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INTRODUCTION

Learning is fundamental to rehabilitation (Krakauer, 2006). The learning of cognitive and motor
tasks similar to those in rehabilitative services (i.e., occupational therapy, physical therapy,
speech language pathology, recreational therapy, music therapy, etc.) involve the creation (or
modification) of neural representations associated with task performance (Dayan and Cohen,
2011). Later accessing these representations allows for performance with greater skill. These neural
representations can therefore be referred to as memory traces, and rehabilitation can be thought
of as involving the creation and/or modification of memories that can be stored for use in other
contexts in the future.

The process of learning is comprised of practice-dependent (i.e., online) and practice-
independent (i.e., offline) processes. Skill acquisition during initial practice is typically exhibited
by fast improvements in performance (Dayan and Cohen, 2011). After encoding a memory and
halting practice, a memory can then undergo consolidation, leading to slower improvements over
a period of seconds, days, weeks, or months. The purpose of this paper is two-fold: to identify
the currently known mechanisms of consolidation and reconsolidation that impact learning, and
to discuss how these findings could impact the design and optimization of interventions and
strategies for rehabilitation services. The concepts discussed in this paper are applicable to various
forms of learning (e.g., cognitive, motor, visual perceptual) but for simplicity, many of the studies
highlighted in this paper involve motor learning.

Consolidation
Consolidation involves the stabilization (Brashers-Krug et al., 1996; Yotsumoto et al., 2009; Censor
et al., 2010; Cohen and Robertson, 2011) or enhancement (Karni et al., 1994; Stickgold et al.,
2000; Walker et al., 2002; Fischer et al., 2005; Korman et al., 2007; Nishida and Walker, 2007) of
performance across a period of wakeful rest or sleep. The time period for consolidation to occur is
typically over hours or perhaps longer based on the complexity of the task, which is referred to here
as slow consolidation. More recently though, evidence of rapid within-session consolidation has
been identified during the seconds of rest between trials of motor practice (Bönstrup et al., 2019,
2020).

Both implicit and explicit learning involve consolidation. While time alone (i.e., regardless of
being awake or asleep) is sufficient for implicit aspects of memory, a period of sleep is necessary for
slow consolidation of explicit aspects of memory (Robertson et al., 2004; Albouy et al., 2013, 2015).

The degree of consolidation over a sleep period has been associated with the number
of occurrences of sleep spindles and slow wave electroencephalographic waveforms, which
predominantly occur during non-rapid eye movement sleep over task-related brain regions
(Nishida and Walker, 2007; Barakat et al., 2013; Tamaki et al., 2013). However, the number of
sleep spindles and slow waves experienced during sleep decreases with age, which may explain the
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decrease in sleep-based consolidation found in older adults
(Brown et al., 2009; Wilson et al., 2012; Fogel et al., 2014; Roig
et al., 2014) and in individuals with sleep apnea (Djonlagic et al.,
2012, 2015; Landry et al., 2014; Johnson et al., 2019b).

Reconsolidation
When later recalling (or performing) a memory that has been
consolidated through slow consolidation, online and offline
processes can occur again to further fine tune recall (or
performance) of the memory, known as reconsolidation (Nader
et al., 2000; Walker et al., 2003; Forcato et al., 2007; Lee,
2008; Sandrini et al., 2015; Amar-Halpert et al., 2017; Herszage
and Censor, 2018) but see Hardwicke et al. (2016). Gradual
session-by-session improvements of a previously acquired
and consolidated task may be promoted by reconsolidation
between sessions, which is triggered by practice-inducedmemory
reactivation during the session (Censor et al., 2010) or even
the presentation of a task-associated sensory cue without active
practice (Bavassi et al., 2019). The process of fine-tuning a
memory through reconsolidation necessitates the integration
of new task information obtained during reactivation so
that memories can remain relevant and effective. Such new
information may be in the form of sensorimotor calibrations,
contextual cues, or additional declarative information. Less is
known about rapid reconsolidation during early skill learning
(Bönstrup et al., 2019, 2020).

Interference of Consolidation and
Reconsolidation
Memories are unstable while undergoing consolidation and
reconsolidation and are thus susceptible to interference
(Figure 1), making subsequent behavior and sleep between
sessions crucial to learning (Walker et al., 2003; Forcato et al.,
2007; Lee, 2008; Censor et al., 2010). When motor task A
is acquired and the consolidation process has begun, the
subsequent learning of a different task, task B, can impair
consolidation of task A such that later recall performance of
task A is impaired. This is known as retroactive interference
(Shadmehr and Brashers-Krug, 1997; Ghilardi et al., 2009).
For example, learning two different motor tasks within 5min,
30min, or 2.5 h was found to induce forgetting of the first
motor task learned relative to a gap of 5.5 or 24 h (Shadmehr
and Brashers-Krug, 1997). Alternatively, proactive interference
can occur when the consolidation process of an initial task can
temporarily impair learning of a different task (Ghilardi et al.,
2009; Cantarero et al., 2013). For example, Cantarero et al. (2013)
found that transiently increased cortical excitability induced
through learning an initial motor skill interfered with immediate
learning of a second motor skill. However, no retroactive or
proactive interference was found if cortical excitability was
allowed to return to baseline over time (Cantarero et al., 2013).
It should be noted that interference can occur between different
task types (i.e., cognitive and motor) (Brown and Robertson,
2007; Mutanen et al., 2020). The topic of memory modification
during instability extends to reconsolidation as well. For example,
implementing reward during memory reactivation (wherein
no reward was present during initial learning) has been found

to disrupt reconsolidation, possibly by creating a competing
memory trace (Dayan et al., 2016). Whether interference of skill
occurs relates to the degree of memory stability when beginning
to learn the subsequent task, as well as the similarity of the tasks.

Preventing Interference Effects
An unstable memory can be modulated (and generalized) more
easily, whereas a stable memory is harder to modulate. There are
two primary factors that have been found to enable memories
to stabilize. The first factor is the amount/duration of practice.
Increasing the number of repetitions of task A helps to stabilize
a memory trace, thereby reducing retroactive interference.
However, increased repetitions of Task A can also transiently
increase proactive interference to a subsequently learned task
(i.e., Task B) as Task A is being consolidated (Krakauer et al.,
2005; Shibata et al., 2017). This retroactive protective effect of
increased practice duration extends to reconsolidation as well,
as increasing the length of time during which the memory is
reactivated decreases retroactive interference (de Beukelaar et al.,
2014).

Second, the duration between sessions of learning helps
to stabilize memories via consolidation. Allowing for several
hours between task practice has been shown to decrease both
retroactive and proactive interference compared to a period of
several minutes between tasks (Walker et al., 2003; Krakauer
et al., 2005; Ghilardi et al., 2009). Including a period of
sleep between task practice sessions also reduces the proactive
and retroactive interference between two tasks and lessens the
amount of time required for consolidation compared to waking
hours (Ellenbogen et al., 2006, 2009; Abel and Bäuml, 2014),
but see Bailes et al. (2020). For reconsolidation, Gabitov et al.
(2017) found that learning of a newmotor task caused retroactive
interference immediately after memory reactivation, but not if an
8-h interval was afforded following memory reactivation. Others
have reported that the role of retroactive interference is greatest
immediately after memory reactivation (i.e., 0 s) and fades in
magnitude over a short period of time (i.e., 20, 40, and 60 s) as
the memory is being reconsolidated (de Beukelaar et al., 2016).

DISCUSSION

Consolidation and Reconsolidation During
Rehabilitation
While consolidation and reconsolidation are relevant to
psychotherapy treatments such as the extinction of fear
memories (Monfils et al., 2009; Schiller et al., 2010), it remains
to be seen whether rehabilitation services trigger consolidation
and reconsolidation. There are long held principles that may
make the consolidation and reconsolidation of memories
during and after rehabilitation likely. For example, the notion
of the “just right challenge,” holds that tasks performed
during rehabilitation should be meaningful and difficult
(Ayres, 1983; Csikszentmihalyi and LeFevre, 1989; Moneta
and Csikszentmihalyi, 1996; Csikszentmihalyi, 2000), and
should incorporate learning principles (e.g., practice structure,
repetition, feedback, reward) (Poole, 1991; Jarus, 1994). Motor
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FIGURE 1 | Behaviorally-induced retroactive and proactive interference. Interference occurs when the processes for learning multiple tasks interact and cause a

detriment to the consolidation or acquisition of one of the tasks. Top: Acquisition of a second task (Task B) while a first task (Task A) is still undergoing consolidation

can result in interference of Task A consolidation, known as retroactive interference. Bottom: Alternatively, ongoing consolidation of a first task (Task A) can interfere

with the acquisition of a second task (Task B), known as proactive interference.

learning concepts such as goal-oriented training or task-
specific training are important for skill acquisition during
sessions, but interference between-sessions may occur and
requires further investigation. That is, individuals receiving
goal-oriented training or task-specific training in multiple
rehabilitation services (e.g., occupational and physical
therapy) may benefit from coordination of scheduling and
therapy content. For example, occupational and physical
therapies could be scheduled on alternating days, or with
several hours of time between the two therapy sessions on a
single day.

We propose that future research investigate consolidation
and reconsolidation between rehabilitation sessions. Given
the overwhelming evidence for the process of memory
reconsolidation in declarative and procedural memories, it
might be expected that individuals undergoing rehabilitation
would also experience reconsolidation between sessions of
therapy. For example, regaining independence in performing
activities of daily living involves learning processes (Bayona
et al., 2005). Importantly, older adults have been shown to benefit
from reconsolidation (Corbin, 2017; Tassone et al., 2020) despite
the known declines in consolidation related to healthy aging
(Brown et al., 2009; Wilson et al., 2012; Fogel et al., 2014; Roig
et al., 2014). However, one study found that reconsolidation was
impaired in older adults with stroke relative to age-matched
subjects without stroke (Censor et al., 2016), while other research
has found that individuals with stroke, but not age-matched
healthy controls, benefit from sleep-based consolidation of a

motor task (Siengsukon and Boyd, 2008, 2009). Thus, further
investigation into consolidation and reconsolidation among
patient populations is warranted.

Recipients of rehabilitation would also benefit from the
continued development of clinical protocols using non-invasive
brain stimulation as an adjunct to enhance therapy-related
memory consolidation and reconsolidation. Indeed, several
studies regarding stroke rehabilitation have found benefits of
pairing non-invasive brain stimulation with participation in
rehabilitation (Khedr et al., 2005; Chang et al., 2010; Ilić et al.,
2016; Rocha et al., 2016). In addition, transcranial direct current
stimulation during wake (Reis et al., 2009, 2015; Sandrini
et al., 2014) and during post-encoding sleep (Marshall et al.,
2004, 2006; Göder et al., 2013; Westerberg et al., 2015), as
well as repetitive transcranial magnetic stimulation during wake
(Turriziani, 2012; Sandrini et al., 2013), have previously been
shown to enhance memory consolidation and reconsolidation.
Other sensory stimulation techniques such as targeted memory
reactivation (Rasch et al., 2007; Oudiette and Paller, 2013;
Shimizu et al., 2018; Johnson et al., 2019a, 2020; Hu et al.,
2020) and rhythmic auditory stimulation (Ngo et al., 2013;
Ong et al., 2016) have been used during post-encoding sleep to
enhance consolidation.

In addition to task-specific memory modulation, future
research should also focus on how to best induce generalization
of skill between therapies in relation to the degree of memory
stability and task similarity. For example, Mosha and Robertson
(2016) had participants learn a word list and a motor skill,
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with overlapping rules to task elements, in quick succession
and showed that generalization could be induced between the
tasks (regardless of learning order) when the first memory
was unstable. However, generalization did not occur when the
memory for the first task was stabilized through the inclusion
of a 2-h consolidation period. That is, generalization can occur
to a Task B during instability of Task A, but such generalization
can also come at the cost of retroactive interference to Task A
(Robertson, 2018; Mutanen et al., 2020).

CONCLUSIONS

Rehabilitation often involves learning. We first describe
why clinicians should consider memory consolidation and
reconsolidation. Secondly, we encourage future research to
investigate how consolidation and reconsolidation relate
to rehabilitation and translate previous work to decrease

interference effects and enhance memory consolidation between
rehabilitation sessions. Doing so may aid in the development of
efficient and long-lasting interventions that are generalizable to
clinically meaningful activities.
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