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ABSTRACT  Apoptosis or programmed cell death is an integrated, genetically 

controlled suicide program that not only regulates tissue homeostasis of mul-

ticellular organisms, but also the fate of damaged and aged cells of lower eu-

karyotes, such as the yeast Saccharomyces cerevisiae. Recent years have re-

vealed key apoptosis regulatory proteins in yeast that play similar roles in 

mammalian cells. Apoptosis is a process largely defined by characteristic 

structural rearrangements in the dying cell that include chromatin condensa-

tion and DNA fragmentation. The mechanism by which chromosomes restruc-

ture during apoptosis is still poorly understood, but it is becoming increasingly 

clear that altered epigenetic histone modifications are fundamental parame-

ters that influence the chromatin state and the nuclear rearrangements with-

in apoptotic cells. The present review will highlight recent work on the epige-

netic regulation of programmed cell death in budding yeast. 
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INTRODUCTION 

Apoptosis or "programmed cell death" is a self-destructing 

process important for the development and homeostasis 

of multicellular organisms and its deregulation contributes 

to the pathogenesis of multiple diseases including auto-

immune, neoplastic and neurodegenerative disorders [1]. 

Apoptosis is characterized by biochemical and morphologi-

cal rearrangements throughout the cell [2] with chromatin 

condensation conjoint by DNA fragmentation being one of 

the most important nuclear alterations [3]. The mechanism 

by which chromosomes reorganize during apoptosis is still 

poorly understood, but recent years have shown that epi-

genetic changes of the chromatin state are fundamental 

parameters of the nuclear rearrangements experienced by 

apoptotic cells.  

Chromatin is a composite of packaged DNA and associ-

ated proteins, in particular histones [4]. The basic subunit 

of chromatin is the nucleosome containing 147 base pairs 

of DNA, which are wrapped around a histone octamer con-

taining two copies each of the core histones H2A, H2B, H3 

and H4. Nucleosomes are then packaged into higher order 

structures in a yet controversially discussed manner [5], in 

which individual nucleosomes are separated from each 

other by the linker histone H1 and its isoforms. The tails of 

the core histones pass through channels within the DNA 

molecule away from it and are subjected to a wide variety 

of post-translational modifications. These post-

translational modifications include lysine acetylation, bu-

tyrylation, propionylation, ubiquitination and sumoylation, 

lysine and arginine methylation, arginine citrullination, 

serine, threonine and tyrosine phosphorylation, proline 

isomerization as well as ADP ribosylation [6-10]. In the 

context of apoptosis in particular phosphorylation and 

acetylation of histones have long been suggested to affect 

chromatin function and structure during cell death [11].  

The budding yeast Saccharomyces cerevisiae has ma-

tured as attractive model system for apoptotic research to 

study the evolutionary conserved aspects of programmed 

cell death. Apoptosis in S. cerevisiae can be activated by 

various agents including hydrogen peroxide (H2O2), acetic 

acid and pheromone or by physiological triggers, such as 

DNA replication stress, defects in DNA damage repair, 

chronological or replicative aging and failed mating [12-16]. 

The chronological lifespan (CLS) is defined as the time 

yeast cells remain alive in a post-mitotic, quiescence-like 

state [17-19] and genetically, amongst others, strongly 

influenced by key apoptotic regulators, such as Aif1, Bir1, 

Nma111, Nuc1, Ybh3 and Yca1 [20-28], all of which have 

homologs in mammals. Replicative aging, the second type 

of aging studied in yeast, is defined by the number of cell 

divisions an individual mother cell can undergo before en-

tering senescence (replicative lifespan, RLS) and is equally 

controlled by some of these genetic factors as well as by 

environmental conditions [17, 19]. Chronological and repli-

cative aging both lead to an accumulation of reactive oxy-
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gen species (ROS) that ultimately results in programmed 

death of the budding yeast cells [24, 29].  

As in higher eukaryotes, it is becoming more and more 

evident that the programmed death of S. cerevisiae is 

largely influenced by epigenetic modifications, in particular 

phosphorylation of H2B and H3, acetylation of H3 and H4, 

deubiquitination of H2B, as well as methylation of H3 [30-

35]. This review will highlight current knowledge on the 

posttranslational histone modifications that decide on 

yeast life and death. 

 

EPIGENETIC REGULATION OF YEAST LIFE AND DEATH 

Histone phosphorylation 

In metazoans, the first histone modification that had been 

linked to apoptosis was phosphorylation of the histone 

variant H2A.X at serine 139 (S139), known as γ-H2AX, that 

occurs during the formation of DNA double strand breaks 

(DSBs) under various conditions, including apoptosis [36]. 

Furthermore, phosphorylation of histone H2B at S14 had 

been associated with chromatin condensation and DNA 

fragmentation [37-39]. H2B phosphorylation is reciprocal 

and deacetylation of H2B at lysine 15 (K15) is necessary to 

allow H2BS14 phosphorylation [40].  

This unidirectional crosstalk between two histone mod-

ifications was originally revealed in yeast: phosphorylation 

of S10 of H2B (H2BS10ph; Fig. 1) is essential for the induc-

tion of an apoptotic-like cell death in H2O2-treated cells 

[30]. H2BS10A point mutants exhibit increased cell survival 

accompanied by a loss of DNA fragmentation and chroma-

tin condensation, whereas H2BS10E point mutants display 

the typical phenotypic markers of apoptosis, including 

chromatin compaction and DNA fragmentation. Triggering 

apoptosis by H2O2, acetic acid or the α-factor leads to 

phosphorylation of H2BS10 and H2BS10ph is preceded by 

H2A phosphorylation and mediated by the Sterile 20 kinase, 

Ste20 (Table 1) [30]. It is dependent on the yeast meta-

caspase Yca1 and the preceding deacetylation of lysine 11 

[31].  

H2B lysine 11 is acetylated (H2BK11ac) in logarithmical-

ly growing yeast [41] and deacetylated upon H2O2 treat-

ment before H2BS10ph occurs. H2BK11ac was found to be 

present through 60 min of H2O2 treatment and the disap-

pearance of K11ac after 90 min post H2O2-induction coin-

cided with the onset of S10ph in H2B [31]. The crosstalk 

between H2BS10ph and H2BK11ac is unidirectional and 

confirmed by H2BK11 mutants: lysine-to-glutamine H2B 

K11Q mutants, that are acetyl-mimic, are resistant to cell 

death elicited by H2O2, while lysine-to-arginine H2B K11R 

mutants that imitate deacetylation promote cell death. 

Deacetylation of K11 is mediated by the histone deacety-

lase (HDAC) Hos3 (Table 1)[31].  

Interestingly, in human cells it has been shown that 

H2BS14ph, which is mediated by caspase-activated kinase 

Mst1, is read by RCC1 [42]. RCC1 is chromatin-bound and 

the guanine nucleotide exchange factor for the RanGTPase, 

which acts as a molecular switch to regulate directionality 

 

FIGURE 1: Specific histone modifications that have been shown to be associated with apoptotic cell death and lifespan regulation in S. 

cerevisiae. Modified lysine residues are highlighted in cyan, modified serine residues in red, and modified tyrosine residues in grey. Ac, acet-

ylation; Me, methylation; Ph, phosphorylation; Ub, ubiquitination. 
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TABLE 1. Histone modifications involved in aging and apoptotic processes in yeast. 

Histone Modification Writer Eraser Implication Reference 

H2A S122 phosphorylation   H202 [48] 

H2A S129 phosphorylation Mec1, Tel1 PPH3 H202 [152, 153]  

H2B S10 phosphorylation Ste20  H202 [30] 

H2B K11 acetylation  Hos3 H202 [31] 

H2B K123 ubiquitination Rad6/Bre1 Ubp10, Ubp8 CLS, RLS, H202 [32, 35, 49, 50, 53, 72, 73] 

H3 K4 methylation Set1/COMPASS Jhd2 CLS, RLS, H202 [33, 35, 57, 121, 154, 155] 

H3 K36 methylation Set2 Jhd1 RLS [124, 143, 156] 

H3 K79 methylation Dot1  RLS [33, 129]  

H3 T45 phosphorylation AKT1, 2  H202 [47, 157] 

H3 K9 acetylation Gcn5  CLS [161, 164] 

H3 K14 acetylation Sas3 Hos3 CLS [161, 164] 

H3 K18 acetylation Gcn5  CLS [161, 164] 

H3 K56 acetylation Asf1, Rtt109 Hst3, Hst4 RLS [91, 152, 153, 158] 

H4 K16 acetylation Sas2 Sir2 RLS [87, 159, 160]  

The implications listed are referring to the respective histone modifications. The listed writers and erasers may have impact on other 

histone modifications not related to cell death as well and the modifiers may have targets other than the histones, which may implicate 

them in other cell death pathways. 

of nucleocytoplasmic transport as well as distinct steps of 

mitosis, such as spindle and nuclear envelope assembly 

[43-45]. H2BS14ph immobilizes RCC1 on chromatin, which 

causes a reduction of nuclear RanGTP levels and the inacti-

vation of the nucleocytoplasmic transport machinery [42], 

which in turn contributes to the inactivation of survival 

pathways, such as NF-κB signaling [11]. Whether H2BS10ph 

in yeast has a similar effect on the nucleocytoplasmic 

transport machinery and survival pathways remains to be 

studied. 

A potential trans-histone crosstalk related to yeast 

apoptosis occurs between H2A and H3 phosphorylation: 

phosphorylation of H2AS129, which resembles γ-H2AX of 

higher eukaryotes [46], is increasing in yeast cells undergo-

ing H2O2-induced apoptosis and it is paralleled by a de-

crease in phosphorylation of threonine 45 in histone H3 

(H3T45ph) [47]. On the other hand, the function of 

H3T45ph in apoptotic signalling has been questioned and 

rather been linked to DNA replication and its absence with 

replicative defects [11]. Oxidative damage of DNA by men-

adione, a reactive quinone that as H2O2 generates ROS, has 

furthermore been shown to lead to phosphorylation of 

H2A at serine 122 (H2AS122), and serine-to-alanine 

H2AS122A mutants have impaired survival on plates con-

taining DSB-inducing drugs, such as methyl methanesul-

fonate (MMS) or bleomycin [48], supporting the potential 

importance of H2A phosphorylation in apoptotic signalling 

during DNA damage response. However, further investiga-

tions are necessary to provide mechanistic insights. 

 

Histone H2B ubiquitination 

Another apoptosis-related modification of H2B is its ubiq-

uitination (Fig. 1). H2B is monoubiquitinated (H2Bub1) at 

K123, which, in S. cerevisiae, is mediated by the macromo-

lecular complex containing the E2-conjugating enzyme 

Rad6 and the E3 ligase Bre1 (Table 1) [49-51]. H2Bub1 has 

been linked to transcriptional activation and elongation 

and BRE1 disruption or lysine-to-arginine substitution at 

K123 of H2B (H2B-K123R) results in a complex phenotype 

that includes failures in gene activation [52-55] and lack of 

telomeric silencing [56-59]. H2Bub1 is important for nucle-

osome stability [60], it marks exon-intron structure in bud-

ding yeast [61] and prevents heterochromatin spreading 

[62], and it is implicated in DNA repair and checkpoint acti-

vation after DNA damage [63, 64] and during meiosis [65]. 

The function of H2Bub1 and Bre1 and its homologues in 

transcription regulation and DNA damage response ap-

pears conserved across evolution [66-70]. In human cells 

and in Drosophila it was furthermore shown that H2Bub1 is 

facilitated by O-linked N-acetylglucosamine modification of 
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H2B at S112 [71]. 

The DNA damage response machinery is closely linked 

to apoptosis in yeast and higher eukaryotes [14]. The ob-

servation that a loss of the ubiquitin-specific protease 

UBP10, which is involved in cleaving the ubiquitin moiety 

from H2B (Table 1) [72, 73], activates the yeast metacaspa-

se Yca1 and apoptosis [74], were first hints that H2B ubiq-

uitination may in fact be involved in the regulation of yeast 

apoptosis. The finding that enhanced expression of Bre1 

protected yeast cells from H2O2-induced cell death, where-

as deletion of BRE1 potentiated cell death verified this 

notion [32].  

During chronological aging, cells lacking bre1 show 

shortened lifespan that coincides with the appearance of 

typical apoptotic markers, such as DNA fragmentation and 

accumulation of ROS. The ability of Bre1 to reduce cell 

death is conferred by its E3 ubiquitin ligase activity medi-

ated by its C-terminal zinc-binding RING finger domain [50]. 

RING domains are frequently found in E3 ubiquitin ligases 

and required for catalysing the transfer of ubiquitin from 

the E2 to the substrate [75]. ∆bre1 cells complemented 

with a RING finger mutant of Bre1 (C648G, C651G) lack 

H2Bub1 and exhibited increased apoptosis sensitivity simi-

lar to ∆bre1 cells, whereas the complementation of ∆bre1 

cells with a functional Bre1 made the cells behave like wild-

type [32]. Furthermore, H2B-K123R mutant cells, which too 

lack H2Bub1, have an increased sensitivity to apoptotic 

stimuli, exactly as ∆bre1 cells.  

Yeast cells deficient for ubp10 display markers of apop-

tosis, such as DNA fragmentation, as well as enhanced ex-

pression of stress-responsive genes as compared to wild 

type [76]. The increased sensitivity to apoptosis observed 

in both ∆bre1 and ∆ubp10 strains is associated with an 

increase in the activity of Yca1, while deletion of yca1 re-

stored the wild-type phenotype [32, 74]. Deletion of Silenc-

ing Information Regulator 2 (Sir2), a NAD
+
-dependent 

HDAC that amongst a plethora of targets predominately 

removes acetyl groups from K16 of histone H4 (Table 1) 

[77], could partially rescue the transcriptional pattern and 

abrogate the apoptotic effects of ∆ubp10 cells, suggesting 

that increased YCA1 expression may result from inappro-

priate localization of silencing complexes upon failed 

deubiquitination of H2B [72, 73, 76]. 

H2B ubiquitination is also an important regulator of the 

replicative lifespan of S. cerevisiae: replicatively aged cells 

have increased H2Bub1 in their telomeric heterochromatin, 

along with increased methylation of histone H3 at lysine 4 

and 79 (H3K4 and H3K79; see section "Histone methyla-

tion"), respectively [35, 78]. Yeast aging is accompanied by 

the loss of transcriptional silencing at the three hetero-

chromatic regions of the yeast genome: at least at one 

telomere [79], at the mating type locus [80] and of rDNA 

[81]. A key regulator of telomeric heterochromatin and 

rDNA silencing is Sir2 [82-86], which is furthermore of vital 

importance for RLS regulation: its over-expression extends 

lifespan [87], while yeast cells lacking sir2 have a shorter 

lifespan [88]. The effect on the RLS is likely due to Sir2's 

ability to repress rDNA recombination [89], which in turn 

hampers the formation of extrachromosomal rDNA circles 

[87]. The protein levels of Sir2 typically decrease during 

aging, which leads to increased levels of acetylated histone 

H4 at lysine 16 (Fig. 1) and a concomitant loss of histones 

from specific subtelomeric regions of the genome [90]. The 

increase in H2Bub1 in replicatively aged yeast cells coin-

cides with decreased Sir2 abundance and an increase in 

acetylation of histone H4 at K16 (H4K16ac; see section 

"Histone acetylation") along with much lower occupancies 

of H3, H4, or H2B at the heterochromatic regions [35]. A 

global loss of histones during aging was previously also 

observed by Feser et al. [91]. In addition to H2Bub1, also 

methylation of H3K4 and H3K79 are enriched in aged cells 

at regions proximal to telomeres [35]. Consequently defi-

ciencies in rad6 and bre1 and the expression of H2B-K123R 

cells reduce the mean lifespans of yeast cells, which is not 

further reduced by deletion of sir2. Together these data 

indicate that H2B monoubiquitination and methylation of 

H3K4 and K3K79 regulate replicative aging through a Sir2-

related pathway [35].  

Regulation of apoptosis by H2Bub1 may further exist in 

multicellular organisms: deletion of Rfp1, the Bre1 homo-

logue in Caenorhabditis elegans, leads to enhanced germ 

cell apoptosis in the worms [92] and the depletion of Bre1b, 

one of the two Bre1 isoforms in mice, leads to a strong 

increase in apoptosis frequency in different mouse cell 

types [93]. In higher eukaryotic cells, however, ubiquitinat-

ed H2A is the most abundant species [94-97] and might 

assume some of the roles ubiquitinated H2B plays in yeast. 

Therefore H2A deubiquitination has been linked to chro-

matin condensation in mitotic and apoptotic cells in higher 

eukaryotes and the disappearance of H2Aub1 to late apop-

totic events [98]. In fact, rapid and extensive deubiquitina-

tion of H2A occurs in Jurkat cells undergoing apoptosis 

initiated by, for example, anti-Fas activating antibody, 

staurosporine, etoposide, doxorubicin and proteasome 

inhibitors [99], indicating that histone deubiquitination, 

either H2A or H2B, is a common apoptotic trigger across 

evolution. 

 

Histone methylation 

Monoubiquitination of H2B is prerequisite to the di- and 

tri-methylation of histone H3 on lysine 4 (H3K4me2/3) and 

lysine 79 (H3K79me2/3) [59, 100, 101]. This crosstalk is 

unidirectional, as mutations that eliminate either H3 modi-

fication had no effects on the level of H2B ubiquitination 

[100]. H3K4 trimethylation is further regulated by mon-

oubiquitination-independent processes: loss of H3K14 

acetylation results in the specific loss of H3K4me3, but not 

mono- or dimethylation [102] and methylation of H3 at 

arginine 2 (H3R2) disables H3K4 methylation in yeast and 

mammalian cells [103-105]. H3K4me3 marks localize to the 

5’ end of active genes in budding yeast and are found asso-

ciated with the initiated, phosphorylated form of RNA pol-

ymerase II [106-108], implicating it in transcriptional elon-

gation. It is further not only important for transcriptional 

activation [109-112], but also for silencing at telomeres 

[112-114] and rDNA loci [57, 115, 116]. Yeast cells lacking 

set1 are deficient in the non-homologous end joining 

pathway of DSB repair and are impaired in traversing S-
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phase of the cell cycle in the presence of replication stress 

[117]. In fact, set1 deficient cells have a reduced replication 

activity [118]. H3K4 methylation is mediated by the Set1-

containing complex COMPASS (Table 1), which, in S. cere-

visiae, consists of seven subunits [119-123] and is highly 

conserved among eukaryotes [61]. With respect to apopto-

sis it has been shown that a loss of H3K4me3 (Fig. 1) is a 

trigger for apoptotic cell death [33]. Strains lacking set1 (or 

two other members of the COMPASS complex, Spp1 and 

Bre2, respectively) are susceptible to Yca1-dependent 

apoptosis, both during chronological aging as well as in 

response to H2O2 treatment [33]. ∆set1 cells similarly have 

a shortened RLS [124]. Preventing loss of H3K4me3 by de-

pleting the H3K4 demethylase Jhd2 on the contrary pro-

longed the CLS of the cells [33]. 

H3K79me3 is mediated by the methyltransferase Dot1 

(Disruptor Of Telomeric silencing 1; Table 1). Dot1 is highly 

conserved across evolution and appears to be the sole 

methyltransferase responsible for H3K79 methylation [125-

130]. H3K79 methylation is essential for efficient silencing 

near telomeres, rDNA loci, and the yeast mating type loci 

[113], for precise DDR [63, 131-134], and in higher eukary-

otes for transcriptional control of developmental genes, 

such as HOXA9 [108, 135] and Wnt target genes [136]. 

Contrary to H2Bub1 and H3K4me3, H3K79me3, however, 

appears to play no primary role in apoptotic signalling in 

yeast: deletion of dot1 only slightly improves survival of 

wild-type cells, but it rescues ∆set1 cells from apoptotic 

death [33]. Furthermore, the DNA damage checkpoint ki-

nase Rad9 and the yeast homolog of endonuclease G, Nuc1, 

are critical for cell death of ∆set1 cells, suggesting that loss 

of H3K4 methylation in the presence of H3K79 methylation 

and the kinase Rad9 enhances chromatin accessibility to 

endonuclease digestion. Importantly, wild-type, but not 

dot1∆ cells, loose H3K4 methylation during chronological 

aging, which coincides with a shorter lifespan and indicates 

that the loss of H3K4 methylation in fact acts as important 

trigger for apoptotic cell death [33].  

A link between apoptosis and H3K4me was also ob-

served in other species, although data here are somewhat 

controversial: while deficiency in MLL1, one of several 

H3K4 methyltransferases in mammals [137], and a lack of 

H3K4me3 was enhancing apoptosis induced by ER-stress 

[138], H3K4me3 recognition was necessary to stimulate 

DNA-repair after UV irradiation and to promote DNA-

damage- [139, 140] or genotoxic stress-induced apoptosis 

[141], indicating that regulation of apoptosis by H3K4 

methylation may occur in a context- and/or tissue-specific 

manner. 

As outlined above, replicatively aged cells have in-

creased H2Bub1, H3K4me, and H3K79me in their telomeric 

heterochromatin, which is accompanied by the loss of 

transcriptional silencing at the telomeres. The anti-

silencing activity of H2Bub, H3K4me, and H3K79me at te-

lomeric regions is opposed by another histone methyl-

transferase: Set2 [35, 124]. Set2 mediates methylation of 

H3 at K36 (Table 1) [142, 143], which occurs independent 

of H2Bub1 [100, 144]. Methylated H3K36 has been impli-

cated in transcriptional elongation and H3K36me3 is typi-

cally found to accumulate at the 3’end of active genes in 

association with the phosphorylated elongating form of 

RNA polymerase II [142, 145-147]. The anti-silencing func-

tion of Set2 was observed at all three heterochromatic 

regions in yeast and set2-depleted cells have a prolonged 

RLS as compared to wild-type cells [35, 124]. Contrary to 

yeast, loss of H3K36me3 and deletion of the mediating 

methyltransferase met-1 shortened the lifespan of the 

nematode C. elegans [148], whereas loss of H3K4me3 is 

prolonging it [155], further supporting the context-

dependency of histone modifications. 

 

Histone acetylation 

As outlined above, normal aging of yeast cells is accompa-

nied by a profound loss of histone proteins [91]. The re-

moval of histones from DNA and the incorporation of his-

tones onto DNA are mediated by so-called histone chaper-

ones. A highly conserved central chaperone of histones H3 

and H4 is Antisilencing function 1 (Asf1), which is required 

for proper regulation of gene expression, acetylation of H3 

on K56 (H3K56ac; Table 1), and the maintenance of ge-

nomic integrity [149-151]. Deletion of asf1 results in a very 

short CLS and a median RLS of only about 7 generations in 

comparison to the median life span of about 27 genera-

tions for wild-type yeast and of 15 generations for sir2 mu-

tants [91]. Yeast lacking both asf1 and sir2 are extremely 

short lived with a median lifespan of 4 to 5 generations, 

which demonstrates that Asf1 and Sir2 are acting inde-

pendently to promote longevity.  

The role of Asf1 in determining a normal lifespan is 

mediated via acetylation of H3K56, which is mediated by 

the histone acetyltransferase (HAT) Rtt109 (Table 1) [152]. 

In lifespan regulation Asf1 and Rtt109 act together and a 

H3K56Q mutant, which mimics acetylation, has a greatly 

shortened lifespan. Similarly, yeast strains lacking the two 

redundant histone deacetylases Hst3 and Hst4 (Table 1), 

which leads to elevated levels of H3K56ac [153, 154], die 

early, indicating that H3K56ac levels need to be tightly 

regulated [91]. H3K56ac levels appear to administer his-

tone gene expression, which is repressed by the histone 

information regulator (HIR) complex [155, 156]. Conse-

quently, overexpression of the four core histones extends 

the median lifespan of asf1 mutants by 65% and inactiva-

tion of any component of the Hir complex (Hir1, Hir2, Hir3, 

Hir4, respectively) extends the median RLS of yeast cells by 

25% – 35%. On the contrary, overexpression of HIR1 sup-

pressed mRNA-instability induced apoptosis of yeast cells 

lacking a functional LSM4, a component of the U6 snRNA 

complex, during chronological aging, coinciding with a pro-

longed CLS [157]. How alterations in Hir proteins lead to 

lifespan extension on a mechanistic level remains to be 

seen, but it appears to be via a pathway that is independ-

ent of known lifespan regulators, such as Sir2 and the TOR 

pathway [91]. Interestingly, however, the loss of core his-

tones is also directly correlated to aging of primary human 

fibroblasts [158]. 

Dying ∆asf1 cells not only show marks of apoptosis, but 

also of necrosis and they accumulate a multitude of au-

tophagic bodies [159]. Autophagy (also called macroau-
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tophagy) is an evolutionary conserved process important 

for human health by which cytoplasmic contents, such as 

damaged organelles or aggregated proteins, are degraded 

by the lysosome/vacuole. Autophagy is primarily a pro-

survival process, but it can also contribute to cell death, 

and it is becoming increasingly clear that the transcription-

al regulation of autophagy-related genes is partially con-

trolled by histone modifications and that this serves as a 

key determinant of survival versus death decision in au-

tophagic cells [160]. Key in this context appears to be the 

loss of H3 and/or H4 acetylation, in yeast as well as in 

higher eukaryotes.  

First evidence therefor came from studies on chrono-

logically aged cells: chronologically aging and dying yeast 

cells show a decline in the levels of polyamines, a typical 

hallmark of aging across evolution [161-163]. Treating wild-

type yeast cells with the exogenous polyamide spermidine 

extended the CLS due to deacetylation of histone H3 at K9, 

K14, and K18 through the inhibition of HATs, which coin-

cided with suppression of oxidative stress and necrotic cell 

death [161]. The altered acetylation status of histone H3 

led to a significant up-regulation of autophagy-related 

genes and consequently autophagy activation, not only in 

aging yeast, but also in Drosophila, C. elegans, and human 

cells [161]. Hyperacetylation of H3 at K14 and K18, but not 

K9, due to defects in acetate metabolism on the contrary 

led to a dramatically reduced CLS of yeast cells, which ap-

peared to be due to the inability of the yeast mutants to 

induce autophagy [164, 165]. This negative effect of hyper-

acteylated H3 on cellular aging appears conserved across 

species [164, 165]. 

The critical linkage between histone modifications, the 

transcriptional regulation of autophagy-related genes and 

cell death is further supported by the observation that a 

decrease in H4K16ac due to the down-regulation of the 

HAT hMOF emerged from the induction of autophagy in 

distinct mammalian cell lines [166]. Similarly, the expres-

sion of Sas2, the yeast homolog of hMOF, and H4K16ac 

levels were found repressed upon autophagy induction in 

yeast [160, 166]. The inhibition of H4K16 deacetylation in 

mammalian cells did not inhibit autophagy, but increased 

the autophagic flux, whereas reduced H4K16ac was ac-

companied by the down-regulation of a large number of 

autophagy-related genes [160, 166]. Alongside with the 

reduction of H4K16ac also H3K4me3 is decreased upon 

autophagy induction in a wide variety of cells from yeast to 

higher eukaryotes, which may contribute to a general tran-

scriptional inhibition to save energy during prolonged star-

vation [160]. Antagonizing H4K16 deacetylation by overex-

pressing of hMOF or by inhibiting the HDAC SIRT1, which 

has H4K16 as its primary histone target, resulted in in-

creased cell death upon autophagy-induction [160, 166]. In 

a screen using a library of histone H3-H4 yeast mutants, 

acetylation of H3K56 was further found reduced in cells 

treated with the TOR-inhibitor rapamycin, which was pro-

posed to result from the TOR-dependent repression of the 

H3K56 HDACs Hst3 and Hst4 [167]. How this relates to pro-

grammed cell death remains to be seen. 

 

POTENTIAL DOWNSTREAM MECHANISMS OF EPIGE-

NETIC REGULATION DURING CELL DEATH 

While it is without any doubt that histone modifications 

are critical regulators of cell survival and death, it is only 

poorly understood how they and the coinciding chromatin 

rearrangements do so on a mechanistic level. The most 

obvious process influenced by alterations in histone modi-

fications is transcription (Fig. 2).  

In this context it has been shown that altered H2B 

ubiquitination in ∆bre1 and ∆ubp10 cells led to the en-

hanced expression of YCA1, likely due to the inappropriate 

localization of silencing complexes [34, 72, 73, 76]. H2B 

ubiquitination also plays a role in p53-mediated apoptosis 

in human cells, although rather indirectly: knockdown of 

the EHF transcription factor induced p53-dependent apop-

tosis, whereas its overexpression is required for the surviv-

al of p53-positive colon cancer cells [168]. EHF directly 

activates the transcription of RUVBL1, an ATPase associat-

ed with chromatin-remodeling complexes. RUVBL1 re-

presses transcription of p53 and its target genes by binding 

to the p53 promoter, as well as by interfering with 

RNF20/hBRE1-mediated H2B monoubiquitination and by 

promoting trimethylation of H3 at K9 (H3K9me3), a tran-

scriptional silencing mark [168]. In leukaemia cells, it was 

furthermore shown that inhibition of DOT1L, the sole hu-

man homolog of yeast Dot1, and H3K79 methylation in-

creased apoptosis due to down-regulation of anti-

apoptotic BCL2L1 [169]. Yeast cells lacking RTT109 or ASF1 

and consequently H3K56 acetylation are characterized by 

the repression of cell cycle genes and an accumulation of 

cells with in G2/M phase of the cell cycle [91], whereas 

H4K16 acetylation is, across species, important for the 

transcriptional regulation of autophagy-related genes and 

the subsequent survival versus death response [160, 166]. 

Also, ribosomal DNA silencing is affected by changes in 

H4K16ac [77, 84, 86, 87, 91], which may lead to nucleolar 

stress and an apoptotic response [170]. Together these 

data indicate that altered histone modifications can direct-

ly influence apoptosis due to deregulated transcription of 

key apoptosis regulatory proteins and indirectly due to 

deregulation of, for example, cell cycle, autophagy, and 

ribosomal genes. 

Impaired DNA DSB repair and replication defects are 

other nuclear processes that are influenced by histone 

modifications and might link them to apoptosis (Fig. 2). For 

example, H2B ubiquitination is required for Rad9-mediated 

checkpoint activation after DNA damage and Rad51-

dependent DNA repair in yeast [63, 64] and similarly H3K4 

and H3K79 methylation have been implicated in DNA re-

pair as well as DNA replication and recombination [171, 

172]. Indeed yeast cells lacking set1 and H3K4me have 

impaired DSB repair and are accumulating mutations [33], 

as well as replication defects [118], but it remains to be 

seen if this is related to the increase in apoptotic death of 

these cells. 

Another, rather unexpected regulatory mechanism that 

is influenced by histone modifications appears to be al-

tered nucleocytoplasmic localization (Fig. 2). In HeLa cells it 
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was shown that cytochrome c, released from mitochondria 

upon apoptosis induction, is translocating into the nucleus, 

where it specifically binds acetylated H2A [173]. Nuclear, 

H2Aac-bound cytochrome c is causing chromatin conden-

sation and further potentiating apoptosis [173]. The ING 

(Inhibitor of Growth) family of tumor suppressors acts as 

readers and writers of histone modifications and ING1 is a 

reader of H3K4me3 [139]. ING1 is a nuclear and nucleolar 

protein, where it exhibits apoptotic functions, and it trans-

locates to mitochondria of primary human fibroblasts and 

epithelial cell lines in response to apoptosis stimuli [174]. 

ING1 harbors a BH3-like domain due to which it can bind 

pro-apoptotic Bax and promote mitochondrial membrane 

permeability [174]. In mammalian cells it was further 

shown that H2BS14ph is directly contributing to the inacti-

vation of survival pathways, including NF-kB, due to immo-

bilizing the RanGEF RCC1 on chromatin, thereby reducing 

nuclear RanGTP levels and inactivating nucleocytoplasmic 

transport [11].  

  

CONCLUSION 

Apoptotic cell death is accompanied by pronounced struc-

tural rearrangements within the cell, including chromatin 

architecture. Accumulating evidence points towards an 

epigenetic regulation of the chromatin remodelling events. 

A key player in this context appears to be monoubiquitina-

tion of histone H2B: it shelters yeast cells against intrinsic 

and extrinsic death stimuli. H2B monoubiquitination is 

prerequisite for methylation of histone H3K4 and H3K79, 

respectively, and H3K4 methylation appears as another 

vitally essential histone mark, whereas the role of H3K79 

methylation is less clear. Importantly, the same histone 

modifications seemingly decide on the fate of higher eu-

karyotic cells, although context- and tissue-specific vari-

 
 

FIGURE 2: Schematic presentation as to how altered histone modifications might promote cell death. Changes in histone modifications will 

lead to structural rearrangements in the chromatin, which in turn will affect processes, such as transcription, DNA replication and repair, 

nucleocytoplasmic localization of proteins. Altered transcription may change the expression of regulatory apoptotic factors, cell cycle, au-

tophagy, ribosomal and other vital genes, which in turn will affect apoptotic signalling, cell cycle progression and/or ribosome biogenesis, 

which may lead to cell death. Replication stress, genomic and mRNA instability, defects in nucleocytoplasmic transport as well as other vital 

signalling pathways may also lead to cell death as a consequence of altered histone marks. 
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ances contribute to and complicate the particular decision. 

Nevertheless, these studies show that beyond the conser-

vation of the apoptotic core machinery in yeast, also intrin-

sic triggers of cell death are conserved. Future studies are 

needed to further dissect the death code of yeast cells and 

most importantly to further identify and characterize the 

up- and downstream players that transmit the signals to 

and from the nucleus. 
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