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Early detection and treatment of visual impairment diseases are critical and integral

to combating avoidable blindness. To enable this, artificial intelligence–based disease

identification approaches are vital for visual impairment diseases, especially for people

living in areas with a few ophthalmologists. In this study, we demonstrated the

identification of a large variety of visual impairment diseases using a coarse-to-fine

approach. We designed a hierarchical deep learning network, which is composed of

a family of multi-task & multi-label learning classifiers representing different levels of

eye diseases derived from a predefined hierarchical eye disease taxonomy. A multi-

level disease–guided loss function was proposed to learn the fine-grained variability of

eye disease features. The proposed framework was trained for both ocular surface and

retinal images, independently. The training dataset comprised 7,100 clinical images from

1,600 patients with 100 diseases. To show the feasibility of the proposed framework,

we demonstrated eye disease identification on the first two levels of the eye disease

taxonomy, namely 7 ocular diseases with 4 ocular surface diseases and 3 retinal fundus

diseases in level 1 and 17 subclasses with 9 ocular surface diseases and 8 retinal fundus

diseases in level 2. The proposed framework is flexible and extensible, which can be

inherently trained on more levels with sufficient training data for each subtype diseases

(e.g., the 17 classes of level 2 include 100 subtype diseases defined as level 3 diseases).

The performance of the proposed framework was evaluated against 40 board-certified

ophthalmologists on clinical cases with various visual impairment diseases and showed

that the proposed framework had high sensitivity and specificity with the area under

the receiver operating characteristic curve ranging from 0.743 to 0.989 in identifying all

identified major causes of blindness. Further assessment of 4,670 cases in a tertiary eye

center also demonstrated that the proposed framework achieved a high identification

accuracy rate for different visual impairment diseases compared with that of human
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graders in a clinical setting. The proposed hierarchical deep learning framework would

improve clinical practice in ophthalmology and broaden the scope of service available,

especially for people living in areas with a few ophthalmologists.

Keywords: artificial intelligence, hierarchical deep learning framework, visual impairment disease, coarse-to-fine,

multi-task multi-label

INTRODUCTION

Eye diseases leading to visual impairment are a significant source
of social burden. It is estimated that, as of 2017, 1 billion
people were living with vision impairment worldwide, including
those with moderate or severe distance vision impairment
or blindness caused by unaddressed refractive error (123.7
million), cataract (65.2 million), glaucoma (6.9 million), corneal
opacities (4.2 million), diabetic retinopathy (3.0 million), and
trachoma (2.0 million), as well as near vision impairment caused
by unaddressed presbyopia (826.0 million) (1). In China, the
most frequent cause of visual impairment is cataract, which is
followed by corneal disease and glaucoma (2, 3). In contrast,
age-related macular degeneration and diabetic retinopathy are
more prevalent in the United States (4). Early detection and
treatment of visual impairment diseases are critical and integral
to combating this avoidable blindness worldwide.

A slit-lamp investigation of the ocular surface and retina
using manual interpretation is a widely accepted screening tool
to detect visual impairment diseases. However, this is highly
dependent on the ophthalmologist’s clinical experience, which
is time-consuming and may have an interobserver variation on
the same patient. Automated identification of various visual
impairment diseases via slit-lamp photography has benefits such
as increased efficiency, reproducibility, and access to eye care. To
enable this, artificial intelligence (AI)-based approaches for the
identification of visual impairment diseases are greatly needed,
especially for people living in areas with a limited number
of ophthalmologists.

Recent advances in AI, particularly convolutional neural
networks (CNN)-based deep learning algorithms, have made it
possible to learn themost predictive disease features directly from
medical images given a large dataset of labeled examples (5, 6).
Esteva et al. (7) proposed a dermatologist-level classification of
skin cancer by fine-tuning a pretrained Inception-v3 network
(8). Menegola et al. (9) also conducted experiments comparing
training from scratch with fine-tuning of pretrained networks
on skin lesion images. Their study showed that fine-tuning of
pretrained networks worked better than training from scratch.
Setio et al. (10) applied a multi-view CNN to classify points
of interest in chest computed tomography as nodules or non-
nodules. Similarly, Nie et al. (11) used a three-dimensional CNN
on magnetic resonance images to assess the survival of patients
suffering from brain tumors.

Because of the fine-grained variability in the appearance
of eye lesions, most of the existing eye disease identification
methods focused on a single disease type (such as retinopathy
and macular diseases) via retinal fundus or optical coherence
tomography (OCT) images. Gulshan et al. (12) demonstrated
the detection of diabetic retinopathy by fine-tuning a pretrained

Inception-v3 network on retinal fundus images. Similarly,
Gargeya and Leng (13) performed automated identification of
diabetic retinopathy using a ResNet-based architecture. Li et al.
(14) adopted an Inception-v3 network to detect glaucomatous
optic neuropathy using color fundus images, whereas Burlina
et al. (15) applied both a pretrained model and a newly trained
from a scratch model for automated grading of age-related
macular degeneration from color fundus images. Schlegl et al.
(16) and Treder et al. (17) proposed automated detection of
macular diseases using OCT images. Long et al. (18) developed
a technique for the diagnosis of congenital cataracts. However,
their method was focused on images covering the pupil area
only; therefore, their algorithm could not detect diseases affecting
the peripheral cornea and limbus. To date, there have been
few studies diagnosing ocular surface diseases or identifying
various disease types simultaneously. Ting et al. (19) proposed
a deep learning system for diabetic retinopathy and related
eye diseases using retinal images. Fauw et al. (20) proposed
an Ensemble-based deep learning framework that could make
referral suggestions on retinal diseases by analyzing OCT images.
Li et al. (21) presented a workflow for the segmentation of
anatomical structures and annotation of pathological features in
slit-lamp images, which improved the performance of a deep
learning algorithm for diagnosing ophthalmic disorders. As most
of these algorithms have been derived from datasets of one or
a few ocular diseases, they struggle to detect visual impairment
diseases accurately in large-scale, heterogeneous datasets.

To maximize the clinical utility of AI, we developed a
hierarchical deep learning framework, which enables early
screening and differentiation of a large variety of visual
impairment diseases simultaneously in a coarse-to-fine
manner. Here, a hierarchical architecture means that multiple
classification layers are arranged in a hierarchical way for
different levels. To test the feasibility of the proposed framework,
we identified eye diseases on two different levels of the eye
disease taxonomy. Thereby, in our case, the proposed framework
would first perform disease classification for a lower level (i.e.,
level 1) and then perform a higher-level disease classification
(i.e., level 2). Also, algorithm performance was tested against 40
ophthalmologists in a clinic-based dataset. Finally, we performed
an observational diagnostic assessment comparison of visual
impairment disease screening between the algorithm and the
ophthalmologists in a tertiary eye center.

MATERIALS AND METHODS

Datasets
Our dataset came from two major eye centers in China: (i) the
Eye and ENT Hospital of Fudan University, Shanghai, and (ii)
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FIGURE 1 | Dataset. (A) t-Distributed stochastic neighbor embedding visualization of the collected dataset consisting of 17 major ocular disease classes (100

subtypes), leading to visual impairment, clustered according to deep features generated from the last layer of trained networks. Colored point clouds represent images

with different visual impairment diseases. This visualization represents the ability of our method to objectively separate normal patients from early cases of visual

impairment diseases for referral. (B) Example ocular surface and retinal images for the eye with some common diseases or healthy eye. In this study, the first two

levels of the taxonomy consisting of 17 major ocular disease classes (100 subtypes) were used in performance evaluation.

Frontiers in Medicine | www.frontiersin.org 3 June 2021 | Volume 8 | Article 654696

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hong et al. Deep-Learning for Diagnosing Eye Diseases

FIGURE 2 | A schematic illustration of the predefined eye disease taxonomy and example test set images. (A) Pie-structured eye disease taxonomy. (B) Data

distribution for the first two levels of diseases.

the Affiliated Hospital of Guizhou Medical University, Guizhou.
We used the IM 900 or 600 digital slit-lamp photography system
(Haag-Streit, Switzerland) and CR-2 digital non-mydriatic retinal
cameras (Canon, Japan). All images were annotated by senior
ophthalmologists, where 50% of the proportion included retinal
photographs and no images with the dilated pupil were included.
Our objective was to provide a fast and cost-effective tool
for screening patients with visual impairments. A suspected

participant would be referred to a doctor for further assessment,
including the dilated examination.

Retrospective Dataset

Thirty-two ophthalmologists were invited to grade the images
of the retrospective database. During the training process of
ophthalmologists, a dataset of 100 images (including 25 corneal
disease cases, 25 cataract cases, 25 glaucoma cases, and 25 retinal
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FIGURE 3 | Abstraction of the proposed hierarchical deep learning framework. (A) The proposed network architecture based on the feature network of Inception v3

(Conv 3 × 3/2 indicates that a 3 × 3 convolution kernel was used and stride = 2). The corresponding sizes of the input and output for each module are also shown. In

(Continued)
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FIGURE 3 | our framework, a family of multi-task & multi-label classification layers were used hierarchically to represent various levels of eye diseases. The individual

multi-task classifier layer is defined on the basis of a predefined eye disease taxonomy. Here, the data flow in blue indicates that the backbone is directly connected to

the branch of level 1; the orange means that the backbone is directly connected to the branch of level 2; the flow in black means connecting from the branch of level 1

to the branch of level 2; and the
⊕

is a feature concatenation operation, where features from the black and orange are superimposed; finally, this 8*8 pooling layer is a

global average pooling, which turns the 8*8 feature map into a 1*1 feature map. (B) Different spatial factorized Inception modules are presented here. Inception A

contains the factorization of the original 5 × 5 convolutions, factorizes general n × n convolutions (n = 5 in our study), and has expanded the filter bank outputs.

disease cases) was used for the test. The participants’ results
were compared with those of two senior corneal specialists
(H.G. and J.H.). The participants would not complete the
training until they achieved a κ-value of 0.75 or more. A κ-
value of 0 indicates that observed agreement is the same as
that expected by chance; 1 indicates perfect agreement; 0.75
or more indicates substantial agreement and/or almost perfect
agreement. As a result, 20 ophthalmologists were qualified as
graders to classify images. Each photograph was reviewed with
the same standard and annotated via face-to-face communication
between two ophthalmologists. As all 7,100 images from 1,600
patients collected already had original diagnoses recorded in
medical charts, graders were asked to review, validate, and classify
the images.

Prospective Dataset

A total of 4,670 outpatients agreed to receive the test and got
their ocular surface slit-lamp photographs taken before their
physician visits. Informed consent was obtained from all the
participants. A software practitioner participating in this study
fed these images as input to the trained deep learning software
model. The algorithm generates a probability/confidence score
over the classification nodes in a sequential manner, i.e., level
by level. If the probability/confidence score of any disease
subtype was greater than a predefined threshold, the disease
subtype was diagnosed as positive. To quantitatively compare the
sensitivity and specificity of our algorithm to that of the other 40
ophthalmologists on the diagnostic task of these cases, receiver
operating characteristic (ROC) curves were plotted where each
ophthalmologist was asked about the diagnosis on the basis of
the images. Thirteen additional cases were also independently
collected from clinics for our direct performance test sets.

To explore the visual characteristics of different clinical
classes, we examined the internal image features learned by
the proposed framework using t-distributed stochastic neighbor
embedding (22). As demonstrated in Figure 1A, each point
represents an eye image projected from the n-dimensional output
of the last hidden layer of Inception-v3 backbone into two
dimensions. We see clusters of points of the same clinical
classes. This visualization represents the ability of our method
to objectively separate normal patients from early cases of
visual impairment diseases for a referral. Figure 1B shows a few
examples of images that demonstrate the visual features using
which the proposed hierarchical deep learning framework can
identify and make a diagnosis.

Taxonomy
Inspired by Esteva et al. (7), who defined skin diseases in a
tree structure, we adopted a similar approach to define our

domain taxonomy structure for eye diseases, taking advantage
of fine-grained information embedded within the images. Our
taxonomy represented 100 individual diseases hierarchically
arranged in a Pie structure. It was derived based on the collected
retrospective database with 7,100 images from 1,600 patients
by ophthalmologists using a bottom-up procedure: Individual
diseases—initialized were defined as leaf nodes, and then were
merged on the basis of clinical and visual similarity until the
entire structure was connected.

As shown in Figure 2A, the taxonomy is useful in generating
hierarchical training classes that are both well-suited for machine
learning classifiers and medically relevant. In this study, the first
two levels of the taxonomy were used in performance validation.
Figure 2B illustrates the corresponding data distributions. It is
worth mentioning that due to insufficient numbers of images
for each of the level 3 diseases, we did not perform the level
3 classification. However, the extension to more levels can be
implemented via our flexible and extensive framework with
sufficient training data.

Proposed Hierarchical Deep Learning
Framework
As shown in Figure 3, the proposed hierarchical deep learning
framework is composed of a family of multi-task & multi-
label learning classifiers representing different levels of eye
disease classification derived from the hierarchical eye disease
taxonomy. Here, we used an Inception-v3 CNN as the
backbone of the proposed framework, and the final classification
layer of the Inception-v3 network was replaced with our
novel hierarchical multi-task & multi-label classification
layers. Each task branch consists of several stacked fully
connected units, hierarchically representing various levels
of eye disease classification. As a result, the classification
results of lower levels of classifiers can be used as priors
for higher levels of classifiers, thereby improving the final
classification performance.

We trained the model by minimizing our novel multi-level
eye disease–guided loss function consisting of multiple levels of
losses. The objective function for two levels can be represented
as follows:

LossT = α∗lossl1 + (1− α) ∗lossl2 (1)

where the term LossT is the total loss of the final model, and
lossl1 and lossl2 represent the corresponding losses for levels 1
and 2 of eye disease identification, respectively. α is a weight
parameter that is used to control the balance between the two
losses. For the two levels, α ∈ (0, 0.5), setting more weight
for the higher level because the ultimate goal was to classify
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FIGURE 4 | Performance of the proposed hierarchical deep learning framework. (A) The mean receiver operating characteristic (ROC) curve for various eye diseases

of the first two levels of the eye disease taxonomy. AUC is the area under the ROC curve. (B) Confusion matrices for the first two levels of the eye disease taxonomy.

Conjunct, Conjunctivitis; Cor_Degen, Corneal_Degeneration; Cor_Infec, Corneal_Infectious; Ocu_Cor_Neo, Ocular_Corneal_Neoplasma; Cor_Non_In,

Corneal_Non_Infectious; Intra_Neo, Intraocular_Neoplasma; Normal_Sur, Normal_Surface; Optic_Ner, Optic_Ner; Retinal_Deg, Retinal_Degeneration; Retinal_Det,

Retinal_Detachment; Retinal_Vas, Retinal_Vascular; Normal_Fun, Normal_Fundus.
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higher levels of diseases. Through experiments, we found that
α = 0.3 performed well (i.e., the loss weight ratio 3:7 between
level 1 and 2 classifiers). In this study, we used the sigmoid
function for each class instead of the commonly used SoftMax
function, for multiple diseases may simultaneously exist. Because
of the unbalanced property of data, we applied the focal loss
(23) for the loss function of each level, which reduced the
impact of data imbalance and made the training focus on hard
negatives as well. The focal loss function can be represented
as follows:

FL
(

pt
)

= −
(

1− pt
)γ

log
(

pt
)

(2)

where

pt =

{

p if y = 1
1− p otherwise

(3) (3)

(

1− pt
)γ

is a modulating factor of the cross-entropy loss, with
a tunable focusing parameter γ ≥ 0, p ∈ [0, 1]. During the
training process, various data augmentation methods (including
horizontal and vertical flipping, color jitter, rotation, etc.) were
also applied to all classes independently on-the-fly. It is worth
mentioning that the online data augmentation was aimed at
increasing the diversity of data for generalization rather than
balancing and/or increasing the amount of training data.

Instead of training from scratch, we applied a fine-tuning
strategy on a pretrained model using a multi-step retraining
strategy. In this study, all images were resized to the size of 299×
299 since that is the default input size for the Inception-v3 model.
We used the Inception-v3 model pretrained on the ImageNet
dataset (24) as the initial model and fine-tuned all layers with our
dataset. First, the multi-task branches were trained by freezing
the backbone’s weights for 5 epochs. The Adam optimizer and a
learning rate of 0.0001 and epsilon of 0.1 were used. Then, we
performed a multi-step retraining strategy. In this strategy, we
gradually unfroze the layer weights in steps, with the first few
layers being unfrozen last. The learning rates were progressively
reduced from 0.0001 to 0.000001, whereas other parameters were
kept unchanged. Every step lasted 20 epochs. We used Facebook’s
PyTorch deep learning framework (25) to train, validate, and test
the algorithm networks.

RESULTS

Performance Evaluation
Algorithm performance was measured by the area under the
ROC curve (AUC) and the accuracy rate. The accuracy rate
calculated the percentage of correctly predicted individuals
among the whole test set, whereas the ROC curve was generated
by plotting the curve of sensitivity against specificity, which can
be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

where TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative rates, respectively. TP and TN
represent correctly predicted positives and negatives with respect
to the ground truth labels. FP and FN represent incorrectly
predicted positives and negatives with respect to the ground
truth labels.

In this study, we applied a 5-fold cross-validation strategy
to evaluate the effectiveness of the proposed framework. This
strategy randomly divides the entire dataset into five subsets,
each containing around 20% of the data. Model training and
validation were performed five times. Figure 4A shows that
our framework achieved high sensitivity, specificity, and AUC
for most of the identified diseases. Figure 4B illustrates the
corresponding confusion matrices for disease classification. As
shown in level 1 confusion matrices, the CNN model performed
extremely well on all three retinal fundus diseases, with an
accuracy of 0.91 for glaucoma, 0.98 for vitreoretinal disease, and
0.92 for normal fundus. Meanwhile, the CNN model performed
moderately well on all four ocular surface diseases, with an
accuracy of 0.91 for cataract, 0.90 for surface disease, 0.90 for
neoplasma, and 0.81 for normal surface images. This may be
because fundus images contain more discriminative features
than do ocular surface images. The model confused normal
surface cases with cataract (12.0%) and confused cataract with

FIGURE 5 | Multi-label diagnostic results. The proposed hierarchical deep learning framework is capable of detecting multiple diseases simultaneously on the same

patient: (A) cataract with 76.74% and corneal disease with 75.94% confidence and (B) glaucoma with 79.04% and retinopathy with 51.01% confidence.
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surface disease (5.0%), neoplasm (2.0%), and normal surface
images (2.0%). From these results, we can conclude that it is
easy to confuse the normal surface with cataract because of
appearance similarities, whereas cataract has more appearance
diversity, which can also be confused with other ocular surface

diseases and neoplasms. Similar results can be found in level 2
confusion matrices.

Because of the multi-task & multi-label property of the
proposed framework, the trained model is capable of detecting
multiple diseases simultaneously on the same patient, reflecting

FIGURE 6 | Eye disease classification performance of the proposed hierarchical deep learning framework and ophthalmologists. (A) The proposed hierarchical deep

learning framework was tested against 40 board-certified ophthalmologists in diagnosing the clinical cases of 13 patients in a real-world setting. For each image, the

ophthalmologists were asked to make three diagnoses. The proposed hierarchical deep learning framework outperformed all levels of board-certified ophthalmologists

for all cases. (B) Clinical application of the proposed hierarchical deep learning framework for visual impairment diseases in a tertiary eye center. Discrepancies

between manual grades and the proposed hierarchical deep learning framework results were sent to an independent panel of senior specialists for arbitration.
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true clinical cases. As illustrated in Figure 5, both cataract
and corneal disease were detected simultaneously within a
single ocular surface image with 76.74 and 75.94% confidence,
respectively. Similarly, both glaucoma and retinopathy were
also detected within one retinal image with 79.04 and 51.01%
confidence, respectively. It needs to be mentioned here that
in this study, if the prediction score was > 50%, the system
considered the screening output of the patient with the
corresponding disease. In a real-world setting, if the screening
output of the patient has one of the diseases listed above, the
patient would be referred to a specialist for further diagnosis.

Physicians need to consider not only the screening result but also
the diagnostic severity of the disease to make clinical decisions
for a patient. This was beyond the scope of our study. Our goal
was to provide a fast and cost-effective screening tool for patients
with visual impairment.

Comparison Tests
To both quantitatively and qualitatively demonstrate the
effectiveness of the proposed framework, we also compared it
with 40 board-certified ophthalmologists in diagnosing clinical
cases. The comparison tests used 20 images from 13 patients.

TABLE 1 | Computational cost comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Computational cost Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Training (hours) 12.5 11.2 10.0 11.4 11.0

Inference (seconds) 0.097 0.083 0.069 0.075 0.106

FIGURE 7 | Performance comparison with four deep learning frameworks.
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TABLE 2 | AUC comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.96 0.94 0.92 0.93 0.91

Ocular surface (n = 2,018) 0.95 0.94 0.91 0.93 0.90

Ocular neoplasm (n = 251) 0.93 0.89 0.89 0.91 0.88

Normal surface (n = 205) 0.93 0.93 0.93 0.92 0.90

Weighted average 0.95 0.93 0.91 0.93 0.90

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.97 0.95 0.92 0.93 0.91

Conjunctivitis (n = 372) 0.83 0.82 0.81 0.83 0.81

Cornea degeneration (n = 137) 0.89 0.86 0.85 0.89 0.83

Cornea infectious (n = 1,098) 0.96 0.95 0.93 0.94 0.91

Intraocular neoplasma (n = 107) 0.95 0.92 0.90 0.90 0.89

Cornea non-infectious (n = 297) 0.91 0.89 0.93 0.88 0.86

Ocular surface neoplasm (n =

144)

0.90 0.88 0.86 0.87 0.85

Scleritis (n = 114) 0.94 0.93 0.93 0.93 0.90

Normal surface (n = 205) 0.94 0.93 0.94 0.93 0.91

Weighted average 0.94 0.92 0.91 0.91 0.89

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.94 0.91 0.92 0.90

Vitreoretinal disease (n = 2,283) 0.97 0.95 0.93 0.94 0.92

Normal fundus (n = 323) 0.96 0.96 0.94 0.94 0.92

Weighted average 0.97 0.95 0.93 0.94 0.91

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.94 0.91 0.93 0.90

Macular disease (n = 480) 0.89 0.88 0.85 0.86 0.85

Optic nerve disease (n = 467) 0.94 0.94 0.90 0.91 0.89

Refractive error (n = 156) 0.91 0.90 0.89 0.89 0.89

Retinal degeneration (n = 138) 0.96 0.97 0.93 0.96 0.92

Retinal detachment (n = 584) 0.90 0.89 0.87 0.88 0.85

Retinal vascular disease (n =

458)

0.93 0.92 0.89 0.91 0.89

Normal fundus (n = 323) 0.96 0.97 0.93 0.94 0.92

Weighted average 0.93 0.92 0.89 0.91 0.88

Bold value means “Best performance”.

The tested diseases include allergic conjunctivitis, dry eye,
bacterial conjunctivitis, Mooren’s corneal ulcer, keratoconus,
fungal keratitis, viral keratitis, scleritis, age-related macular
degeneration, cataract, primary angle closure glaucoma, myopia,
diabetic retinopathy, and retinal detachment. For this study,
each ophthalmologist was asked for the three most likely
diagnoses of the patient. This choice of question reflects the
actual in-clinic task in which ophthalmologists would decide
whether or not to request further examinations. For a fair
comparison, the proposed hierarchical deep learning framework
also outputs the top three diagnoses with probability/confidence
scores. The outcome was considered “correct” when one of
the three diagnoses made by the proposed hierarchical deep
learning framework or an ophthalmologist included the real

diagnosis for the case. Remarkably, the proposed hierarchical
deep learning framework outperformed all levels of board-
certified ophthalmologists in every case, as shown in Figure 6A

(P < 0.05 in t-test).
In addition, we performed an observational diagnostic

assessment comparison between the proposed framework and
human graders in a tertiary eye center to determine whether
or not the proposed framework can be introduced into visual
impairment disease screening. As demonstrated in Figure 6B,
4,670 consecutive patients visiting the Shanghai Eye and ENT
Hospital were invited to get their slit-lamp photographs taken
before they were checked by their physicians. Discrepancies
between manual grades and the proposed hierarchical deep
learning framework results were sent to a panel of senior
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TABLE 3 | Accuracy comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.93 0.92 0.9 0.91 0.89

Ocular surface (n = 2,018) 0.92 0.9 0.88 0.89 0.87

Ocular neoplasm (n = 251) 0.96 0.97 0.96 0.96 0.95

Normal surface (n = 205) 0.98 0.98 0.99 0.98 0.98

weighted average 0.93 0.92 0.90 0.91 0.89

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.94 0.93 0.91 0.92 0.9

Conjunctivitis (n = 372) 0.93 0.93 0.93 0.94 0.92

Cornea degeneration (n = 137) 0.97 0.97 0.97 0.98 0.97

Cornea infectious (n = 1,098) 0.97 0.96 0.94 0.95 0.93

Intraocular neoplasma (n = 107) 0.99 0.98 0.98 0.98 0.98

Cornea non-infectious (n = 297) 0.97 0.98 0.98 0.97 0.97

Ocular surface neoplasm (n =

144)

0.98 0.99 0.98 0.98 0.98

Scleritis (n = 114) 0.99 0.98 0.98 0.98 0.07

Normal surface (n = 205) 0.98 0.98 0.98 0.98 0.99

Weighted average 0.96 0.95 0.94 0.95 0.90

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.95 0.93 0.94 0.93

Vitreoretinal disease (n = 2,283) 0.97 0.96 0.93 0.95 0.92

Normal fundus (n = 323) 0.97 0.98 0.97 0.97 0.97

Weighted average 0.97 0.96 0.93 0.95 0.93

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.97 0.96 0.94 0.94 0.93

Macular disease (n = 480) 0.93 0.92 0.91 0.91 0.9

Optic nerve disease (n = 467) 0.96 0.96 0.95 0.95 0.95

Refractive error (n = 156) 0.98 0.99 0.98 0.98 0.98

Retinal degeneration (n = 138) 0.99 0.99 0.98 0.98 0.98

Retinal detachment (n = 584) 0.96 0.95 0.94 0.94 0.93

Retinal vascular disease (n =

458)

0.97 0.96 0.96 0.96 0.96

Normal fundus (n = 323) 0.99 0.98 0.98 0.98 0.98

Weighted average 0.97 0.96 0.95 0.95 0.94

Bold value means “Best performance”.

ophthalmologists for arbitration. Our data showed that the
proposed hierarchical deep learning framework achieved an
acceptable detection accuracy rate for visual impairment disease
screening when compared with that of human graders in a
clinical setting. The detection AUC of the proposed hierarchical
deep learning framework for 17 subclasses in level 2 of visual
impairment diseases ranged from 0.743 to 0.989.

We also compared our algorithm performance with four
previously reported methods, namely Inception-v3 (8), ResNet
(26), DenseNet (27), and Ensemble (28). The Ensemble
model combined all backbone features extracted from the
other three models and applied a tree-based classifier for
the final classification. To have a fair comparison, all the
networks above were also trained as multi-task & multi-label

networks but without the proposed hierarchical architecture.
To be more specific, the last layers of these networks were
replaced with a set of binary classifiers with a flat architecture
for each level of the disease classification. As shown in
Table 1, the computational costs for both the training and
the inference stage were comparable for all models. However,
with the proposed hierarchical architecture, our algorithm
outperformed all four existing methods in most of the diseases.
For example, as shown in Figure 7, for level 1 disease
identification—such as glaucoma—our framework achieved
AUC 0.958, whereas ResNet, DenseNet, Inception-v3, and
Ensemble methods achieved AUC 0.913, 0.940, 0.928, and
0.899, respectively. Similarly, for level 2 disease identification,
such as ocular surface neoplasm, our framework achieved
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TABLE 4 | Recall comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.91 0.9 0.88 0.89 0.86

Ocular surface (n = 2,018) 0.9 0.89 0.86 0.88 0.85

Ocular neoplasm (n = 251) 0.86 0.82 0.8 0.84 0.8

Normal surface (n = 205) 0.81 0.75 0.8 0.75 0.8

Weighted average 0.90 0.88 0.86 0.87 0.85

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.9 0.89 0.86 0.88 0.85

Conjunctivitis (n = 372) 0.75 0.73 0.73 0.74 0.73

Cornea degeneration (n = 137) 0.78 0.78 0.78 0.79 0.77

Cornea infectious (n = 1,098) 0.94 0.92 0.89 0.9 0.86

Intraocular neoplasma (n = 107) 0.95 0.9 0.82 0.82 0.86

Cornea non-infectious (n = 297) 0.78 0.8 0.82 0.8 0.76

Ocular surface neoplasm (n =

144)

0.86 0.79 0.73 0.76 0.76

Scleritis (n = 114) 0.91 0.87 0.87 0.87 0.87

Normal surface (n = 205) 0.81 0.8 0.81 0.8 0.82

Weighted average 0.88 0.86 0.84 0.85 0.83

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.91 0.89 0.87 0.88 0.86

Vitreoretinal disease (n = 2,283) 0.98 0.97 0.95 0.96 0.95

Normal fundus (n = 323) 0.91 0.92 0.88 0.89 0.86

Weighted average 0.96 0.94 0.92 0.93 0.92

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.92 0.9 0.87 0.88 0.84

Macular disease (n = 480) 0.85 0.82 0.8 0.79 0.79

Optic nerve disease (n = 467) 0.86 0.88 0.84 0.84 0.84

Refractive error (n = 156) 0.83 0.81 0.8 0.77 0.81

Retinal degeneration (n = 138) 0.82 0.86 0.79 0.82 0.79

Retinal detachment (n = 584) 0.83 0.79 0.77 0.78 0.75

Retinal vascular disease (n =

458)

0.86 0.84 0.82 0.84 0.8

Normal fundus (n = 323) 0.89 0.91 0.88 0.89 0.86

Weighted average 0.87 0.86 0.83 0.83 0.81

Bold value means “Best performance”.

AUC 0.949, whereas ResNet, DenseNet, Inception-v3, and
Ensemble methods achieved AUC 0.897, 0.896, 0.919, and 0.894,
respectively. More detailed comparison results can be found in
Tables 2–5.

Saliency Maps
To show the interpretation of the proposed framework, we
also created heatmaps via the gradient-weighted class activation
mapping (Grad-CAM) algorithm (29), which can produce
visual explanations for CNN-based deep learning models. Grad-
CAM uses the gradient information flowing into the last
convolutional layer to understand the importance of each
neuron for a decision of interest, thereby highlighting the
important regions in the image for prediction. It first computes

the gradient of the score for a given class with respect to
feature maps of a convolutional layer. Then, these gradients
are average-pooled to obtain the neuron importance weights.
Finally, the coarse heatmap for a given class is generated via
a weighted combination of forward activation maps followed
by a ReLU function. As illustrated in Figure 8, the generated
heatmaps helped indicate the potential corneal lesion regions for
further examination, thereby establishing prediction trust and
interpretation for physicians.

DISCUSSION

In this study, we demonstrated the effectiveness of
the proposed hierarchical deep learning framework in
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TABLE 5 | Precision comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.88 0.85 0.81 0.84 0.8

Ocular surface (n = 2,018) 0.96 0.94 0.93 0.93 0.92

Ocular neoplasm (n = 251) 0.7 0.68 0.67 0.7 0.63

Normal surface (n = 205) 0.59 0.75 0.71 0.75 0.71

Weighted average 0.90 0.88 0.86 0.88 0.85

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.91 0.89 0.86 0.87 0.85

Conjunctivitis (n = 372) 0.67 0.66 0.63 0.65 0.61

Cornea degeneration (n = 137) 0.64 0.64 0.6 0.7 0.61

Cornea infectious (n = 1,098) 0.95 0.94 0.92 0.93 0.92

Intraocular neoplasma (n = 107) 0.68 0.62 0.62 0.62 0.58

Cornea non-infectious (n = 297) 0.88 0.9 0.91 0.89 0.87

Ocular surface neoplasm (n =

144)

0.99 0.98 0.98 0.99 0.97

Scleritis (n = 114) 0.98 0.97 0.96 0.98 0.95

Normal surface (n = 205) 0.87 0.92 0.93 0.92 0.93

Weighted average 0.88 0.87 0.85 0.86 0.84

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.94 0.91 0.86 0.88 0.86

Vitreoretinal disease (n = 2,283) 0.98 0.96 0.95 0.96 0.94

Normal fundus (n = 323) 0.91 0.87 0.93 0.91 0.95

Weighted average 0.96 0.94 0.93 0.93 0.92

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.95 0.93 0.89 0.9 0.88

Macular disease (n = 480) 0.7 0.66 0.62 0.64 0.62

Optic nerve disease (n = 467) 0.82 0.85 0.8 0.81 0.79

Refractive error (n = 156) 0.96 0.96 0.99 0.96 0.96

Retinal degeneration (n = 138) 0.82 0.86 0.79 0.79 0.76

Retinal detachment (n = 584) 0.9 0.87 0.84 0.87 0.81

Retinal vascular disease (n =

458)

0.93 0.89 0.89 0.89 0.86

Normal fundus (n = 323) 0.91 0.92 0.93 0.92 0.92

Weighted average 0.88 0.86 0.84 0.85 0.82

Bold value means “Best performance”.

identifying most causes of visual impairment diseases
worldwide. Training the proposed hierarchical deep learning
framework on eye images captured using commonly
available equipment, we outperformed the performance of
40 board-certified ophthalmologists on 13 clinical cases.
Further assessment of 4,670 cases in a tertiary eye center
also demonstrated that the proposed framework achieved
a high identification accuracy rate for different visual
impairment diseases compared with that of human graders
in a clinical setting.

Although we acknowledge that the clinical impression and
diagnosis by an ophthalmologist are based on contextual
factors beyond the visual inspection of the eye, the ability
to classify eye images with the accuracy of a board-certified

ophthalmologist has the potential to profoundly expand
access to vital medical care. It has the potential to aid the
delivery of eye disease screening in developed and developing
countries in a manner that is inexpensive, efficient, and easily
accessible. It can also be used to provide eye care guiding
services in communities and assist doctors in diagnosing visual
impairment diseases.

To validate this technique across the full distribution
and spectrum of visual impairment diseases encountered in
a clinical setting, further research is necessary to evaluate
performance in a large community screening setting. This
method is primarily constrained by data and can be validated
for more visual conditions if sufficient training examples
are provided.
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FIGURE 8 | Saliency maps for images with various common visual impairment diseases. These visualizations are generated automatically, locating regions for closer

examination after a patient is seen by a consultant ophthalmologist. The bluer the color, the lower the attention of the model; the redder the color, the higher the

attention of the model. Visualization maps are generated from deep learning features.

In this study, we applied multiple train–test splits via a 5-
fold cross-validation where we randomly divided the entire
image dataset into five subsets. Splitting data with respect to
patients instead of images is indeed a better strategy; however, the
dataset we had did not contain user identification information
after data anonymization. We added this as a limitation of our
study and would maybe explore it as future work. We would
also conduct further experiments with publicly available datasets
(such as EyePACS; Kaggle) as one of the future works. In the
future, it may also be important to investigate different types
of common patient metadata, such as genetic factors, patient
history, and other clinical data that may influence a patient’s
risk of visual impairment diseases. Adding this information
to the classification model may yield insightful information
outside of strictly imaging information, potentially enhancing the
diagnostic accuracy.
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