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Abstract
Self-treatment of cancer with cesium chloride, despite proven lack of efficacy, continues to produce
serious adverse effects. Among these is hypokalemia predisposing to life-threatening arrhythmia.
The mechanism of cesium-associated hypokalemia (CAH) has not been described. We report urinary
potassium wasting responsive to amiloride therapy in a cancer patient with CAH, and discuss
possible mechanisms.
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Background

The alkali metal cesium is used as an alternative and com-
plementary cancer treatment in the context of ‘high pH
therapy’ [1]. This therapy was based upon the hypothe-
sized but never demonstrated preferential uptake by
malignant cells of cesium cations in exchange for protons,
purportedly retarding tumor cell cycle progression
secondary to unvalidated intracellular alkalosis. Two un-
controlled, non-randomized case series [1, 2] suggesting
potential benefits of cesium therapy were not confirmed
by subsequent studies [3, 4]. Despite the American Cancer
Society’s explicit warning against cesium use (http://www.
cancer.org/treatment/treatmentsandsideeffects/compleme
ntaryandalternativemedicine/herbsvitaminsandminerals/
cesium-chloride), unapproved ingestion of cesium has led
to toxicity and death [4, 5].

Cesium shares its outer-shell electronic structure with
sodium, potassium and lithium. Like potassium, cesium is
avidly absorbed in the small bowel and secreted by the
distal nephron [4, 6]. Cesium ingestion is associated with
depletion of both intracellular and extracellular potassium
[4]. Cesium administration to rodents can model torsades
de pointes, and human ingestion has caused prolonged
QTc, torsades de pointes, ventricular tachycardia, and
death [7]. Cesium-associated arrhythmias are likely exa-
cerbated by cesium-associated hypokalemia (CAH), which
has been attributed to ‘cellular shift’. This case report
describes renal potassium handling during a trial of amiloride
therapy in a patient with CAH.

Case report

A 45-year-old man presented with hoarseness following a
long history of tobacco use. Evaluation revealed stage four
laryngeal cancer of the small cell neuroendocrine type
with metastases to lymph nodes, liver and adrenal glands,
which failed to respond to a 3-month course of cisplatin
and etoposide. Serum [K+] ranged from 4.1 to 4.5 mmol/L
during cisplatin treatment. Two months after cessation
of cisplatin and just prior to initiation of cesium, serum
[K+] was 4.2 mmol/L. Subsequent therapies, including
topotecan, carboplatin, paclitaxel and radiation, also
proved ineffective.

The patient sought (and reportedly achieved) pain relief
by self-medication with 3 g daily of cesium chloride, usually
ingested but occasionally with a topical preparation pur-
chased online. His first subsequent serum [K+] within weeks
after starting cesium was 3.5 mmol/L. Peripheral paresthe-
sias were noted after 2 months on this regimen, when
serum [K+] was 3.3 mmol/L. Despite the patient’s own
extensive reading about hypokalemic side effects, and
against medical advice, he continued his cesium with self-
directed daily supplementation of ∼130 mEq potassium in
the form of a potassium supplement ordered online, 1–6
bananas, coconut water and 1 L vegetable juice.

Upon hospitalization with pancreatitis in the setting of
growing abdominal metastases, admission serum [K+]
was 3.3 mmol/L. Normalization required daily potassium
supplementation, both intravenous and oral, of 60–180
mEq (Figure 1). Nephrology consultation revealed absence
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of hypertension and edema. Normal serum electrolytes
included [Mg2+] 0.86 mmol/L [2.1 mg/dL], [HCO3−] 29
mmol/L, and a normal anion gap. Proteinuria and glyco-
suria were absent, and urine pH ranged from 6 to 7.5.
Twenty-four-hour urine K+ excretion ranged from 60 to
100 mmol. Serum levels of cortisol, renin and aldosterone
were normal. Serum cesium concentration was 28 000
mcg/L (or 0.2 mM; normal value <10 mcg/L), with a urine
cesium concentration of 130 000 mcg/L (or 1.0 mM;
normal value <20 mcg/L). In the absence of alkalosis, hy-
peraldosteronism, hypercortisolism or hypomagnesemia,
the patient’s hypokalemia in the setting of urinary potas-
sium wasting was attributed to systemic cesium toxicity.

To reduce the patient’s requirement for oral potassium
supplementation, he was treated initially with 10 mg
amiloride daily, subsequently increased to 20 mg. After
1 week of amiloride treatment, the patient no longer
required extra-dietary potassium supplementation, and
his urine K+ excretion decreased to 36 mmol/day. In con-
trast, urine cesium concentration increased to 310 000
mcg/L and serum cesium concentration remained
unchanged after 4 days on amiloride.

At post-discharge nephrology follow-up, the patient
reported recurrence of severe pain and acknowledged con-
tinued episodic self-administration of cesium. He died
2 months later in hospice care, 18 months after initial
presentation.

Discussion

CAH has been noted in multiple case reports (Table 1) but
its prevalence cannot be reliably established in the context
of cesium self-administration without prescription. Clinical
data suggesting a mechanism of CAH are minimal. The
current case report is the first to demonstrate inappropriate
urinary potassium wasting in CAH. Amiloride, a competitive
inhibitor of ENaC, the epithelial sodium channel of the con-
necting segment and cortical collecting duct, dramatically

reduced our patient’s kaliuresis and his supplemental po-
tassium requirement. The data suggest that amiloride
treatment canmitigate CAH.
Cesium’s effects on renal tubular K+ channels and trans-

porters suggest several possible mechanisms of CAH. K+

channels have evolved to exclude the smaller Na+ cation
from the channel pore, usually at the cost of reduced dis-
crimination among cations of size comparable to or larger
than potassium, including the cesium cation, Cs+. Thus, Cs+

acts not only as an inhibitor, but for some K+ channels may
also serve as a permeant cation, causing differences of
potassium distribution in a channel-specific manner [18].
Urinary potassium excretion is regulated largely at the

level of the distal nephron. ROMK/Kir1.1/KCNJ1 channels
constitute the major route for distal nephron potassium
secretion [19, 20]. ROMK is the major secretory K+ recyc-
ling channel of the apical membrane of the thick ascend-
ing limb (TAL) epithelial cells. ROMK’s function allows
continued NaCl reabsorption by the TAL apical membrane
bumetanide receptor, NKCC2/SLC12A1 (for which cesium
is not likely a substrate but instead a weak inhibitor, by
analogy with its effects on the homologous SLC12 potas-
sium-chloride cotransporters) [21].
ROMK also functions as the major K+ secretion channel

of the apical membrane of the CNT and collecting duct
(CD) principal cells. Extracellular Cs+ blocks K+ influx
through ROMK, but can enhance K+ efflux through ROMK
up to 5-fold. In addition, the number of active ROMK chan-
nels at the apical membrane may increase in response to
elevated dietary potassium (and perhaps also cesium)
load [22–24]. This increase could further enhance potas-
sium secretion in response to the postulated increased ab-
sorptive tubular sodium load presented to ENaC. Cs+ also
blocks Kir4.1 [25], a component of the KCNJ10/16 hetero-
mer, the major recycling K+ channel of the DCT/CNT baso-
lateral membrane. Blockade of this channel would reduce
DCT/CNT Na+ reabsorption (mimicking EAST/SESAME syn-
drome) [26], predisposing to increased downstream ENaC-
mediated Na+ absorption electrically coupled to increased
K+ secretion through apical ROMK channels.

Fig. 1. Renal potassium handling after amiloride initiation. Serum potassium levels (light gray squares and line), potassium supplementation (black
diamonds and line) and urinary potassium excretion (dark gray circles) over 12 days in hospital. After starting amiloride, urinary potassium excretion and
potassium supplementation decreased while serum potassium levels increased.
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Another major distal nephron K+ secretory pathway, the
high conductance BK channel (KCa3.1/KCNMA1) of CNT
and CD epithelial cells, is responsible for luminal flow-
stimulated K+ secretion. Since extracellular Cs+ can reduce
effective single-channel conductance of BK channels
while also increasing channel open probability [27, 28],
the proportional contribution of BK channels to K+ secre-
tion in the setting of CAH is difficult to predict.

The mechanism by which amiloride reduces urinary po-
tassium wasting in the setting of CAH may reflect multiple
pathways. Amiloride is known to reduce urinary excretion
of rubidium as well as potassium [29, 30]. Cs+ competitive-
ly inhibits ENaC in the collecting duct [31], but the much
more potent inhibition by amiloride of ENaC-mediated
electrogenic Na+ reabsorption should reduce ROMK-
mediated potassium secretion to a greater degree [30].

Amiloride also increased fractional excretion of cesium
from 7 to 16.7%, likely reflecting inhibition of tubular Cs+

reabsorption by the weakly amiloride-sensitive cation
channel PKD2L1/TRPP3 [32] and/or other renal TRP chan-
nels, or increased Cs+ secretion by undefined pathways.
Serum cesium concentration did not fall after initiation of
amiloride treatment, likely reflecting cesium’s 75–100 day
half-life and its large volume of distribution.[4]. Long-term
follow-up of serum and urine cesium concentrations was
of insufficient duration to determine the effect of amilor-
ide on total body cesium clearance.

Our patient’s serum aldosterone was not suppressed in
the presence of his sustained hypokalemia, and aldoster-
one itself might have contributed to potassium wasting.
Failure to suppress aldosterone levels may reflect inhib-
ition by Cs+ of KCNJ5 [33], a component of the Kir3.4/
Kir3.1 hyperpolarizing potassium channel of the adrenal
glomerulosa cell. Loss-of-selectivity mutations in this
channel are associated with hyperaldosteronism, as are
mutants that lead to altered membrane trafficking of the
channel [26]. We therefore propose that cesium levels in
this patient were high enough to inhibit KCNJ5, leading to
chronic glomerulosa cell depolarization accompanied by
constitutive aldosterone synthesis and secretion. Patient
aldosterone levels post-correction of hypokalemia were
unavailable.

Interpretation of our patient’s hypokalemia was further
confounded by his history of potential K+-wasting chemo-
therapy with cisplatin and carboplatin. However, his hypo-
kalemia appeared only after initiation of self-administered
cesium therapy, months after discontinuation of cisplatin
and before initiation of carboplatin. The absence of hypo-
magnesaemia, a frequent complication of cisplatin treat-
ment, further supports cesium as the principal cause of
hypokalemia.

Our patient ultimately died from complications of his pro-
gressive, metastatic laryngeal cancer. His self-treatment
with cesium as part of his struggle with an aggressive
cancer illustrates that CAH can be both profound and pro-
longed. Our case report further supports urinary potassium
wasting as the mechanism of CAH, and adds preliminary
clinical data suggesting that amiloride therapy can miti-
gate urinary potassium loss. Additional studies will be
required to further elucidate molecular participants in CAH.
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