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Abstract

Background: Overweight, obesity, and associated comorbidities are a pressing global issue among children of all
ages, particularly among low-income populations. Rapid weight gain (RWG) in the first 6 months of infancy
contributes to childhood obesity. Suboptimal sleep-wake patterns and gut microbiota (GM) have also been
associated with childhood obesity, but little is known about their influences on early infant RWG. Sleep may alter
the GM and infant metabolism, and ultimately impact obesity; however, data on the interaction between sleep-
wake patterns and GM development on infant growth are scarce. In this study, we aim to investigate associations
of infant sleep-wake patterns and GM development with RWG at 6 months and weight gain at 12 months. We also
aim to evaluate whether temporal interactions exist between infant sleep-wake patterns and GM, and if these
relations influence RWG.

Methods: The Snuggle Bug/ Acurrucadito study is an observational, longitudinal study investigating whether 24-h,
actigraphy-assessed, sleep-wake patterns and GM development are associated with RWG among infants in their first
year. Based on the Ecological Model of Growth, we propose a novel conceptual framework to incorporate sleep-
wake patterns and the GM as metabolic contributors for RWG in the context of maternal-infant interactions, and
familial and socio-physical environments. In total, 192 mother-infant pairs will be recruited, and sleep-wake patterns
and GM development assessed at 3 and 8 weeks, and 3, 6, 9, and 12 months postpartum. Covariates including
maternal and child characteristics, family and environmental factors, feeding practices and dietary intake of infants
and mothers, and stool-derived metabolome and exfoliome data will be assessed. The study will apply machine
learning techniques combined with logistic time-varying effect models to capture infant growth and aid in
elucidating the dynamic associations between study variables and RWG.
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Discussion: Repeated, valid, and objective assessment at clinically and developmentally meaningful intervals will
provide robust measures of longitudinal sleep, GM, and growth. Project findings will provide evidence for future
interventions to prevent RWG in infancy and subsequent obesity. The work also may spur the development of
evidence-based guidelines to address modifiable factors that influence sleep-wake and GM development and
prevent childhood obesity.

Keywords: infant sleep, Actigraphy, circadian rhythm, sleep-wake pattern, Gastrointestinal microbiota, Rapid weight
gain, child overweight; time varying effect models

Background
Early rapid weight gain in infancy contributes to
childhood obesity
Early childhood obesity is a serious health problem. In
2019, 38.2 million U.S. children less than 5 years old
were overweight or obese, with greater prevalence
among low- and middle-income families [1]. Of those
under 2 years, 8.1% had high weight-for-recumbent
length (i.e., at or above the 95th percentile) [2]. Further,
obese children are more likely to become obese adults
[3]. Rapid weight gain (RWG) in the first 6 months of in-
fancy, defined as a greater than 0.67 positive change in
weight-for-age Z-score (difference between centile lines
on standard growth charts) [4], is associated with greater
total weight gain from 0 to 12 months and greater
weight-for-length and weight-for-age percentiles at 36
months [5]. It also increases the odds of obesity across
the life course [6–9] and relates to adverse health out-
comes later in life, including hypertension, diabetes, and
cardiovascular diseases [10]. Further, RWG in the first 3
months is more predictive of poor cardiometabolic out-
comes than any other 3-month period in the first year of
life [11]. Despite robust, globally diverse cohort data ac-
counting for numerous confounding factors present
from conception to birth on childhood obesity, few stud-
ies have focused on RWG determinants and timing in
the birth-to-6-month period.

Suboptimal sleep-wake patterns are important risk
factors for childhood obesity but understudied in infants
in relation to RWG
Systematic reviews and meta-analyses conclude that
short sleep duration is associated with childhood over-
weight/obesity [12, 13]. Prospective cohort studies sug-
gest that short sleep duration (parent reported < 12 h) in
early infancy is associated with greater body mass index
(BMI) at 24 months [13], a two-fold odds of childhood
obesity [14], and greater weight-for-length and excess
weight gain by 24months [15]. However, evidence sug-
gesting that longer sleep duration in infancy is associated
with healthier body composition remains uncertain [16].
Sleep is a multidimensional construct composed of other
components beyond sleep duration that contribute to

obesity risk, including sleep-wake timing and patterns
(e.g., circadian rhythmicity). Greater nap frequency in in-
fancy [17] and more rapid sleep stage development (i.e.,
active and quiet) among preterm infants [18] also predict
subsequent growth in length and favorable weight out-
comes, respectively. Further, data from three random-
ized controlled trials suggest that infant sleep promotion
(i.e., adequate sleep duration, not feeding to soothe baby
to sleep) influences adiposity. Infants receiving interven-
tions with a sleep component had lower BMI z-scores
[19, 20] and weight-for-length percentiles [21], were less
likely to be overweight/obese [19], and had slower
weight gain rates [19] than non-sleep interventions (fol-
low-up from 6months to 5 years). However, no studies
have explored associations between sleep-wake patterns
and RWG, with the exception of our single, previous
study [5]. Our results indicated that newborns (1 month)
with later bedtimes (≥10:00 PM) were more likely to ex-
perience RWG in their first 6 months than newborns
who went to bed earlier [5]. Further, newborns taking
more daytime naps were significantly less likely to ex-
perience RWG [5]. Also, previous studies have rarely
used actigraphic monitoring (i.e., movement-based re-
cording with a wearable sensor) of infants to provide a
comprehensive, prospective assessment of sleep patterns
[22], particularly in association with early infant growth.
One exception was a prospective study that found
shorter nocturnal sleep duration measured via actigra-
phy at 8 months of age was associated with higher odds
for greater weight-for-length at 24 months [15].

Gut microbiota (GM) is associated with childhood obesity,
but little is known about microbial influences on infant
RWG
The majority of GM development including colonization
and maturation occurs within the first 3 years of life
[23]. Previous studies have linked breast vs. formula
feeding [24–30], birth delivery mode [26, 30, 31], mater-
nal pre-pregnancy weight [30, 32], and perinatal anti-
biotic exposure [33, 34] to unique differences in the
ecology of the infant’s commensal GM. Two case-
control studies matching participants for mode of birth
delivery, birth weight, breastfeeding duration, antibiotic

Petrov et al. BMC Pediatrics          (2021) 21:374 Page 2 of 16



exposure, and gestational age suggest that decreased
Bifidobacteria relative abundance, particularly at 3
months [35], is associated with childhood obesity [35,
36]. Increases in S. aureus relative abundance at 6 and
12months have been associated with overweight at 7
years [35], while greater relative abundance of B. fragilis
at 6 months was linked to overweight at 10 years [36].
Elevated counts of B. fragilis as early as 1 month have
been associated with higher BMI z-scores across ages 1–
10 years [37]. Differential trajectories of microbial com-
munities are established during development [35] and
up to 10% of GM fluctuate throughout the day [38].
Their influence on infant growth may vary depending on
environmental exposures. Recent data have indicated
that male and female infants differ in their response to
GM changes with regard to early-life weight gain [39]
and that maternal-child interactions play an important
role in establishing GM communities and influencing in-
fant growth [34, 40]. Delays in colonization of beneficial
microbes in infancy are also associated with adiposity
[41]. However, gut microbial influences on infant RWG
are understudied. In addition, to date no large scale lon-
gitudinal studies have defined how early postnatal devel-
opment of the gut microbiota is influenced by
environmental factors and how, in turn, the microbiota
influences host gene expression.

Evaluation of the influence of the interaction between
sleep-wake patterns and GM development on infant
growth is scarce
Though sleep loss, fragmentation, and circadian mis-
alignment are proposed stressors with the potential to
influence GM and induce gut dysbiosis [42], limited
pediatric studies on sleep-wake pattern and GM rela-
tionships exist. One study of older infants found that
actigraphy-assessed nocturnal sleep duration at 6 months
was associated with changes in GM beta-diversity [43].
Sleep metrics at 12 months were associated with GM
beta-diversity. Specifically, greater fragmentation was as-
sociated with greater Bacteroides and lower Lachnospira-
ceae prevalence, and greater bedtime variability was
associated with greater B. longum yet lower prevalence
of other Bifidobacterium species [43]. Among adults, a
within-subject crossover study (n = 9) found that 2
nights of partial sleep deprivation (4.25 vs. 8.5 h) in-
creased the Firmicutes:Bacteroidetes ratio, led to greater
relative abundance of Coriobacteriaceae and Erysipelotri-
chaceae families and lower relative abundance of Teneri-
cutes [44]. Conversely, a study of 11 participants who
underwent two rounds of partial sleep restriction (i.e., 4
nights with 4 h followed by 5 nights of 12 h) found no
significant changes in GM composition [45]. A cross-
sectional study of 37 community-based older adults
found that better sleep quality was associated with

greater Verrucomicrobia and Lentisphaerae relative
abundance [46]. To our knowledge, there are, to date,
no studies of the GM as a mediator for circadian sleep-
wake disruption and subsequent infant RWG.

Methods/design
Theoretical framework
The Ecological Model of Growth (EMG) combines hu-
man ecology and epidemiology to evaluate factors that
influence child health outcomes in the context of
broader environmental constructs (parent, family, and
home) [47, 48]. It has been validated as an effective tool
for studying maternal and child factors that contribute
to infant growth [49–51], but has not been used to study
how EMG constructs influence RWG via the GM and
sleep. Based on the EMG, we propose a conceptual
framework that incorporates sleep-wake patterns and
the GM as metabolic contributors for RWG in the con-
text of socio-physical environments, to early-onset child-
hood obesity (Fig. 1). In the framework, major
interactions to be explored or controlled for are (1) GM
variation in response to child feeding mode and sleep-
wake patterns, (2) maternal-child interactions (e.g.,
influence over sleep and soothing habits), (3) feeding in-
teractions (e.g., parenting style, scheduled/on-demand
feeding), and (4) environmental exposures.

Aim and design
This study is designed as a five-year observational longi-
tudinal study to investigate how 24-h sleep-wake pat-
terns and GM influence RWG among infants in their
first year. In this study, we aim to:

1. Investigate associations of infant sleep-wake pat-
terns with subsequent RWG at 6 months and
weight gain at 12 months using Time-Varying Effect
Models (TVEM). We hypothesized that infants with
suboptimal sleep-wake patterns (e.g., short sleep
duration, poorer sleep quality [e.g., sleep percent,
number of long awakenings], later bedtimes, and
greater sleep-wake timing variability) will be more
likely to experience RWG at 6 months and have
greater total weight gain at 12 months than infants
with optimal sleep-wake patterns.

2. Investigate associations of GM development with
RWG at 6 months and weight gain at 12 months.
We hypothesized that infants with lower GM
diversity, decreased relative abundance of beneficial
microbes (e.g., Bifidobacteria), and increased
pathogen abundance (e.g., Staphylococcus) across
time will be more likely to experience RWG at 6
months and have greater total weight gain at 12
months.
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3. Evaluate whether temporal interactions exist
between infant sleep-wake patterns and GM devel-
opment, and if these relations influence RWG. We
hypothesize that (1) infants with short sleep dur-
ation, poorer sleep quality, later bedtimes, and
greater sleep-wake timing variability will exhibit
lower GM diversity, decreased relative abundance
of beneficial microbes, and increased pathogen
abundance than infants with optimal sleep-wake
patterns; and (2) infant sleep-wake patterns and
GM development will have a synergistic effect on
RWG, with suboptimal development of both factors
increasing risk for RWG compared to either factor
independently.

Power analysis and target population
Using the Hedeker et al. approach [52], for a test of a
between groups linear trend difference (comparing nor-
mal infant growth to those with RWG), equal sample
sizes, 6 time points, a correlation among the repeated
measures of 0.5, a compound symmetry structure, a
medium effect size of one third of a standard deviation,
an α of 0.05, and a power of 0.8, a total sample size of
184 participants (includes for estimated 20% attrition) is
needed for Aim 1. To power for Aims 2–3, we reduced
all EMG constructs (Fig. 1) into a single virtual covariate
to facilitate computation. We then generated simulated
data based on a mixed effect logistic regression model
that included the virtual covariate, a sleep pattern vari-
able and a GM diversity variable, each randomly drawn
from a normal distribution and having six repeated mea-
sures. We fixed the effect size of the virtual covariate to

be medium (Cohen’s f2 = 0.15), and varied the effect
sizes of the sleep pattern variable and the GM diversity
variable between medium (f2 = 0.15) and large (f2 = 0.35)
as were observed in unpublished preliminary data. Fig-
ure 2 shows that 160 infants are required to achieve a
power of 0.8 to detect a significant medium-sized effect
at α = 0.05. Adjustment for a 20% attrition rate requires
that we recruit 192 mother-infant pairs.

Participants and procedures
Maternal sample subject eligibility
Inclusion criteria are (1) English- and/or Spanish-
speaking mothers in their 3rd trimester of pregnancy
through 3 weeks postpartum from the Phoenix, Arizona
community; (2) ages 18 to 40 y; (3) with a telephone
contact; and (4) not intending to move from the area for

Fig. 1 Ecological model of rapid weight gain

Fig. 2 Power simulations for Aims 2 and 3. Each point is an average
of 100 simulations
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at least 1.25 years. Exclusion criteria are (1) mothers
who have chronic metabolic diseases (e.g., types 1 and 2
diabetes prior to pregnancy, cardiovascular disease) that
impact fetal growth; (2) experienced a high-risk preg-
nancy (e.g., preeclampsia, HIV infection); (3) delivered a
small or large newborn (< 2500 g or > 4000 g); (4)
hospitalization after discharge of infant; (5) separation
from infant; (6) experiencing significant postpartum
complications; (7) report alcohol, tobacco, and marijuana
use in the second and/or third trimesters [53]; or (8) re-
port illicit substance use during any trimester.

Infant sample subject eligibility
Inclusion criteria include full-term (≥37 weeks of gesta-
tion) singleton infants who have no growth abnormality
or other endocrine, chromosomal, or genetic abnormal-
ity, or severe illness-related comorbidity that could im-
pact growth and development. Exclusion criteria are (1)
mother-infant pairs who are not discharged together
from the hospital; or (2) infants born with congenital ab-
normalities or conditions that may be expected to result
in developmental delays or birth weights < 2500 g or >
4000 g.
Potential participants will be identified by providers

and research staff through in-house recruitment from
obstetrics and pediatric units at a local public hospital
system, and a network of Supplemental Nutrition Pro-
gram for Women, Infants, and Children (WIC) clinics.
Advertisements will also be distributed through social
media, Arizona State University (ASU) Institutional list-
servs, word-of-mouth, sharing flyers with active study
participants, community events, and health professional
referrals from clinical and community partners. Eligible
participants will provide their contact information.
Regular telephone calls, emails, or text messaging con-
tacts will be made to determine birthdate, if eligibility is
maintained, and to schedule the first in-home visit.

Secondary (e.g., family member, friend) contacts will be
obtained in case participants lose phones or change
numbers. Enrollment and consent will occur at the first
in-home visit at 3-weeks post-delivery.
Study procedures are designed to capture periods dur-

ing which important neurodevelopmental milestones
tend to occur, which have also been associated with
early life adiposity [53] (Fig. 3). In-home visits will be
conducted in near time to 3 and 8 weeks, and 3, 6, 9,
and 12months postpartum. Along with major neurode-
velopmental milestones that tend to occur at these ages,
important shifts in infant feeding [54–56], sleep-wake
pattern development [57–61], and GM community
changes that have previously been associated with infant
and childhood weight status [34, 37, 62–64] tend to co-
incide with these time periods.
At all home visits, research staff who speak English

and Spanish will assess infant anthropometrics, adminis-
ter brief sleep and health-related questionnaires and ex-
plain how to complete a 3-day diet record, instruct the
mother on proper retrieval of infant and maternal fecal,
infant urine, and maternal breast milk samples, and pro-
vide mothers and infants with wrist and ankle acti-
graphs, respectively, to capture sleep data. After data
collection, participants will mail back actigraphs, sleep
diaries, and dietary recall forms in pre-stamped boxes.
The first participant was enrolled on 09 Nov 2020. Re-
cruitment and follow-up assessments are ongoing.
Procedures were adapted to account for the COVID-

19 pandemic such that data collection could be con-
ducted through primarily electronic delivery (e.g., video
conferencing, instructional videos, online or telephone
survey administration), drop-off and curbside pick-up of
research equipment and samples, and/or outdoor or so-
cial distanced interactions at participant homes. On the
day of the home visit, research staff will take their
temperature and complete a COVID-19 symptom self-

Fig. 3 Flow chart of study procedures
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attestation survey maintained by the study investigators.
Participants will also complete a COVID-19 symptom
attestation survey for themselves, their infant, and all
members of their household prior to the visit. Staff will
maintain appropriate social distancing measures while
interacting with participants, and use personal protective
equipment including masks, gloves, and hand sanitizer.
If the mother would prefer for study staff to not have
physical contact with the infant, the staff will instruct
the mother how to accurately measure their baby under
the staff’s supervision. After the visit, the staff will disin-
fect surfaces that have come into contact with partici-
pants (e.g., weight scale) before packing up all study
equipment.

Assessment of RWG and infant growth
RWG is the primary outcome and weight gain over 12
months is a secondary outcome in this study. Infant
length and weight will be measured with portable re-
cumbent length boards (nearest mm) and electronic
digital scales (nearest 0.1 kg), respectively. Infants will be
nude at the time of weighing and will be measured re-
cumbent to maintain measurement consistency. Weight
measures will be recorded on the weight-for-age (W/A)
percentile growth grid from the National Center for
Health Statistics [65] to determine body mass in children
under 2 years of age. W/A percentiles will be converted
to Z-scores to allow group comparison by sex. Infant
head circumference will be measured to the nearest mm
using a flexible tape measure (Hopkins Medical Prod-
ucts) designed for infant heads. Infant waist circumfer-
ence will be measured to the nearest mm using a Gulick
II tape measure with tension spring.

Assessment of sleep
Infant and maternal sleep will be measured with retro-
spective questionnaires and prospective actigraphy and
sleep diaries. The extended Brief Infant Sleep Question-
naire (BISQ; 24 items) will evaluate infant bedtime prob-
lems, excessive sleepiness, awakenings, and sleep
practices (e.g., bed/room-sharing, sleep position) [66,
67]. This questionnaire has been validated against sleep
diaries and actigraphy [67]. To assess the mother’s sleep
we will use the Pittsburgh Sleep Quality Index (PSQI), a
19-item questionnaire that measures sleep quality over
the past month [68]. It has demonstrated reliability and
construct validity among pregnant and postpartum
mothers [69–71].
Actigraphy is a standard, valid, noninvasive measure

for assessing sleep and circadian rhythm patterns across
the life course [72]. We will use the Micro Motionlogger
actigraph (Ambulatory Monitoring Inc., Ardsley, New
York) that will be analyzed using validated sleep-wake
scoring algorithms for infant sleep [73] and adult sleep

[74]. The infants and mothers will wear the devices for 5
continuous days and nights after each study visit [75, 76]
to capture the full development of sleep-wake patterns
and circadian rhythmicity across infancy and the level of
synchrony with maternal sleep-wake patterns. Primary
sleep variables will be averaged across the recording
period and include (1) total sleep minutes, excluding
awakenings from sleep onset to final sleep bout awaken-
ing per 24 h, (2) sleep efficiency or percent of actual
sleep minutes divided by the time interval from sleep
onset to morning awakening per 24 h, (3) the number of
long awakenings (≥5 min) during the nocturnal sleep
period, (4) longest continuous sleep interval, and (5)
nocturnal sleep onset time after parent-reported bed-
time. Circadian rest-activity rhythmicity will be derived
from cosinor analysis by which a cosine curve is applied
to the data with linear regression over a specified 24 h,
as well as non-parametric circadian rhythm analysis
(NPCRA) to account for the presence of ultradian
rhythms and to improve estimates of sleep-wake rhyth-
micity in newborns [77, 78]. Primary sleep-wake circa-
dian rhythm variables from cosinor analysis with a fixed
24-h cycle will be mesor (mean activity count), magni-
tude (difference between mesor and peak amount of ac-
tivity), acrophase (clock time of peak activity), and R2

(variance explained by the cosine fit or how well the data
fit a 24-h circadian rhythm), and primary variables from
NPCRA will be L5 (clock time of lowest activity), M10
(clock time of highest activity), amplitude (difference be-
tween L5 and M10), inter-daily stability (measure of
similarity between days of rest-activity pattern; values
range from 0 to 1.0 with greater values indicating greater
stability), and inter-daily variability (measure of fragmen-
tation of the rest-activity patterns) [78].
Mothers will also complete sleep diaries on the sleep

of their infants and their own sleep. Diaries will be used
to identify artifacts that might affect motion (e.g., swings,
car seat, swaddling) and to define sleep periods from
actigraphy output for infants and mothers prior to ana-
lysis with the sleep-wake algorithms [79]. Primary sleep
diary variables will be (1) bed/nap clock times attempted
to sleep, (2) bed/nap clock times of sleep bout awaken-
ings, and (3) time in bed or interval between attempted
bed and wake times.

Fecal sample collection
Mothers and infants will be asked to collect fecal sam-
ples at each study timepoint using sterile swabs (HydraF-
lock Double Flocked Swab #25–3306-2H BT, Puritan,
Guilford, ME). Maternal fecal samples will be collected
by swabbing soiled toilet paper. Infant samples will be
collected from soiled diapers. Date and time of collec-
tions will be recorded by the mothers. Supplies will be
provided to mothers the week before planned in-home
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visits with instructions to collect that day’s sample from
the infant’s diaper and immediately store it on ice in an
insulated cooler. Study staff will pick up tubes within 24
h of collection and transport them on ice to the labora-
tory for storage at − 80 °C until processing.
Soiled infant diapers will be collected for additional

secondary analyses including metabolomics and exfolio-
mics analyses (see below for details). Diapers will be kept
on ice in an insulated cooler and transported to the la-
boratory for processing.

Assessment of gut microbiome
Microbial genomic DNA will be extracted from fecal
samples using DNeasy PowerSoil Pro DNA isolation kits
and a vortex-based beadbeater, the recommended
method of the NIH Human Microbiome Project and
previous used by our team [80]. The hypervariable V4
region of the 16S rRNA gene will be amplified from
stool samples using barcoded 806R and 515F primers
[81] and 5 Prime Hot MasterMix (5 Prime, Germany) in
triplicate. Quality of the amplicons and potential con-
tamination will be checked on an agarose gel. Amplicons
will be quantified using Picogreen (Invitrogen), accord-
ing to the manufacturer’s protocol. A total of 200 ng of
amplified DNA from each sample will be pooled and
cleaned using UltraClean PCR Clean-Up Kit, and then
diluted, denatured (0.2 N NaOH), and sequenced on the
MiSeq platform (Illumina), as previously described [81].
Due to the limited sequence diversity among 16S rRNA
gene amplicons, 10% of the PhiX control library (Illu-
mina) made from phiX174 will be added to the run. A 7
pM aliquot of the pooled 16S rRNA gene library will be
subjected to paired-end sequencing using 2 × 250 bp
MiSeq Reagent Kit V2 (Illumina). Sequencing will be
performed by the Genomics Core at ASU using the Illu-
mina MiSeq and MiSeq Control Software. Pooled se-
quences will be de-multiplexed and quality filtered using
the QIIME2 software package [82]. Sequences will be
assigned to operational taxonomic units (OTU) with a
99% similarity threshold using QIIME’s uclust-based
open-reference OTU picking protocol against most re-
cent SILVA or GreenGenes reference databases. Se-
quences that do not match the reference database will
be clustered de novo; thus, all sequences will be included
in the analysis. Core diversity analyses will be performed
on the OTU tables, including alpha and beta diversity as
well as taxonomic summaries as provided by QIIME
software.

Intestinal exfoliated cell transcriptome assessment
Stool specimens from infant diapers will be obtained
using sterile tongue depressors to allow for assessment
of transcript expression in sloughed host epithelial cells.
Approximately 10 g of fresh stool will be transferred to a

sterile 50 ml conical tube containing 10–20 ml of DNA/
RNA Shield reagent (Zymo Research Corp, Irvine, Cali-
fornia, USA) to stabilize nucleic acids. Prior to immedi-
ate storage at − 80 °C, samples will be mixed to a
homogeneous slurry by hand using a sterile conical tube
pestle. Samples will be shipped on dry ice to Texas A &
M University for subsequent processing and analyses as
previously described [83–85].

Fecal metabolomics analysis
Approximately 120–600mg of stool collected from
soiled infant diapers will be aliquoted and flash-frozen at
− 80 °C in sterile 2 mL microcentrifuge tubes until fur-
ther analysis, as previously described [86]. For fatty acid
extraction, fecal metabolite samples will be extracted
with chloroform:methanol (2:1, v/v) after adding an in-
ternal standard (myristic acid-d27). For aqueous extrac-
tion, metabolites will be extracted using a mixture of 80:
20 (v/v) methanol:water that contains methyl succinate
as the internal standard. Aqueous global profiling experi-
ments will be performed using Agilent 7820 GC-5977
MS and Thermo Scientific Electron Orbitrap Elite Velos
Pro UPLC-MS instruments. To identify peaks from the
MS spectra, we will make extensive use of the robust
NIST and Fiehn’s libraries for GC-MS, and HMDB me-
tabolite library and METLIN database for LC-MS exper-
iments. We will follow general procedures for Agilent
Fiehn GC-MS Metabolomics RTL library [87, 88], with
minor changes incorporated to improve detection
sensitivity.
Short chain fatty acids (SCFA) will be assessed using

standard MS operating procedures [89]. In brief, infant
fecal samples (50 mg) will be spiked with internal stand-
ard (caproic acid-6,6,6-d3, 200 μM in H2O, 20 μL), and
then homogenized in 20 μL sodium hydroxide solution
(NaOH, 0.5 M in water) and 480 μL methanol (MeOH).
Afterwards, another 400 μL MeOH will be added (pH ~
10), and upon storage at − 20 °C for 20 min, 800 μL of
supernatant will be collected. Samples will be then evap-
orated to dryness, reconstituted in 40 μL of methoxya-
mine hydrochloride in pyridine (20 mg/mL), and stored
at 60 °C for 90 min. Afterward, 60 μL of N-Methyl-N-
tert-butyldimethylsilyltrifluoroacetamide will be added
and stored at 60 °C for 30 min. SCFAs will be detected
on an Agilent 7820A GC 5977 MS system installed with
a HP-5 ms fused-silica capillary column (30 m × 0.25
mm × 0.25 μm; Agilent J&W Scientific, Folsom, CA).
Targeted LC-MS/MS measurements of infant fecal bile

acids will be completed [90, 91]. Fecal samples (50 mg)
will be spiked with internal standards (ISs, 10 μM of
LCA-D4, DCA-D4, CA-D4, GCDCA-D4, and GCA-D4),
then homogenized, protein precipitated, dried, and
reconstituted in 100 μL methanol/water (50:50, v/v). To
assess 56 bile acids, 2 μL of each sample will be injected
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into an Agilent 1290 UPLC-6490 MS/MS system using
negative ionization mode and a Waters XSelect HSS T3
column (2.5 μm, 2.1 × 150 mm) for chromatographic
separation. To determine absolute bile acid concentra-
tions, calibration curves will be constructed for bile acid
standards in reference to corresponding ISs and concen-
trations calculated from peak areas and calibration
curves.

Breastmilk sample collection
Human milk samples will be collected from breastfeed-
ing mothers at up to six of the study timepoints, de-
pending on when breastfeeding is stopped during the
first year of each infant’s life. Women will be asked to
hand express or pump approximately 15 mL of milk into
a 50mL sterile conical tube and store it on ice in an in-
sulated cooler. Within 24 h of collection, samples will be
transported by study staff to the laboratory for long-
term storage at − 80 °C until further processing.

Milk microbiome assessment
To assess the microbial composition of human milk
samples, microbial DNA will be extracted from samples
using the Quick-DNA Fungal/Bacterial Miniprep Kit
(Zymo Research Corp, Irvine, California, USA), after the
milk fat is removed using an adapted centrifugation
protocol and disposable inoculation loop [92]. The ex-
traction process will follow the manufacturer-
recommended protocol from Zymo Research Corp. with
adjustments as previously specified [92]. Milk micro-
biome sequencing will be performed as written for fecal
samples above, after amplifying microbial DNA using V4
primers for the 16S rRNA gene.

Infant urine collection
A minimum of 5mL of infant urine will be collected at
each of the six study visits using BPA-free pediatric
urine specimen collection bags (U-Bag, Hollister, Inc.,
Libertyville, Illinois, USA). Collected urine will then be
transferred to 30mL Nalgene containers and stored on
ice in an insulated cooler. Within 24 h of collection,
study staff will transport the samples on ice to the la-
boratory where they will be stored at − 80 °C.

Endocrine disruptor exposure analysis
Urine samples will be thawed and endocrine-disrupting
chemical (bisphenols, phthalates, etc.) concentrations
will be assessed using high performance liquid chroma-
tography with tandem mass spectrometry as previously
described [93]. Specific gravity will be measured in all
urine samples to account for differences in analyte
dilution.

Assessment of covariates
Covariates from each EMG construct (Fig. 1) will in-
clude child characteristics, maternal/family characteris-
tics and context, feeding practices and dietary intake of
infants and mothers, and home and care environmental
factors/exposures. Interactions among EMG constructs
also will be assessed, including maternal-child interac-
tions and feeding interactions. An overview of the mea-
sures and their relation to ecological constructs are
provided in Table 1.
Other child characteristics beyond infant sleep, gut

microbiome/exfoliome, and anthropometrics that will be
assessed will include child demographics, birth history
and anthropometrics (mother-reported), medical history
throughout the study period (including antibiotic expos-
ure), infant temperament with the Infant Behavior Ques-
tionnaire - Very Short Form [94], food allergies (adapted
from the Food and Drug Administration and Centers for
Diseases Control and Prevention Infant Feeding Prac-
tices Study II (IFPS II)) [95], and levels of endocrine dis-
rupters via a urine sample.
Maternal characteristics with clear associations to in-

fant RWG or GM development will be assessed. These
include pre-pregnancy BMI, gestational weight gain, par-
ity, birth spacing, pregnancy history (e.g., route of deliv-
ery, antibiotics for group B Streptococcus), pregnancy
complications, medical history and health throughout
the study (including antibiotic exposure), acculturation
via the Brief Acculturation Rating Scale for Mexican
Americans [96] which also has been used in other Span-
ish speaking populations, depression via the Edinburgh
Postnatal Depression Scale [97, 98], stress and anxiety
via Depression Anxiety Stress Scales-21 [97, 99], infant
feeding knowledge and intentions via the Breastfeeding
Attrition Prediction Tool [100, 101]. Other maternal fac-
tors that remain unclear with regard to RWG will also
be explored in analyses, including age, race/ethnicity,
education, nativity, length of time in the U.S., employ-
ment status, shift work status, return to work timing
[102], perceived discrimination via the Everyday Dis-
crimination Scale [103], perceived parental competency
via the Parental Sense of Competence Scale [104], Ma-
ternal Cognitions about Infant Sleep Questionnaire
[105], and COVID-19 pandemic experiences during
pregnancy and immediately postpartum with the Envir-
onmental Influences on Child Health Outcomes (ECHO)
Impacts of the COVID-19 Outbreak on Pregnancy - Re-
call questionnaire [106].
Family characteristics and contextual factors will be

assessed for associations with RWG. Included factors
will be number of other household members (including
children), sibling order for infant, household socioeco-
nomic status via income and occupation, and father
presence.
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Table 1 Summary of study variables and measures, by Ecological Model of Growth construct

Prepartum Postpartum

Ecological
Construct

Variable/Type Measures/Instruments Pregnancy
(3rd
trimester)

3
wk.

8
wk.

3
mo.

6
mo.

9
mo.

12
Mo.

Child (Host/
Agent)

Birth History Gestational age, method of delivery, birth weight & length,
day 2–5 weight & length, duration of labor, antibiotic
exposure (from medical chart & reported)

✓

Child demographics Sex, race/ethnicity ✓

Medical History Antibiotic use, illnesses, other medications ✓ ✓ ✓ ✓ ✓ ✓

Infant Temperament Infant Behavior Questionnaire – very short form ✓

Reported Sleep Brief Infant Sleep Questionnaire and parent-reported sleep
diaries (5 days each

✓ ✓ ✓ ✓ ✓ ✓

Objective Sleep Ankle actigraphy (5 days each) ✓ ✓ ✓ ✓ ✓ ✓

Food Allergy FDA and CDC Infant Feeding Practices study II ✓

Gut microbiome and
metabolomics

Soiled diaper & swabs (Microbial genomic DNA and
metabolites)

✓ ✓ ✓ ✓ ✓ ✓

Intestinal cell
transcriptomics
(exfoliomics)

Soiled diaper (Microbial genomic RNA and human
intestinal cell RNA)

✓ ✓ ✓ ✓ ✓ ✓

Exposure to nutrients,
environmental phenols,
and phthalates *

Urine sample with urine collection bag ✓ ✓ ✓ ✓ ✓ ✓

Anthropometrics Weight and length on standardized instruments ✓ ✓ ✓ ✓ ✓ ✓

Maternal &
Family

Maternal demographics Age, education, race/ethnicity, income, nativity, length of
time in U.S., occupational status, shift work status, parity,
birth spacing,

✓ ✓

Maternal pregnancy
factors

Pre-pregnancy body mass index, gestational weight gain,
complications, medication, antibiotic exposure, alcohol/
tobacco exposure (from medical chart & reported)

✓ ✓

Acculturation Brief Acculturation Rating Scale for Mexican Americans ✓

Employment changes Return to work timing, shift work status ✓ ✓ ✓ ✓ ✓

Discrimination Everyday Discrimination Scale ✓

Maternal distress Edinburgh Postnatal Depression Scale; Depression Anxiety
Stress Scales-21

✓ ✓ ✓ ✓ ✓ ✓

Maternal knowledge/
intentions for infant
feeding

Breastfeeding Attrition Prediction Tool ✓

Maternal sleep Wrist actigraphy, sleep diaries, Pittsburgh Sleep Quality
Index

✓ ✓ ✓ ✓ ✓ ✓

Maternal beliefs about
infant sleep

Maternal Cognitions about Infant Sleep Questionnaire ✓ ✓

Gut microbiome * Double-tip swabs (Microbial genomic DNA) ✓ ✓ ✓ ✓ ✓ ✓

Breastmilk microbiome * Manual or breast pump expression ✓ ✓ ✓ ✓ ✓ ✓

Feeding
Practices &
Dietary
Intake

Feeding Practices
(infants)

Breastfeeding duration, exclusivity, intensity mixed
feeding, formula type, etc. via FDA and CDC Infant
Feeding Practices study II

✓ ✓ ✓ ✓ ✓ ✓

Dietary Intake (mothers
and infants)

Introduction to solid foods and early infant feeding
amount/duration via direct query & 3 self-reported dietary
records (evaluated with Minnesota Nutrition Data System
for Research (NDSR))

✓ ✓ ✓ ✓ ✓ ✓

Environment Home environment Home Observation for the Measurement of the
Environment Inventory (HOME)

✓ ✓ ✓

Daycare environment FDA and CDC Daycare Arrangements and Feeding
Practices

✓ ✓ ✓ ✓ ✓
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Feeding practices and dietary intake of infants and
mothers will be evaluated via three self-reported dietary
records (one weekend day and two weekdays). Mothers
will complete dietary records around the time of each of
the six study visits. They will be asked to report on the
type, frequency and quantity of foods, beverages and
supplements consumed on each day. Household com-
parisons will be provided with each food record to assist
with estimating food portion sizes. Staff will review each
record and probe for missing items (e.g., beverages, con-
diments, etc.). During the study visit when mothers first
report solid food consumption for their infants, mothers
will also be asked to complete three diet records for
their infants. This will be done for two weekdays and
one weekend day and will be used to define the type,
quantity, and frequency of foods, beverages, and supple-
ments being consumed by participating infants. Diet re-
cords for each mother and infant will be completed for
all remaining study visits. The University of Minnesota
Nutrition Data System for Research (NDSR) will be used
to evaluate the nutritional composition of foods and bev-
erages consumed by mothers and infants. Mothers will
also be asked to report on breastfeeding and infant feed-
ing practices using questions adapted from the validated
questionnaires of the Food and Drug Administration
and Centers for Disease Control and Prevention IFPS II
[95]. In brief, mothers will report on infant dietary intake
prior to solid food introduction, including breastfeeding
duration and the quantity and brand of formula and/or
solid foods consumed over a 24-h period. Changes in
feeding practices since the last visit will be assessed in-
cluding formula products containing prebiotics or pro-
biotics to account for differential effects on the GM
compared to standard formulas; solid food introduction
timing, type, and amount; mode of consumption (e.g.,
breast, bottle, cup); and scheduled vs. on-demand feed-
ing. Breastfeeding intensity will also be assessed at each
visit [107].

Home and care environment factors that will be mea-
sured will include the Home Observation for Measure-
ment of the Environment (HOME) Inventory [108],
parent-reported daycare environment (if present) includ-
ing feeding and sleep environment arrangements within
the care environment, with the Daycare Arrangements
and Feeding Practices [95], and familial food insecurity
with the USDA Household Food Security Survey [109],
household tobacco exposure [110], and infant sleep en-
vironment via the Brief Infant Sleep Questionnaire [67],
Maternal-child interactions also will be measured with

the Home Observation for Measurement of the Environ-
ment (HOME) Inventory [108], as well as with the Post-
partum Bonding Questionnaire [111], and the Parental
Interactive Bedtime Behaviors Scale [112]. Feeding inter-
actions will be measured with the Infant Feeding Style
Questionnaire [113].

Ethical considerations
The study protocol was approved by the Valleywise
Health Institutional Review Board (2019–060). On the
consent, participants will be given as much time as
needed to understand the purpose of study, required
procedures, benefits and risks of their participation, and
ask questions. Voluntary participation and anonymity
will be emphasized. Participants will sign and date con-
sent. They will also be asked to opt-in and sign a Social
Media Etiquette Agreement for appropriate use of study
social media accounts to interact as a community of
mothers. Participants will be provided payment at the
completion of study assessments associated with each
home visit and phone calls between visits for the pur-
poses of monthly check-ins and 24-h dietary recall. The
total amount of money that can be earned for complet-
ing study-related tasks is $234. In addition to compensa-
tion, at each visit mothers and infants will also be given
a “swag bag” of items of particular relevance to this
population (e.g., diapers, wipes, custom-made baby

Table 1 Summary of study variables and measures, by Ecological Model of Growth construct (Continued)

Prepartum Postpartum

Food security USDA Household Food Security Survey ✓ ✓ ✓

Tobacco exposure Direct query ✓

Infant sleep environment Brief Infant Sleep Questionnaire (e.g., bed-sharing, sleep
position)

✓ ✓ ✓ ✓ ✓ ✓

Maternal-
Child
Interactions

Maternal-child
interactions

Home Observation for the Measurement of the
Environment Inventory (HOME), Postpartum Bonding
Questionnaire

✓ ✓ ✓

Bedtime interactions Parental Interactive Bedtime Behaviors Scale ✓ ✓

Feeding
Interactions

Maternal-child feeding
interactions

Infant Feeding Style Questionnaire ✓ ✓

CDC centers for diseases control and prevention, FDA food and drug administration
* Measure will be collected at each visit if the participant opts into these biospecimen collections
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milestone books, teethers, etc.). Additional incentives
will be offered to participants which will include quar-
terly raffle prizes (small denomination gift cards and
study-branded items) and incentives for friend referral
($5/friend for up to 5 friends; $25 total).

Statistical analyses
To evaluate Aim 1, visit-to-visit changes in 24 h sleep
and sleep-wake rhythmicity variables and their relation-
ship to occurrence of RWG will be examined with a lo-
gistic TVEM. It can reveal critical periods during which
changes in sleep-wake patterns accelerate/decelerate in-
fant weight gain [114] and include other covariates with
time-invariant effects. The TVEM model can be formu-
lated as,

logit RWGð Þ ¼ β0 f tð Þ þ Σv βv f tð ÞV þ Σc βcC þ ∈ ð1Þ

where f(t) is a smooth function of time t, V is a set of
variables with time-varying effects, C is a set of variables
with time-invariant effects, β0, βv and βc are the corre-
sponding coefficients, and ϵ is normally distributed ran-
dom errors. We will impose no constraints on the f(t)
function and the β coefficients except an assumption of
smooth temporal progressions. To fit the model given
the collected data, we will use the %TVEM SAS macro
[115] and use a P-spline method to select the best-fitting
model using knots (splitting points). Significance will be
assessed based on the p-values of estimated β
coefficients.
To evaluate Aim 2, we will apply the TVEM in model

(1) with representing the alpha and beta diversity scores
for each taxon. Because there are hundreds of taxa that
may share dependencies, we will compute false discovery
rates (FDRs) using the Benjamini–Hochberg procedure
[116]. Taxa with FDR < 5% will be regarded as having
significant associations. Given the hierarchical structure
among taxa, we will further reduce the redundancies
among significant taxa by ranking them on Akaike infor-
mation criterion (AIC) values. Specifically, we will
traverse the taxonomic tree (leaves to root) and compute
AIC values for each clade. If a parent node has a lower
AIC value than any of its child nodes, we will keep the
parent node and remove the child nodes from the short-
listed taxa.
To evaluate Aim 3, exploratory analysis will apply

principal component analysis to examine if the combin-
ation of GM variables and sleep-wake variables can ex-
plain a higher variance of RWG than using each class of
variables independently. Confirmatory analysis will use
model (1) to include the main effects and pairwise inter-
actions between GM diversity scores and sleep-wake
variables. Significant p-values and positive coefficients of

interaction terms will indicate synergistic effects. How-
ever, because there are potentially many GM taxa associ-
ated with RWG, model (1) may include too many
variables and trivial effects that reduce the statistical
power. In this case, we will take a nested approach to
test synergies among correlated variables. Specifically,
combining the significant variables identified in Aims 1
and 2, we will first test pairwise correlations. We will
then group significantly correlated variables using
Gaussian finite mixture models [117] that automatically
determine the number of clusters. If GM diversity scores
and sleep-wake patterns coexist in a cluster, we will use
model (1) extended with interaction terms to test syner-
gistic effects. For the proposed exfoliomic data, we will
utilize systems biology approaches to illuminate transge-
nomic cross-talk between host exfoliated intestinal epi-
thelial cells [84] and the genomes of the gut microbiota
[83, 118] in a longitudinal cohort.

Discussion
Excess weight for infant age and childhood obesity re-
main highly prevalent with significant potential for nega-
tively impacting growth, development, and health
outcomes across the life course. Early infant RWG is a
meaningful, early heralding risk factor for subsequent
adiposity [119–121]. While prenatal exposures and
feeding-related predictors of early infant RWG are
known [122–125], they do not wholly explain the vari-
ance in accelerated weight gain. Less is known about
other modifiable factors in early life that may be protect-
ive or detrimental. Suboptimal 24-h sleep-wake and
commensal GM development and maturation are associ-
ated with subsequent adiposity in childhood and adult-
hood, yet their relationships with infant RWG are less
known. In our Snuggle Bug/Acurrucadito Study, we aim
to investigate sleep-wake and GM development across
infancy in association with subsequent RWG independ-
ently, examine the temporal crosstalk between sleep-
wake pattern and GM development, and explore
whether these interactions affect RWG propensity.
There are several noteworthy aspects in this protocol.
The Snuggle Bug/Acurrucadito study will identify multi-
dimensional factors that may contribute to the develop-
ment of childhood obesity, especially among high-risk
populations such as those with greater maternal BMI
and racially and ethnically-diverse mothers of low-
income. This study proposes a novel EMG theoretical
framework to ensure a comprehensive understanding
about the interacting socio-environmental, sleep, and in-
fant GM influences on infant adiposity outcomes. We
are employing a prospective longitudinal approach to as-
sess multiple objective and self-reported parameters at
clinically meaningful intervals throughout the first 12
months of life that will provide robust and accurate
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measures of sleep, GM, growth, and the maternal-infant,
familial, and environmental context. The non-invasive
longitudinal fecal analyses will allow us, for the first time,
to identify critical molecular biomarkers that define the
relationship between establishment of 24-h sleep-wake
patterns, weight gain trajectories, early nutrition, the intes-
tinal microbiota and intestinal gene expression. Our
TVEM with frequent sampling approach in early infancy
will capture the functional form of growth and aid in elu-
cidating the dynamic associations between study variables
and RWG. Further, to reduce language barriers and en-
hance our ability to recruit our target high risk population,
all study measures to be collected will be translated by bi-
cultural and bilingual staff, in either English or Spanish.
All staff conducting home visits are able to communicate
in English and Spanish. With these unique strengths, the
study will provide a wealth of findings that will advance
population and clinical-level approaches to childhood
obesity prevention.
Some potential challenges should be acknowledged.

Recruitment and retention of participants in longitudinal
research is often challenging. To address this challenge,
at recruitment and each in-home visit, we will offer
“swag” bags with items of interest to pregnant and post-
partum mothers and their infants. Regular contact with
a designated staff member will establish strong relation-
ships to help aid retention over the study period of 12–
15months. We will further incentivize regular contact
for each answered call, every time a mother notifies the
team of a change in contact information, and for each
24-h dietary recall completed by phone. Mothers will be
reminded by telephone or postcard of their next sched-
uled home visit. We will also send participants birthday,
major holiday, and Mother’s Day cards. Further, mothers
will be given the opportunity to opt-in to a study-
developed, social media-based community of other par-
ticipants to share in their experiences as mothers of
young children. Additionally, sampling bias might occur
if individuals worry about the risks of in-home visit due
to the COVID-19 pandemic and shy away from partici-
pation. In order to minimize the risk of sampling bias
and maximize the validity of the study, recruitment ef-
forts will emphasize the numerous safety precautions
and social distancing measures that the study can em-
ploy to minimize any in-person interactions. Lastly,
mothers might hesitate to collect fecal and other biobe-
havioral measures. The research team has prepared and
uploaded written and video instructions to the study
website, including the guidelines to collect all biospeci-
mens at home for mothers and infants. Additionally, ni-
trile gloves will be provided for mothers to use when
collecting biological specimens, and proper hand wash-
ing instructions will be provided to minimize the risk of
fecal bacterial exposure.

Through the identification of optimal and crucial de-
velopmental intervals for targeting and preventing RWG,
this observational, longitudinal study will provide evi-
dence to spur the development of theoretical and data-
driven interventions to prevent RWG and subsequent
obesity, and clinical practice guidelines that address
modifiable factors that influence sleep-wake and GM de-
velopment in support of optimal metabolic and growth
outcomes.
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