

meaning of a time unit is discussed later.

Computation and Model Selection
The maximization of the logarithm of the likelihood equations

(13) and the log-likelihood of model (14), conditional on W0 and V0,

were conducted by the quasi-Newton method using the ‘‘Maxi-

mize’’ command in Mathcad (ver. 14, Mathsoft, Inc.). The

computation began with several different initial values and we then

checked whether the true maximum log-likelihood was obtained

with high precision, as was suggested for the Kato–Jones

distribution in [11].

Because CRW, C-AR, and the three circular distributions

contain different numbers of parameters, the models were

evaluated by the Akaike information criterion (AIC) [19,20]:

AIC~{2|(maximumlog-likelihood)

z2|(number of parameters)
ð16Þ

The model with the smallest AIC was selected. The covariates

in model (14) were also selected by the AIC.

Variation of Models
As previously mentioned, birds tend to fly faster in the presence

of a tailwind and more slowly in the presence of a headwind. If the

speed model (14) takes the maximum value at ht = c, c may be used

as the leeward direction. Thus, we have applied C-AR using the

Kato–Jones distribution while fixing l~ĉc1, where ĉc1 is the MLE

of c when the time unit is 1 (T = 1). If this model shows the smallest

AIC value, we may interpret the model as described above. If not,

Figure 3. GPS trajectory of an adult Calonectris leucomelas breeding on Sangan Island. The bold lines represent the 15 selected flight
sections (F1–F15), while the gray lines represent other flying trajectories. The arrows indicate the entire observed flight direction ( arg X0Xn

���!
): GPS

coordinates when the bird appeared to be on the sea surface are not displayed, and the two flights are connected by the thin line.
doi:10.1371/journal.pone.0050309.g003
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the MLE of l may not be in the leeward direction, and we need

another interpretation, which is demonstrated in Example 3.

When a bird returns to the nest, it has a specific ‘‘focal point’’

rather than a focal direction. In such cases, let Xfp be the location

of the focal point. The direction from the current location Xt to

the focal point is given by at~ arg XtXfp
���!

: Then, we can modify

the model by changing M(ht–1; a, w) to

M(ht{1; w)~atz2 tan{1fw tan ((ht{1{at)=2)gzet: ð17Þ

We applied this model to the homeward flights, for which

Xfp = {the location of the island}.

If a bird intended to fly toward a and succeeded with its

navigation, the resulting flight direction, arg X0Xn
���!

, was close to a.

Thus, if the bird was actually flying as it navigated, the MLE of a

should be close to arg X0Xn
���!

. Hence, we have applied the model by

fixing a~ arg X0Xn
���!

. If this model has a smaller AIC value, we

may interpret that the bird was flying as it navigated.

Notation
We denoted CRW using the von Mises distribution by

CRW(VM), C-AR using the Kato–Jones distribution by C-

AR(KJ), and so on. The MLE of a parameter was denoted by

using ‘, and we added the flight number or/and time unit when

needed (e.g., âaF15
3 ). A model having some constraint was denoted

by C-AR(KJDl~ĉc1), C-AR(VMDa~ arg X0Xn
���!

), and so on.

Goodness-of-Fit for Global Patterns
The maximum likelihood methods for equations (13) and (14)

focused on fitting for two consecutive time steps. Whether the

selected model can reproduce global patterns similar to the

observations is uncertain. This study introduced the following two

goodness-of-fit tests.

Heading distribution: whether the distribution of directions of

heading {ht} simulated by the model had a distribution similar to

the observed heading distribution {Wt}.

Final locations: whether the model can predict the observed

final location, i.e., the simulated final points (xnT
) are sufficiently

close to XnT.

For the first goodness-of-fit, beginning with the observed first

direction of heading (H0~ arg X0X1
���!

), we simulated a circular

series {ht} (t = 1, 2, …, nT) 1000 times. Here, random circular

variables from the von Mises and wrapped Cauchy distributions

were produced by a rejection method. A random variable x from

the uniform distribution –p # x,p was rejected if

fVM=WC(x)= max
{pƒyvp

fVM=WC(y) was smaller than a randomly

chosen number from 0 to 1 or was accepted if it was greater.

Random variables of the Kato–Jones distribution were produced

by transforming random variables of the von Mises distribution by

equation (10).

The interval –p # h,p was divided into 24 classes. Let Sd,k be

the number of hts in the d-th class for the k-th simulated series

(d = 1, 2, …, 24, k = 1, 2, …, 1000). Let Ed be the average over

{Sd,k} and Od the observed number of Hts in the d-th class. We

calculated S(Ed – Od)
2/Ed and conducted a x2-test to obtain the P-

value (classes with Ed ,3 were excluded). We also showed Ods, Eds,

and the 95% confidence envelopes by connecting the 2.5 and 97.5

percentiles of {Sd,k} for each d.

For the second goodness-of-fit, using the simulated {ht} and the

observed first speed V0~DX0X1
���!

D, we simulated a speed series {vt}

using equation (14) (only positive values were used). Starting at X0,

we then drew 1000 movement trajectories {xt
k} (t = 1, 2, …, nT).

Let M = (M1, M2) be the mean for the final locations fxk
nT
g and

g= variance–covariance matrix for fxk
nT
g (k = 1, 2, …, 1000). By

assuming that the final locations fxk
nT
g were approximately

distributed in a two-dimensional normal distribution with mean

M and variance–covariance matrix g (let denote this probability

density function by fN(y)), we calculated the probability of

obtaining the observed final location (XnT) by

PFL~1{

ð
R

fN (y)dy, ð18Þ

where R refers to the region satisfying fN(y) $ fN(XnT) (inner part

of the ellipse centered at M and passing XnT). If PFL ,0.05, the

model was rejected.

Distribution of Maximum Likelihood Estimates
MLEs have asymptotic normality, and we estimated their

distribution from the Fisher information matrix, which was useful

when we compared estimated parameter values and looked for

significant differences between trajectories.

The Fisher information matrix was not derived for the Kato–

Jones distribution (a specific case was shown in [11]). In addition, a

sufficient sample size for the asymptotic normality is unknown.

Thus, we conducted simulation-based inferences. For simulated

trajectories produced by the selected model, we conducted the

maximum likelihood method again, obtained MLEs for each

simulated trajectory, calculated standard deviations over these

estimates, plotted their distributions, and checked if the estimates

were symmetrically distributed with a center at the true value. This

is demonstrated in Example 2.

Correspondence between the Model and the Conceptual
Framework

Nathan et al. [1] summarized the general conceptual frame-

work for movement ecology as consisting of four basic compo-

nents: internal state, navigation capacity, motion capacity and

external factors.

In our modeling framework, focal direction a and final point Xfp

are directly related to navigation capacity, and the constraint

a~ arg X0Xn
���!

examines the bird’s execution for navigation.

Alternatively, assuming that the bird has sufficient navigation

capacity, we may interpret that the animal established a ‘‘dummy’’

direction a so that the wind would push its flight course toward the

true objective direction.

When C-AR(KJ) is applied to a flying bird, l estimates the

leeward direction and r quantifies wind effects, which contribute to

the quantitative evaluation about the external factors. The

constraint l~ĉc1 ascertains if the main external factor was wind.

As demonstrated in Figure 1, w quantifies a bird’s intention to

fly toward the focal direction a (navigation intention), but when

the time unit T is short, w is also influenced by a physical limitation

in turning (motion capacity). Similarly, k quantifies the effort the

bird expends in accurately adjusting the direction of heading

(navigation intention), or the capability to accurately control the

direction of heading (motion capacity). Hence, (w, k) is related to

the internal state, motion capacity, and navigation capacity, and as

far as only trajectory data are available, separate quantification

seems to be difficult.

The time unit is related to motion capacity. The presence of

auto-correlations in residuals means that physical and physiolog-

ical constraints frequently prevented a bird from controlling the

Movement Ecology and Circular Statistical Modeling
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direction of heading, and that the time-scale is finer than the

motion capacity. If no auto-correlation exists in the residuals, the

animal might control the flight at that average pace.

Our modeling thus aims to integrate the general conceptual

framework for oriented movements at short time-scales into

statistical modeling and provides its (partial) quantification.

Applications to GPS Data

For time units shorter than 3 s (T ,3), all 15 flight sections had

either an insufficient goodness-of-fit or the presence of auto-

correlations in the residuals. For T = 3, we found a satisfactory

model in 11 flight sections, and all the 15 flight sections had a

satisfactory model for T #6. The MLEs for the smallest time units

at which satisfactory models were found are summarized in

Appendix S4.

In the following sections, we use five examples from the three

flight types to explain the basic properties of the proposed models

(primarily the heading model) and demonstrate how to charac-

terize a given trajectory by the MLEs and how to interpret them

ecologically.

Example 1: Outward Flight
For F2 (the bold line in Figure 4A), Figure 4B illustrates the

scatter diagram between observed directions of heading (Ht) and

speeds (Vt) and predicted speeds of the selected speed model for

T = 1. From this speed model, we obtained ĉc1
F2~1:82 and

assumed this direction as leeward.

For T = 2–3, AIC selected the heading model of

C-AR(VMDa~ arg X0Xn
���!

), and auto-correlations in the residuals

were present for T = 2 (r̂r(1)~0:28w1:96=
ffiffiffiffiffiffiffiffi
249
p

), whereas they

disappeared for T = 3 (r̂r(1)~0:12v1:96=
ffiffiffiffiffiffiffiffi
165
p

) (the scatter

diagrams are shown in Appendix S5). Combined with the selected

speed model at T = 3 (this is shown in Appendix S6), the simulated

trajectories showed oriented patterns similar to the observed

pattern. The observed final locations were distributed around the

center of the simulated final locations (Figure 4A, PFL .0.7), and

the heading distribution also showed a good fit (P.0.4, Figure 4C).

Therefore, we interpreted that the bird was flying eastward and

approaching the searching area, and at least 3 s were required to

control the direction of heading.

The same model type, C-AR(VMDa~ arg X0Xn
���!

), was selected

for the subsequent outward flight section (F3, Appendix S4).

Example 2: Homeward Flights
The second examples are F14 and F15. These are parts of the

same final flight (Figure 3). From human visual examination, the

trajectories of F2, F14, and F15 in Figure 3 and the bold lines in

Figures 4A and 5A appeared similar; however, they had

significantly different properties.

For these flight sections, speeds were essentially determined by

the direction of heading, and previous speeds and angular

velocities played a relatively small role (Figure 5E). The selected

speed model provided ĉc1
F14~4:95 and ĉc1

F15~4:47, suggesting

that the wind direction was from the northeast to southwest. The

inset in Figure 5A enlarges the takeoff section of the flight. In

general, when taking off, a seabird is running in a windward

Figure 4. Example 1: outward flight. (A) Observed GPS trajectory of F2 (bold line, the final location is indicated by the large gray circle), five
examples of simulated trajectories (thin lines), 100 examples of the final locations (dots) of 1000 simulated trajectories produced by the selected
model. (B) Black dots: Points from the scatter diagram showing the relationship between speed and direction of heading. White dots: Predicted
speeds by the selected model from (Ht, Vt–1, cos(Ht – Ht–1)) plotted on Ht. Bold line: The expected speed as a function of the direction of heading
when the previous speed was fixed as the mean over the flight section and angular velocity was 0. (C) The heading distribution: Observed trajectory
(–N–), and mean (bold line) and 95% confidence envelopes (thin lines) derived from 1000 simulated trajectories.
doi:10.1371/journal.pone.0050309.g004
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direction, and the start toward the north supported the estimation

of the above leeward direction.

For F14, C-AR(KJDl~ĉc1) setting the island as the focal point

was selected, and no significant auto-correlation

(r̂r(1)~0:07v1:96=
ffiffiffiffiffiffiffiffi
124
p

) was observed at T = 4. On the other

hand, for F15, trajectories produced by this model type did not

approach the island but were biased to the estimated leeward

direction (gray lines in Figure 5A). The selected model was

C-AR(KJDl~ĉc1), and auto-correlations disappeared at T = 3

(r̂r(1)~0:09v1:96=
ffiffiffiffiffiffiffiffi
165
p

) (Appendix S5). The observed heading

distributions were skewed (–N– in Figures 5B and C), but this was

weaker for F14, and the heading distributions produced a

sufficient fit (P.0.8 for F14, P.0,1 for F15). Combined with the

selected speed models (Appendix S6), the final locations displayed

sufficient goodness-of-fit for both flights (Figure 5A) (PFL .0.8 for

both).

Figure 5D illustrates the scatter diagram between the observed

heading directions Ht–1 and Ht for F15, together with the

regression curve, modes, medians, and 25% and 75% quartiles

of the selected C-AR(KJDl~ĉc1), and examples of the probability

density functions of the Kato–Jones distributions for ht. Because

Kato and Jones [11] did not analytically derive the mode of fKJ(y),

we numerically computed the modes, while the medians and

Figure 5. Example 2: homeward flights. (A) GPS trajectories of F14 and F15 (bold lines), 5 examples of simulated trajectories of each selected
model (thin lines), and 100 examples of final locations of 1000 simulated trajectories produced by each selected model (green: F14, red: F15,
throughout). The gray lines indicate 5 examples produced from the model that were not selected for F15 (setting the island as the focal point). The
inset enlarges the takeoff section. (B, C) Heading distribution; the observed heading distribution (–N–), and mean (bold line) and 95% confidence
envelopes (thin lines). (D) The red thin, red bold, thin, and dotted lines represent the regression curves, modes, medians, and 25% and 75% quartiles
of the selected model for F15, respectively. Dots are points from the scatter diagram indicating the direction of heading (Ht–1, Ht). The four rotated
curves indicate the density functions of the Kato–Jones distributions for ht when ht–1 is p/4, p/2, 3p/4, and p. (E) A scatter diagram showing the
relationship between the direction of heading and observed speed (T = 1) and the expected speed when Vt–1 = {the mean over each flight section}
and Ht – Ht21 = 0.
doi:10.1371/journal.pone.0050309.g005
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quartiles were calculated by transforming those of VM(0,k̂k)using

equation (10). These quantitatively show the asymmetry in the

direction of heading.

The distributions of the MLEs obtained from 200 simulated

trajectories using the MLEs of each selected model are shown in

Figure 6. The distributions of r̂rs were close to a normal distribution

and were clearly separated between the two models (the standard

deviation (SD) was 0.028 for r̂rF14
4 and 0.12 for r̂rF15

3 , Figure 6A),

whereas the distributions of ŵw overlapped to some degree

(SD = 0.076 for ŵwF14
4 and = 0.039 for ŵwF15

3 , Figure 6B). The

distribution of k̂k for F14 was also close to a normal distribution

(SD = 0.50), whereas the distribution for F15 had a fat tail for large

values (SD = 33.2). The right-skewed fat tail is likely to occur

because a small change in k values does not influence the von

Mises distribution when k is large.

Based on the selected models and their MLEs, we contrastively

interpreted the two flights as follows. During F14, the bird was

likely to have less intention to fly toward the island (greater ŵw). The

bird was flying in directions whereby it could control the flight

easily and was likely to put less effort into navigation (smaller k̂k). As

a result, the trajectory was moved to the south by the wind and the

bird failed to approach the island. The bird recognized this miss-

navigation and established a ‘‘dummy’’ focal direction toward the

north (âaF15
3 ~1:79), more easterly than the objective island, and

was flying under stronger wind conditions during F15 (greater r̂r).

The seabird might increase the pace for controlling its direction of

heading from every 4 s on average to every 3 s, although these

time units were the minimum intervals for the acceptable models

and may not coincide with the true pacing. Even though, the

MLEs and their distributions for T = 4 were close to those for

T = 3 (âaF15
4 ~1:90, ŵwF15

4 ~0:024, k̂kF15
4 ~7:21, r̂rF15

4 ~0:51), thus,

the same argument as above is valid.

For the other two homing flights, F12 and F13, the model

setting the island as the focal point was not selected, either, and the

same model as F15 was selected (Appendix S4).

Figure 6. Distributions of the maximum likelihood estimates. The horizontal axes indicate the classes of each parameter, and the vertical axes
show the frequencies from 200 simulations. Shaded: F14, white: F15. The arrows indicate the true parameter values.
doi:10.1371/journal.pone.0050309.g006
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Example 3: Searching Flights
For F7, very weak correlations existed between the speeds and

directions of heading (Appendix S6). In addition, the bird was

taking off to the south without changing the direction (before

taking off, the seabird had been floating on the sea surface from

the north to the south, the inset in Figure 7A). Hence, presumably

little wind occurred during this flight.

For time unit T = 4, C-AR(KJDw~1,l~ arg X0Xn
���!

) was select-

ed and no significant auto-correlations were observed in the

residuals. Although C-AR setting w = 1 is equivalent to CRW, the

actual trajectory is oriented (Figure 7A), and although the Kato–

Jones distribution was used, the observed Hts were symmetrically

distributed with respect to the modes and the graphs of

Figure 7. Example 3: searching flights. (A, C) Observed GPS trajectory of F7 (A) and F10 (C). The bold lines are observed trajectories and the thin
lines are five examples of simulated trajectories for each selected model. The insets enlarge each takeoff section. (B, D) The thin, bold, dashed, and
dotted lines represent the regression curves, modes, medians, and 25% and 75% quartiles of each selected model, respectively. The dots represent
points from scatter diagrams between Ht–1 and Ht for every 4 s (B) and 3 s (D). The four rotated curves are the density functions of the Kato–Jones
distributions for ht when ht–1 is 2p/3, 0, p/3, and 2p/3 (B) and 0, p/3, 2p/3, and p (D).
doi:10.1371/journal.pone.0050309.g007
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fKJ (y; M(ht{1; âa,ŵw),k̂k,̂rr,l̂l{M(ht{1; âa,ŵw))

~fKJ (y; ht{1,k̂k,̂rr,l̂l{ht{1)

also appeared to be symmetric (Figure 7B). This strange model

selection was a result of unequal ‘‘variances’’ (a variance as in a

second-order moment is not defined for circular variables, but

here for simplicity, we used the term ‘‘variance’’ to mean the

degree of concentration/diversification). When the bird was flying

to arg X0Xn
���!

~0:91, subsequent directions were concentrated

around arg X0Xn
���!

, while Hts were diverse when Ht–1 was distant

from arg X0Xn
���!

: These unequal variances prevented C-AR(VM)

and C-AR(WC) (et , VM (i.i.d.) or , WC (i.i.d.) means an equal

variance) from displaying a sufficient goodness-of-fit, and the

Kato–Jones distribution was used to flexibly capture unequal

variances.

In such cases, l and r should not be interpreted as wind effects,

but they do have the same role as a and w: l was the focal

direction, and r quantified the intention of the bird. Therefore,

l~ arg X0Xn
���!

indicates that the bird was flying as it navigated.

Based on these characterizations of the trajectory, we hypoth-

esized that the bird flew in a northeast direction for searching and

occasionally flew in abnormal directions.

The same model type, C-AR(KJDw~1,l~ arg X0Xn
���!

), was

selected for three outward flight sections (F4, F5, F6, Appendix

S4), and a diagram similar to Figure 7B indicated that the Kato–

Jones distribution could be used for the same purpose, i.e., for

capturing unequal variances.

Another searching flight, F10, appeared to be highly tortuous

and contained a looping pattern (Figure 7C). Speeds were strongly

correlated with the direction of heading (Appendix S6). The

observed directions of heading were diverse, but southwest to

southeast directions were avoided (Figure 7D and Appendix S6).

ĉc1~4:49 was obtained from the speed model at T = 1, which was

close to the takeoff direction (inset in Figure 7C). For the heading

model at T = 3, C-AR(KJDl~ĉc1) was selected. The estimated

focal direction (âa~1:38) was more eastward than the entire

observed flight direction ( arg X0Xn
���!

~2:24), and a large r̂r~0:88
suggested strong wind effects. k̂k~111:9 was extremely large and

produced abnormal shapes, as seen in the four graphs in

Figure 7D. The degree of concentrations decreased when ht–1

was distant from arg X0Xn
���!

:
We made an interpretation of this flight as follows: The seabird

flew to the northwest while searching in an area where a strong

wind was blowing. The searching flight covered diverse directions

but leeward directions were avoided.

Discussion

Circular Statistics and Movement Ecology
Applying the recently proposed circular auto-regression and the

recently proposed Kato–Jones distribution, we proposed a flexible

movement model that can explain diverse oriented trajectories and

quantitatively characterize each pattern under the conceptual

framework of movement ecology. Each trajectory exhibited

specific characteristics, and the statistical models considerably

helped us understand the movements. The above examples also

suggest that the actual movement patterns of animals, even those

that are just visually oriented, are much more diverse than we

predicted.

In particular, the heading model (12) enabled us to evaluate the

seabird’s internal states such as navigation capacity separately

from external factors such as winds. Movement ecology will

advance in parallel to developments in circular statistics, and the

development of circular statistics will be promoted by the practical

demands made from movement ecology.

Future Developments
The role of the Kato–Jones distribution is not limited to

separate external effects. It can also be used for flexibly capturing

abnormal distributions (Figure 7D) and unequal variances

(Figure 7B). For the latter, an alternative is to formulate k by

some function [21], and this approach can be extended to include

other covariates such as environmental conditions and landscape

information [1,5,21,22]. The heading models used in the general

discrete-time modeling framework in [22] are basically equivalent

to equation (2) in this paper. Therefore, the same general

framework can be expected to be applicable if the circular auto-

regression is used as a heading model.

The proposed movement model is particularly useful if the

direction of heading plays a central role in the animal’s movement

(e.g., a flying bird whose speed was strongly correlated to the

direction of heading). If speeds also play a crucial role (e.g.,

walking/running animals such as horses), or if a long-term

trajectory was taken that contained times when an animal stopped

moving, a more sophisticated speed model than (14) is needed

[21,22].

For the purpose of demonstration, this paper artificially selected

seemingly homogeneous oriented periods of movement. The

applicability of a heading model (12) is not limited to oriented

trajectories. For example, gradual curves to a focal direction and

an area-restricted search around a focal point with looping can

also be realized (Appendix S7). Therefore, the next step is to

establish statistical methods that adequately divide a trajectory into

segments, referred to as short-duration fundamental movement

elements in Getz and Saltz [2], so that each segment can be

explained by a single model [23]. Another important development

would occur if the proposed models are applied at different time-

scales [1,9,24]. This paper focused on fine time-scales. If similar

analyses are applied to longer scales (e.g., minutes, hours, or days)

the parameters would have other ecological interpretations.

Time unit selection is another issue related to time-scales. In this

study, we found that a streaked shearwater required an average of

3–4 s to control its direction of heading. However, this was a

minimum time-scale regarding motion capacity and the true time-

scale could be longer. Currently, we have not established a

statistical theory for selecting the exact time unit at which a bird

did control its flight.

Null Model for Movement Ecology
The proposed models will work not only for quantifying given

movement patterns under the conceptual framework, but also as a

null model [8,25]. Most previous studies used CRW as a null

model, and the significant deviation from CRW implied the

presence of some specific behaviors, although such deviations have

been so frequently observed [6,7,9]. If a null model covers most

known movement patterns, significant deviations suggest the

presence of some unknown patterns. The proposed model covered

many known animal movement patterns from correlated random

walks, oriented movements, tortuous trajectories, and area-

restricted searches around a focal point. Deviations from any of

these will explore animal behavior that is currently not well

understood. Furthermore, our approach was made on the basis of

the general conceptual [1] (and modeling [22]) framework for
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movement ecology. We therefore expect that our method will be

applicable as a basic model in movement ecology.
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