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Abstract: Amyloidβ42 (Aβ42), a causative agent of Alzheimer’s disease (AD), is derived extracellularly
from Aβ precursor protein (APP) following the latter’s cleavage by β-secretase, but not α-secretase.
Protein kinase Cα (PKCα) activation is known to increase α-secretase activity, thereby suppressing
Aβ production. Since Aβ42 oligomer formation causes potent neurotoxicity, APP modulation by
PKC ligands is a promising strategy for AD treatment. Although bryostatin-1 (bryo-1) is a leading
compound for this strategy, its limited natural availability and the difficulty of its total synthesis
impedes further research. To address this limitation, Irie and colleagues have developed a new PKC
activator with few side effects, 10-Me-Aplog-1, (1), which decreased Aβ42 in the conditioned medium
of rat primary cerebral cortex cells. These results are associated with increased α-secretase but not
PKCε-dependent Aβ-degrading enzyme. The amount of neuronal embryonic lethal abnormal vision
(nELAV), a known β-secretase stabilizer, was reduced by treatment with 1. Notably, 1 prevented the
formation of intracellular toxic oligomers. Furthermore, 1 suppressed toxic oligomerization within
human iPS-derived neurons such as bryo-1. Given that 1 was not neurotoxic toward either cell line,
these findings suggest that 1 is a potential drug lead for AD therapy.

Keywords: alzheimer’s disease; amyloid β; bryostatin-1; ECE1; iPS; nELAV; neurotoxicity; oligomer;
protein kinase C; α-secretase

1. Introduction

The 40-mer and 42-mer amyloid β-proteins (Aβ40 and Aβ42) are considered causative agents
of Alzheimer’s disease (AD) [1,2]. Aβ40 and Aβ42 are known to be produced from Aβ precursor
protein (APP) following cleavage of the latter by β-secretase, but not α-secretase. APP proteolysis may
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be more complex, given the recent discovery of APP proteolysis by η- and δ-secretases, for example,
in [3]. The ability of Aβ42 to aggregate and exhibit neurotoxicity is higher than that of Aβ40 despite
the lower in vivo amounts of Aβ42 [4]. Aβ42 oligomer formation causes synaptic dysfunction and
neuronal death in AD pathology, whereas the contribution of end-stage mature fibrils of Aβ42 to AD
is lower than that of oligomers [5]. Higher-order toxic oligomers that show potent synaptotoxicity
and neurotoxicity have been reported, such as protofibrils (PFs), Aβ-derived diffusible ligands, and
amylospheroids [6]. Therefore, suppressing toxic oligomerization of Aβ42 is a favorable strategy for
developing AD therapies. This suppression can also be achieved by simultaneously decreasing Aβ
production while inducing Aβ degradation.

Protein kinase C (PKC) is a family of serine/threonine kinases that plays a pivotal role in various
biological events such as signal transduction, proliferation, and apoptosis mediated by the second
messenger 1,2-diacyl-sn-glycerol [7]. The PKC family, which contains at least 10 isozymes, is divided
into three groups, namely conventional (α, βI, βII, and γ), novel (δ, ε, η, and θ), and atypical (µ, ξ,
and ι) [7]. PKC activity is related to memory formation and learning [8], while PKC downregulation
may induce cognitive impairment and memory loss in AD [9]. Regarding Aβ-driven molecular
events, PKCα reportedly upregulates α-secretase activity either directly or indirectly through the
mitogen-activated protein kinase (MAPK) pathway [10]. PKCα activation in a mouse model of AD
has beneficial effects on AD pathology, including the disruption of Aβ production and reduction of
toxic Aβ oligomer formation [11]. Neuronal embryonic lethal abnormal vision (nELAV), also known
as HuD protein, may contribute to mRNA stability through a PKCα-dependent mechanism due to
adenine- and uridine-rich elements (AREs) [12]. PKCε may also be a target beneficial for preventing
AD. A mouse study demonstrated that PKCε activation reduces senile plaque formation, although
its effect on oligomer generation was not determined [13]. Similarly, the stimulator specific for PKCε
(DCP-LA) rescued synaptic dysfunction and cognitive deficits as well as senile plaques in another
mouse study [14]. PKCε stimulates the degradation of Aβ42 and Aβ40 by activating endothelin
converting enzyme 1 (ECE1) [15]. These reports indicate that PKC activation may offer a promising
strategy for AD treatment.

Bryostatin-1 (bryo-1), which was isolated from the marine bryozoan Bugula neritina [16], is a
potent PKC activator with few side effects such as tumor-promoting and proinflammatory activities.
Bryo-1 was found to activate both PKCα and PKCε, and to restore loss of hippocampal synapses and
memory impairment by suppressing the levels of Aβ oligomers detected by the A11 antibody [14].
Bryo-1 may have beneficial effects against Aβ-induced abnormality in human fibroblasts [17]. These
findings indicate that bryo-1 is a potential drug lead for AD [18]. However, its limited availability
from natural sources and the difficulty of total synthesis both hamper further development, despite
scalable synthetic routes reported by the Wender [19] and Trost groups [20]. Taking an alternative
approach, Irie and colleagues developed 10-Me-Aplog-1 (1; Figure 1a), a simplified analog of
aplysiatoxin [21], which is a potent PKC activator with tumor-promoting activity. It should be noted
that 1 exhibited anti-proliferative activity towards cancer cell lines without significant tumor-promoting
or proinflammatory activities [22,23].

The ratio of Aβ42 to Aβ40 (Aβ42/Aβ40) is a known biomarker for predicting AD onset in
cerebrospinal fluid (CSF) and plasma [24]. However, such a biomarker could correlate with senile
plaque depositions containing less toxic fibrils according to brain imaging of Aβ deposition with
positron emission tomography (Aβ-PET) [25–27]. Furthermore, the PKC activation strategy is not
expected to modulate Aβ42/Aβ40, since the proteolysis of APP by γ-secretase can predominantly
determine the length of secreted Aβ.

Irie and colleagues identified a toxic Aβ42 conformer with a turn at positions 22–23 (toxic turn) [28],
and proposed the ratio of the toxic conformer to total Aβ42 as a possible biomarker for AD progression
in CSF using sandwich ELISA specific for Aβ42 toxic oligomers based on the anti-toxic turn antibody
(24B3) [29]. A change in Aβ42 toxic conformer ratio may be a good predictor for long-term cognitive
outcomes in idiopathic normal pressure hydrocephalus (iNPH) [30]. Toxic conformers can easily form
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toxic oligomers [31]. Here, we offer a novel, direct evaluation platform that determines the ratio
of toxic oligomers to Aβ42 (toxic oligomers/Aβ42) in rat primary cerebral cortex cells and human
induced pluripotent stem (iPS)-derived neurons using 24B3-based ELISA [29], which were treated with
1. The therapeutic potential of 1 and its mechanism of action in AD prevention were also investigated.
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Figure 1. (a) Structure of 10-Me-Aplog-1 (1). APP expression levels in (b) HEK293-APPwt, (c) SH-SY5Y,
and (d) rat primary cerebral cortex cells treated with 1 at the indicated concentrations for 24 h.
M indicates marker. In (d), 1, 10, 50, 100, 500, and 1000 nM (from left to right) of 1 were used.
Veh: vehicle.

2. Results

2.1. APP Expression Levels in Cultured Neuronal Cell Lines Treated with 1

The reason why research on PKC modulators faces difficulties in the AD field is the abnormal
enhancement of APP itself upon addition of PKC ligand to cultured animal cells, including rat PC12
cells [32] and human HeLa cells [33], resulting in unwanted Aβ overproduction. Alternatively, APP
secreted after α-secretase processing (sAPPα) or AD-index calculated from Erk1/2 phosphorylation
have been used as evaluation criteria for PKC modulators [17]; however, there are very few reports
concerning the direct quantification of Aβ in cell-based experiments. As expected, 1 enhanced APP
levels in HEK293 cells overexpressing wild-type APP (HEK293-APPwt) in a dose-dependent manner
(Figure 1b). By contrast, APP levels in both SH-SY5Y cells (Figure 1c) and rat primary cerebral cortex
cells (Figure 1d) were largely unaltered.

2.2. Effects of 1 on Extracellular Aβ42/Aβ40 and Aβ Oligomerization in Rat Primary Cerebral Cortex Cells

Since the amount of Aβ42 secreted by SH-SY5Y cells was near to the detection limit of specific
ELISA (#27711 Human Amyloid β 1-42 Assay Kit—IBL), we selected rat primary cerebral cortex cells
for evaluating PKC modulators in the following study. After a 24 h incubation, 1 did not reduce
Aβ42/Aβ40 as expected above, because the amounts of both Aβ42 and Aβ40 were lowered (Figure 2a).
12-O-Tetradecanoylphorbol 13-acetate (TPA) is a PKC ligand that exerts a similar effect [34]. Because
the extracellular levels of toxic oligomers after a 24 h incubation were under the detection limit for
specific ELISA (#27709 Human Amyloid β Toxic Oligomer Assay Kit—IBL) and Aβ42 easily aggregates
to form amyloid fibrils after a 24 h incubation in vitro [35,36], we sampled at an earlier time point, 6 h,
to determine the formation of toxic Aβ oligomers. As shown in Figure 2b, the ratio of toxic oligomers
to Aβ42 (toxic oligomers/Aβ42) in cerebral cortex cells did not increase following treatment with 1
even at a higher concentration range than that in Figure 2a. However, the toxic oligomer levels were
unchanged by 1 (Figure 2b).
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α-secretase expression, but not Aβ degradation. 

Figure 2. (a) Monomeric Aβ42, Aβ40, and their ratio (Aβ42/Aβ40) in the conditioned medium of
rat primary cerebral cortex cells treated with 1 at the indicated concentrations for 24 h. (b) Toxic Aβ
oligomers, monomeric Aβ42, and their ratio (toxic oligomers/Aβ42) in the conditioned medium of
rat primary cerebral cortex cells treated with 1 at the indicated concentrations for 6 h. The data are
presented as mean ± SD (n = 3). **p < 0.01 versus Veh (vehicle). n.s.: not significant. Red or black dots
represent each value.

2.3. Effects of 1 on Aβ Production and Degradation in Rat Primary Cerebral Cortex Cells

Given the moderate reduction in Aβ42 secretion to the extracellular space caused by 1 treatment
(Figure 2b), we investigated the contribution of 1 to Aβ production and degradation in cultured
cells. The concentration of 1 was set to 10–1000 nM in the following study of primary cultured
cells. The amount of disintegrin and metalloproteinase 10 (ADAM10), as one of the α-secretases,
was increased in Western blotting, using the ratio of the processed to active form of ADAM10 in
the case of 1 (Figure 3a). nELAV proteins are known to act as PKCα-dependent Aβ modulators via
α-secretase [12,37] or β-secretase [38]. As shown in Figure 3b, the amounts of nELAV were decreased
by 1.

Next, ECE1 levels were also measured. ECE1 levels were almost unchanged in cells treated with 1
(Figure 3c). These results indicate that the decrease in Aβ42 caused by 1 could be due to enhanced
α-secretase expression, but not Aβ degradation.

2.4. Effects of 1 on Intracellular Aβ Oligomerization in Rat Primary Cerebral Cortex Cells

Intracellular Aβ accumulation appears to be an early event in AD pathogenesis. In particular, Aβ
oligomerization may begin to induce mitochondrial toxicity, proteasome impairment, and synaptic
damage [39]. To elucidate the intracellular mechanism, lysates were prepared from cells after 6 h of
incubation with 1 and subjected to Western blotting using 24B3 antibody [29]. Notably, the formation
of intracellular toxic oligomers, which are 20–30-mers according to synthetic studies [40,41] of Aβ
oligomer models that inhibited long-term potentiation (LTP) in mouse hippocampal slices (T. Kume,
personal communication, unpublished results), was significantly decreased by 1 (Figure 4). These
results suggest that 1 may modulate toxic Aβ oligomerization.
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Figure 4. (a,b) Toxic oligomer formation in lysate from rat primary cerebral cortex cells treated with
1 at the indicated concentration for 6 h. (a) The representative Western blot shown was probed with
anti-Aβ42 toxic turn (24B3) antibody. (b) Band intensities corresponding to 20–30-mers relative to
β-actin in (a) are presented as mean ± SD (n = 3). *p < 0.05 versus Veh (vehicle). Red or black dots
represent each value.

2.5. Effects of 1 on the Cytotoxicity of Rat Primary Cerebral Cortex Cells

To examine the neurotoxicity of 1, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay was performed on rat primary cerebral cortex cells. As shown in Figure 5, it was confirmed
that 1 did not exhibit neurotoxicity at the concentrations used in the above tests (Figure 2b,3,4). This
finding suggests that 1 is potentially as safe as bryo-1, with few side effects.
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2.6. Effects of 1 on Aβ42/Aβ40, Aβ Oligomerization, and Neurotoxicity in Human iPS-Derived Neurons

To further verify the preventative effects of 1 against AD, human iPS-derived neurons were
adopted for this experiment because of a slight difference in Aβ sequence between rat and human.
Recent studies also imply a large gap in the effectiveness of drug discovery studies between iPS-derived
neurons and cultured cell lines [42]. Recently, Inoue and colleagues developed a reliable and robust
iPS-based screening system for anti-Aβ drugs [43]. After incubating the differentiated neurons from
iPS with PKC ligands for 24 h, Aβ42 and Aβ40 levels in the conditioned medium were calculated
using electrochemiluminescence assays. Bryo-1 was used as a positive control, which significantly
decreased the amount of Aβ42 and Aβ40 in a dose-dependent manner. Bryo-1 therefore suppressed
the Aβ42/Aβ40 ratio (Figure 6d). Treatment with 1 lowered Aβ42 and Aβ40 levels to almost the same
extent, resulting in almost no alternation of Aβ42/Aβ40 (Figure 6a). 1 failed to show cytotoxicity such
as bryo-1 (Figure 6b,e) measured by the ToxiLight assay that reflects the release of adenylate kinase
from damaged cells [44].

Lysate prepared from iPS-derived neurons was subjected to ELISA measurement for toxic
oligomers (Figure 6c,f). In Figure 6c, the amount of Aβ42 toxic oligomers following 1 treatment showed
a tendency to decrease, like bryo-1, in a dose-dependent manner (Figure 6f), in spite of one anomalous
value at 30 nM, which might originate from a technical issue. These findings suggest that 1 may also
prevent toxic oligomer formation in iPS-derived neurons.Int. J. Mol. Sci. 2020, 21, 1179 7 of 14 
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detection [54]. Alternatively, the development of highly specific antibodies for toxic oligomeric 

Figure 6. (a,d) Monomeric Aβ42, Aβ40, and Aβ42/Aβ40 in conditioned medium, (b,e) neurotoxicity,
and (c,f) toxic Aβ42 oligomers in lysate from human iPS-derived neurons treated with (a,b,c) 1 and
(d,e,f) bryo-1 at the indicated concentration (0, 1, 3, 10, 30, 100, 300, and 1000 nM from left to right) for
24 h. The data are presented as mean ± SEM (n = 3).
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3. Discussion

Alkon and colleagues hypothesized that deficits in PKC signaling are involved in AD
symptoms [18]. PKCα and PKCε are thought to induce Aβ diminution, leading to beneficial effects for
AD. Indeed, the results of several clinical trials provide encouragement for bryo-1 as a potential drug
against AD [45]. It is worth noting that 1 prevented nELAV accumulation within the cell (Figure 3b).
nELAV levels were higher in AD patients compared with non-AD controls [38]. The nELAV-driven
stabilization of β-secretase mRNA (β-site amyloid β precursor protein cleaving enzyme, BACE1) [38]
and tau mRNA [46] may be involved in AD progression. On the other hand, experiments using
SH-SY5Y cells suggest that the stabilization of ADAM10 by the binding of nELAV may contribute to
beneficial effects against AD via the PKCα pathway [12]. Bryo-1 counteracted the deficit in ADAM10 in
SH-SY5Y cells in which HuD expression had been silenced [47]. Although the involvement of nELAV
in AD remains controversial, nELAV is a novel putative target for anti-AD therapies. Furthermore,
Jarosz-Griffiths et al. reported that ADAM10-modulated shedding of cellular prion protein reduced
the neurotoxicity of Aβ oligomers [48]. The present findings illustrate that 1 prevented the formation
of intracellular Aβ42 oligomers as well as extracellular Aβ42, which is associated with enhanced
α-secretase cleavage of APP. Further studies will be required to clarify whether 1 might affect toxic
oligomerization directly, and if so, how. Given that the parent analogue (Aplog-1) of 1 can activate
PKCδ [22] and 1 binds potently to the PKCα-C1A and PKCε-C1B domains [23], 1 is a promising
substitute for bryo-1 as a therapeutic drug lead for AD.

Recently, Yanagisawa and colleagues identified plasma APP669-711/Aβ42 [49] in addition to
Aβ42/Aβ40 as an alternative biomarker using Japanese and Australian cohorts [50]. Using a composite
biomarker calculated from APP669-711/Aβ42 and Aβ42/Aβ40 may enhance the accuracy of diagnosis
during disease progression from mild cognitive impairment (MCI) to AD. However, in their work, the
potential of Aβ oligomerization in CSF or plasma as a biomarker was not fully addressed. Recently, a
detection method for Aβ oligomers using single molecule arrays (Simoa) as a highly sensitive platform
was reported using the same anti-Aβ N-terminal antibody (bapineuzumab), both for antigen capture
and detection [51]. However, this strategy cannot exclude the possibility of detecting mature fibrils,
resulting in lower specificity for Aβ oligomers [52]. The use of the anti-N-terminal antibody (82E1) [53]
may address the problem by using the same antibodies for capture and detection [54]. Alternatively,
the development of highly specific antibodies for toxic oligomeric species with synaptotoxicity would
be most ideal for finding biomarkers. In the Aβ42 toxic oligomer ELISA used in this study, the 24B3
antibody against the Aβ toxic turn and 82E1 antibody against the AβN-terminus are used for detection
and capture, respectively [29].

Ohshima et al. reported that familial mutations of AD increase oligomer formation of Aβ in the
conditioned medium of wild-type APP-transfected cells, but intracellular levels of Aβ oligomer in
these mutant APP-transfected cells were unaltered compared with wild-type APP-transfected cells [55].
These results may be due to the stronger ability of Aβ either to be formed or to aggregate due to these
mutations in the precursor APP, namely Swedish, Dutch, and London mutations. The Osaka mutant
(E693∆) of Aβ tends to be found as oligomers within cell bodies in both cultured cells [56] and human
iPS-derived neurons [57]. It was therefore difficult to determine oligomer levels in non-mutated APP
cell models with precision. Regarding the intracellular accumulation of Aβ, the key question of how
intracellular Aβ accumulates remains unanswered, thereby invoking the involvement of tau pathology;
that is, the possible interaction of intraneuronal Aβ with neurofibrillary tangles [58]. The relevance of
liquid–liquid phase separation to intracellular accumulation of amyloidogenic proteins (tau [59,60]
and TDP-43 [61]) should also be considered.

In conclusion, to the best of our knowledge, we have developed the first direct evaluation system
not only for Aβmonomers, but also for their assembly into toxic oligomers in small amounts using two
reliable and prevalent cell models of AD. Compared with bryo-1, whose efficiency has been recognized
in several clinical trials for AD and cancer, 1 may play a pivotal role in AD prevention as a promising
drug lead.



Int. J. Mol. Sci. 2020, 21, 1179 8 of 13

4. Materials and Methods

4.1. Rat Primary Cerebral Cortex Cells

Animals were treated according to guidelines issued by the Kyoto University Animal
Experimentation Committee and by the Japanese Pharmacological Society. The experimental procedures
were approved by the Kyoto University Animal Experimentation Committee [#16-12-1 (14 Mar 2016),
#16-12-2 (21 Mar 2017)]. Primary cultures were obtained from the cerebral cortex of fetal Wistar rats
(Nihon SLC; 17–19 d of gestation) as previously described [62]. Briefly, single cells dissociated from
whole cerebral cortices of fetal rats were plated on 0.1% polyethyleneimine-coated plastic 12-well
plates (106 cells/well, 1 mL). Cells were incubated in Eagle’s minimal essential medium (E-MEM)
supplemented with 10% heat-inactivated fetal bovine serum (FBS) before half the medium was
exchanged for fresh medium 2 and 4 d after plating. Subsequently, half the medium was exchanged for
fresh medium containing 20 nM cytosine arabinoside 6 d after plating and again with fresh medium
containing 10% heat-inactivated horse serum (HS) 8 d after plating. The cultures were maintained at
37 ◦C under a humidified 5% CO2 atmosphere. Mature cerebral cortex cell cultures (10 d after plating)
were used for all experiments.

DMSO stock of 1 was dissolved in E-MEM with 10% heat-inactivated HS (the concentration of
DMSO in the medium was under 0.1%). After 6 or 24 h incubation, 100 µL of cell lysis buffer (RIPA
buffer, Wako, Tokyo, Japan) containing a phosphatase inhibitor cocktail (Roche, Mannheim, Germany)
and protease inhibitor cocktail (Roche) was added to prepare cell lysates. Supernatant was obtained by
centrifugation (17,860 g, 4 ◦C) and stored at –80 ◦C until use.

4.2. ELISA

To determine the amounts of Aβ42 [#290-62601 Human/Rat β Amyloid(42) ELISA Kit Wako
(Osaka, Japan) or #27711 Human Amyloid β 1-42 Assay Kit—IBL (Gunma, Japan)] and Aβ toxic
oligomers (#27709 Human Amyloid β Toxic Oligomer Assay Kit—IBL), 100 µL of cell lysate was
applied to the corresponding sandwich ELISA plate.

4.3. Western Blotting

Total protein concentration of the brain was determined using the Bradford protein assay
(Bio-Rad; Hercules, CA, USA). Brain proteins diluted to 1 µg/µL were treated with 4× LDS sample
buffer (Invitrogen; Carlsbad, CA, USA) and 5 mM dithiothreitol before heating at 70 ◦C for 10
min. The denatured sample solution was subjected to Western blotting, following SDS-PAGE on a
10% Bis-Tris gel (Invitrogen) and subsequent transfer to PVDF (0.22 µm pore size, Bio-Rad). PVDF
membranes were blocked in 2.5% ECL prime blocking (GE Healthcare; Madison, WI, USA) dissolved
in phosphate-buffered saline (PBS) containing 0.5% Tween-20 (PBS-T), and incubated with primary
antibody at the following dilutions: 1:1000 anti-Aβ (4G8) (Signet; Dedham, MA, USA), 1:1000
anti-APP(N) (IBL), 1:1000 anti-Aβ42 toxic turn (24B3) (IBL, Gunma, Japan), 1:500 anti-ADAM10 (B-3)
(IBL, Gunma, Japan), 1:140 anti-nELAV(HuD+HuC) (Santa Cruz; Santa Cruz, CA, USA), or 1:1000
anti-ECE1 (abcam; Cambridge, MA, USA). Following primary antibody incubation, blots were washed
before being incubated with the appropriate secondary antibody. Blots were developed with enhanced
chemiluminescence and quantified using Lumino Graph II (ATTO; Tokyo, Japan).

4.4. MTT Assay

Neurotoxicity was assessed by the MTT assay according to a previously reported protocol [63]. In
brief, mature cerebral cortex cultures were moved to Neurobasal Medium with 2% B-27 supplement, 25
µM sodium glutamate, and penicillin/streptomycin before plating on 96-well plates (1.5 × 106 cells/well,
100 µL). Four days after plating, the medium was replaced with sodium glutamate-free Neurobasal
Medium. Half the medium was exchanged for fresh medium 7 or 8 d after plating, and all the medium
was exchanged for Neurobasal Medium with 2% B-27 supplement minus AO (Gibco; Grand Island, NY,
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USA), and penicillin/streptomycin containing DMSO stock of 1 (10 d after plating). After incubation
for 24 h, the culture medium was replaced with a medium containing 0.5 mg/mL MTT, and cells were
incubated for 15 min at 37 ◦C. After removing the medium, 2-propanol (100 µL) was added to lyse the
cells, and absorbance was measured at 595 nm with an absorption spectrophotometer (MultiScan JX,
Thermo Scientific; Waltham, MA, USA). The absorbance measured following vehicle treatment (DMSO
final concentration = 0.1%) was fixed as 100% for comparison.

4.5. Generation and Characterization of Human iPS-Derived Neurons

Human iPS cells of Alzheimer’s patients were generated as described from skin fibroblasts [43,57]
and maintained using StemFit AK02N medium (Ajinomoto, Tokyo, Japan) [64] and expanded for neural
differentiation. To establish a robust and rapid differentiation method, we utilized direct conversion
technology. We differentiated iPS cells into neurons by using a direct conversion method, as previously
described [43]. Briefly, we transduced human NGN2 cDNA by using the piggyBac transposon system,
transiently under tetracycline-inducible promoter (tetO), and converted iPS cells into neuronal cells
with more than 96% purity.

4.6. Electrochemiluminescence Assays

Aβ species in culture media after 24 h cultivation with PKC ligands were measured by human (6E10)
Aβ 3-VPlex Kit (Meso Scale Discovery; Rockville, MD, USA). This assay uses the 6E10 anti-β-amyloid
antibody to capture Aβ peptides and SULFO-TAG-labeled C-terminus specific anti-Aβ antibodies for
detection by electrochemiluminescence with Sector Imager 2400 (Meso Scale Discovery). Quantified
Aβ values were adjusted using total protein in neurons and compared among conditions.

4.7. ToxiLight Assay

Cytotoxicity was determined to measure the release of the enzyme adenylate kinase from damaged
cells [44] using The ToxiLightTM Non-destructive Cytotoxicity BioAssay Kit (Lonza; Walkersville, MD,
USA). In brief, the cultured medium was collected after 24 h incubation, and applied to the assay.

4.8. Statistical Analyses

The differences were subjected to one-way analysis of variance (ANOVA) followed by Bonferroni’s
test; p values < 0.05 versus vehicle were considered significant.
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Abbreviations

Aβ Amyloid β-protein
AD Alzheimer’s disease
ADAM10 A disintegrin and metalloproteinase 10
APP Amyloid β precursor protein
BACE1 β-site amyloid β precursor protein cleaving enzyme 1
DMSO Dimethyl sulfoxide
ECE1 Endothelin converting enzyme 1
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ELISA Enzyme-linked immunosorbent assay
E-MEM Eagle’s minimal essential medium
FBS Fetal bovine serum
HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
HRP Horseradish peroxidase
HS Horse serum
iPS Induced pluripotent stem
MCI Mild cognitive impairment
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PBS Phosphate-buffered saline
PKC Protein kinase C
sAPP Secreted amyloid β precursor protein
WB Western blotting
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