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Mutations in Kirsten rat-sarcoma (KRAS) are well appreciated to be major drivers

of human cancers through dysregulation of multiple growth and survival path-

ways. Similar to many other non-kinase oncogenes and tumor suppressors,

efforts to directly target KRAS pharmaceutically have not yet materialized. As a

result, there is broad interest in an alternative approach to develop therapies

that induce synthetic lethality in cancers with mutant KRAS, therefore exposing

the particular vulnerabilities of these cancers. Fueling these efforts is our

increased understanding into the biology driving KRAS mutant cancers, in partic-

ular the important pathways that mutant KRAS governs to promote survival. In

this mini-review, we summarize the latest approaches to treat KRAS mutant can-

cers and the rationale behind them.

O nocogenic mutations in Kirsten rat-sarcoma (KRAS)
occur in up to 25% of human cancers, positioning them

as the most common gain-of-function mutations in human
cancer.(1–3) Despite the development of small-molecule inhibi-
tors that interfere with the localization of KRAS or inhibit the
activity of mutant KRAS,(4,5) oncogenic KRAS remains a
largely elusive target of drug development. Thus, blocking
mutant KRAS may require a strategy more akin to one
designed to counter the loss of a tumor suppressor – via
targeting of vital downstream effector pathways. Along these
lines, a number of studies in KRAS mutant cancers have led to
strategies to target these pathways. Below, we will discuss the
main effector pathways of KRAS and current approaches to
develop combination therapies targeting these KRAS-effector
pathways. Also, other approaches targeting KRAS, including
synthetic lethal screening, will be summarized.

Downstream Effectors of KRAS

Kirsten rat-sarcoma protein cycles between an inactive GDP-
bound state and an active GTP-bound state. A number of stimuli,
including ligands that activate growth factor receptors and
G-protein coupled receptors on the cell membrane, lead to the
activation of RAS guanine exchange factors (GEFs).(6) This, in

turn, results in the formation of active GTP-bound KRAS. In
wild-type KRAS cells, KRAS is subsequently inactivated by
Ras-GTPase activating proteins (RasGAPs). However, onco-
genic KRAS mutations, which occur most frequently at amino
acids 12, 13, and 61, render KRAS proteins resistant to RasGAP-
mediated GTP-hydrolysis. This leads to constitutive activation
of KRAS protein. Mutant KRAS activates multiple downstream
effector pathways, resulting in the uncontrolled growth, prolifer-
ation, and survival of cancer cells (Fig. 1). Amongst these, three
major effector pathways have emerged as being critical to
mutant KRAS-mediated transformation and will be discussed in
greater detail: the RAF-MEK-ERK pathway, the phosphatidyl-
inositol 3-kinase (PI3K) pathway, and the Ral-NF-kB pathway.

RAF-MEK-ERK pathway. The RAF serine ⁄ threonine kinases
bind KRAS via their RAS Binding Domain (RBD). RAF activa-
tion in turn activates the serine ⁄ threonine kinases MEK1 and
MEK2, which in turn activate ERK. The requirement for
the RAF-MEK-ERK (MAPK) pathway in KRAS-mediated
transformation and tumorigenesis has been well established.(7)

However, inhibition of the MAPK pathway alone is not suffi-
cient to eradicate KRAS mutant tumors. MEK inhibitors exhibit
cytostatic rather than cytotoxic activity, inhibiting proliferation
but not inducing significant apoptosis.(8,9) In accordance with
these preclinical studies, the MEK inhibitor selumetinib (Astra-
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Zeneca, Macclesfield, UK) failed to show clinical activity in an
unselected pretreated patient population with a high-rate of
KRAS mutations.(10–12)

PI3K pathway. The precise role of KRAS in regulating PI3K
has been difficult to elucidate because PI3K can be activated
by multiple upstream signals, not all of which integrate KRAS
to promote downstream signaling. Several lines of evidence
suggest PI3K associates with, and is activated by KRAS, thus
serving as a principal mechanism of PI3K regulation. The
binding of KRAS to p110a induces a conformational change
in p110a, which opens and orients the active site of KRAS
toward its substrate. Although RBD mutants of p110a fail to
bind KRAS, they still maintain enzymatic activity. Interest-
ingly, mice engineered to express RBD-mutant p110a cannot
develop mutant Kras-driven lung tumors.(13) Furthermore, by
using an inducible mouse model of mutant Kras-driven lung
cancer, Downward and colleagues showed that loss of Kras-
p110a binding leads to long-term tumor stasis and partial
regression.(14) These elegant studies showed that the interaction
between mutant KRAS and p110a is not only required for
tumorigenesis but also for tumor maintenance.
In addition to direct activation by KRAS, PI3K can also be

activated by receptor tyrosine kinases (RTKs) in KRAS mutant
cancers. We have reported in colorectal cancers that insulin-
like growth factor 1 receptor (IGF-IR) exerts dominant control
over PI3K signaling through binding to insulin receptor sub-
strate (IRS) adaptor proteins even in the presence of mutant
KRAS.(15) PI3K activity is also dependent on basal IGF-IR
activity in KRAS mutant lung cancer, although in this context
mutant KRAS is still thought to be involved in PI3K activa-
tion. It has been shown that IGF-IR activation causes IRS-1:
p85 complex formation, which in turn relieves an inhibitory
effect of p85 on PI3K signaling.(16) Additionally, a recent
study showed the KRAS mutant NCI-H358 non-small cell lung
cancer (NSCLC) cell line still remains dependent on ERBB3
for PI3K signaling.(17) Altogether, these studies suggest numer-
ous contributors, including mutant KRAS and RTKs, activate
PI3K signaling in KRAS mutant cancers. Another confounding
issue is that the role of mutant KRAS may further differ
depending on other mutations that may be more or less preva-
lent among the different tissue types of origin. For example,
oncogenic mutations in KRAS and PIK3CA often coexist in
colorectal cancer but less often in pancreatic cancer.(18) The
coexistence of KRAS and PIK3CA mutations in colorectal can-

cers suggests that mutant KRAS is not sufficient for robust
PI3K activity. Similar to MEK inhibitors, single agent PI3K
inhibitors are also ineffective for treatment of KRAS mutant
cancers; murine lung cancers driven by oncogenic Kras do not
respond to the PI3K ⁄mammalian target of rapamycin (mTOR)
inhibitor, NVP-BEZ235.(19) Furthermore, KRAS mutations pre-
dict resistance to PI3K inhibitors in cell culture experi-
ments.(20,21)

Ral-NF-jB pathway. While the RAF-MEK-ERK and PI3K
pathways have been established as key KRAS-effector path-
ways, KRAS has a number of additional effectors. Among
them, the guanine exchange factors of the Ras-like (Ral) GTP-
ases (RalGEFs) have emerged as important effectors of KRAS.
Ras-like GTPases directly interact with RAS, and subsequently
activates Ral small GTPases.(22,23) Two Ral small GTPases,
RalA and RalB, appear to have distinct biological roles in
KRAS mutant cancers. For instance, inhibition of RalA alone
is enough to inhibit tumor initiation, while RalB is vital for
tumor invasion and metastasis.(24–26) Similar to KRAS, acti-
vated Ral-GTP interacts with multiple downstream effector
proteins including RalBP1, which promotes membrane ruffling
and filopodia formation through Rac1 and CDC42, as well as
receptor trafficking via endocytic regulation.(27) Additional ef-
fectors of Ral are the octometric exocyst subunits Sec5 and
Exo84, important for secretory vesicle delivery to different
membrane compartments.(28,29) Lastly, active RalB signaling
causes the association of Sec5 complex with the atypical IkB-
related protein kinase TBK1 to promote cell survival through
activation of the oncogenic transcription factor NF-jB.(30)

Targeting PI3K-AKT and MEK-ERK Signaling by
Combinatorial Approaches

The lack of efficacy seen following suppression of single effec-
tor pathway (e.g. use of MEK inhibitors or PI3K inhibitors) in
KRAS mutant cancers suggests that a combinatorial approach
targeting multiple effector pathways is needed. When cancer
cells exhibit dependency on a single oncogene (“oncogene
addiction”), inhibition of the oncogene leads to downregulation
of both PI3K ⁄AKT and MEK ⁄ERK signaling in most instances.
Importantly, combination of both a PI3K inhibitor and a MEK
inhibitor is sufficient to recapitulate much of the apoptosis and
suppression of tumor growth induced by EGFR inhibitors in
EGFR mutant NSCLC.(31) Moreover, HER2 amplified and ⁄or
PIK3CA mutant breast cancers are particularly sensitive to sin-
gle agent PI3K inhibitors, which surprisingly downregulate
both PI3K and MEK ⁄ERK signaling in these cancers, resulting
in apoptosis.(32) These results suggest that concomitant disrup-
tion of PI3K ⁄AKT and MEK ⁄ERK signaling may underlie
much of the antitumor effects observed with targeted therapies
in oncogene-addicted models. Consistent with this concept,
pharmaceutical inhibition of both the MEK and PI3K pathways
has shown durable responses in KRAS mutant cancers in
vivo.(8,19)

Currently, a large number of clinical trials to assess the
combination of PI3K inhibitors and MEK inhibitors are ongo-
ing (Table 1). A recent dose-escalation trial tested the combi-
nation of the dual PI3K ⁄mTOR inhibitor SAR245409 (Sanofi,
Paris, France) with the MEK1 ⁄2 inhibitor pimasertib (Merck
KGAA, Darmstadt, Germany) in 46 cancer patients. Among
the patients, two partial responses were observed: one in a
patient with KRAS mutant colorectal cancer whose tumor
exhibited neuroendocrine features, and a low-grade ovarian
cancer patient with simultaneous KRAS and PI3KCA muta-

Fig. 1. Effector pathways of Kirsten rat-sarcoma (KRAS). Proteins
highlighted green are pharmacologically targetable.
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tions. Grade 3 and 4 toxicities were infrequent, with the most
common grade 3 event being skin rash in 14% of patients.(33)

In a separate trial combining the PI3K inhibitor BKM120
(Novartis, Basel, Switzerland) and the MEK inhibitor trameti-
nib (GlaxoSmithKline, Brentford, UK), three patients with
KRAS mutant ovarian cancer achieved partial responses among
66 patients in an unselected population.(34) Based on these
three responses, this trial is expanding cohorts to specifically
include patients with KRAS or BRAF mutant tumors. These
results suggest that the combination of PI3K and MEK inhibi-
tors has activity, but the activity appears relatively limited.
This lack of robust activity seems to be attributed to the
difficulty of sufficiently suppressing both pathways without
toxicities in a given patient. For example, a trial combining
MK-2206 (Merck), an AKT inhibitor, and selumetinib, four of
eight patients demonstrated biologically significant inhibition
in one marker; however, at the maximum tolerated dose no
patient had ≥70% inhibition of both targets.(35)

Alternative therapeutic strategies targeting RTKs that
indirectly suppress the PI3K pathway in combination with
MEK inhibition may be more tolerable, and as a consequence
more effective. As mentioned, the IGF-IR is largely responsi-

ble for PI3K activation in KRAS mutant colorectal and lung
cancer cell lines, and the combination of IGF-IR and MEK
inhibitors results in tumor regressions in these xenografts.(15,16)

This approach is currently being evaluated in a phase I ⁄ II
trial of IGF-IR antibody ganitumab (Amgen, Thousand Oaks,
CA, USA) combined with the MEK inhibitor MEK162
(Novartis) in KRAS mutant colorectal and pancreatic cancer
and BRAF mutant melanoma (ClinicalTrilas.gov registry num-
ber, NCT01562899).

Targeting the Apoptotic Machinery

As mentioned above, in cancers addicted to a single oncogene,
effective target inhibition generally results in apoptosis. This
process involves the downstream BCL-2 family of proteins,
which act as guardians of mitochondria-mediated apoptosis.
For example, in EGFR mutant NSCLCs, treatment with an
EGFR inhibitor shifts the balance of pro- and anti-apoptotic
BCL-2 family members, reducing the expression of anti-apop-
totic MCL-1 as a result of PI3K ⁄mTORC1 inhibition,(31) and
increasing the expression of pro-apoptotic BIM as a result of
MEK ⁄ERK suppression, leading to apoptosis.(31,36) In addition,

Table 1. Currently ongoing trials combining phosphatidylinositol 3-kinase (PI3K) inhibitor and MEK inhibitor

NCT no. Phase Company PI3K inhibitor MEK inhibitor Patient selection

01347866 I Pfizer

(New York,

NY, USA)

PF-05212384 (PI3K ⁄mTOR inhibitor) PD-0325901 At the MTD dose, further assessment of these

combinations will be done in patients with

KRAS mutated colorectal cancer

01363232 Ib Novartis BKM120 (pan PI3K inhibitor) MEK162 At the MTD dose, this combination is explored

in patients with EGFR mutant NSCLC, whom

have progressed on EGFR inhibitors and triple

negative breast cancer, as well as other

advanced solid tumors with KRAS, NRAS,

and ⁄ or BRAF mutations

01390818 I EMD Serono

(Rockland,

MA, USA)

SAR245409 (PI3K ⁄mTOR inhibitor) Pimasertib Locally advanced or metastatic solid tumors

01155453 Ib Novartis BKM120 (pan PI3K inhibitor) Trametinib At the MTD dose, further assessment will be

done in patients with KRAS or BRAF mutated

NSCLC, ovarian, and pancreatic cancer

01859351 I Wilex

(M€unchen,

Germany)

WX-037 (pan PI3K inhibitor) WX-554 Solid tumor

01337765 Ib Novartis BEZ235 (PI3K ⁄mTOR inhibitor) MEK162 At the MTD dose, this combination was

assessed in patients with EGFR mutant NSCLC,

whom have progressed on EGFR inhibitors and

triple negative breast cancer, as well as other

advanced solid tumors with KRAS, NRAS,

and ⁄ or BRAF mutations

01392521 Ib Bayer

(Leverkusen,

Germany)

BAY80-6946

(pan class I PI3K inhibitor)

BAY86-9766 Advanced cancer

00996892 Ib Genentech

(San Francisco,

CA, USA)

GDC-0941 (Pan PI3K inhibitor) GDC-0973 Locally advanced or metastatic solid tumors

01449058 Ib Novartis BYL719 (PI3K alpha-specific inhibitor) MEK162 Advanced solid tumors or AML or high risk and

very high risk MDS, with documented RAS or

BRAF mutations

01248858 I GlaxoSmithKline GSK2126458 (pan PI3K ⁄mTOR inhibitor) Trametinib Advanced solid tumors

AML, acute myeloid leukemia; EGFR, epidermal growth factor receptor; MDS, myelodysplastic syndromes; MEK, mitogen-activated protein kinase
kinase; MTD, Maximum Tolerated Dose; mTOR, mammalian target of rapamycin; NCT, national clinical trial that is given to each registered clini-
cal trial; NSCLC, non–small-cell lung cancer; PI3K, phosphatidylinositol 3-kinase.
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a recent study using engineered mice deficient for the pro-
apoptotic BCL-2 family members BIM or PUMA provided
evidence that BIM and PUMA are both key apoptotic effectors
of tyrosine kinase inhibitors in EGFR mutant NSCLC and
HER2 amplified breast cancer.(37)

The TBK1 ⁄BCL-XL pathway. In addition to the PI3K and
MEK ⁄ERK pathway, mutant KRAS maintains proliferation
and evades apoptosis through other pathways. For instance,
shRNA screening using KRAS mutant cancer cell lines identi-
fied TBK1 as a synthetic lethal partner of oncogenic KRAS.
Interestingly, BCL-XL, a known NF-jB target, was identified
as a TBK1-regulated gene. Overexpression of BCL-XL rescued
apoptosis induced by KRAS or TBK1 knockdown in the NCI-
H23 KRAS mutant cell line.(38)

Combination of MEK inhibitor with BCL-XL inhibitor. Pharma-
cological inhibition of the MEK ⁄ERK pathway is relatively
more achievable compared with the PI3K pathway.(39,40)

Therefore, MEK inhibitor therapy could be a backbone for
combinatorial approaches for KRAS mutant cancers. To this
point, shRNA screening was performed to identify genes that,
when inhibited, cooperate with MEK inhibitors to reduce cell
survival in KRAS mutant cell lines.(41) BCL-XL emerged as a
top hit through this approach. That is, BIM induction follow-
ing MEK inhibition is not enough to cause apoptosis, but
BCL-XL knockdown disrupts an inhibitory complex between
BIM and BCL-XL, leading to apoptosis in the presence of
MEK inhibitor. Induction of apoptosis is recapitulated by com-

bining the BCL-2 ⁄BCL-XL inhibitor navitoclax (ABT-263)
with a MEK inhibitor. Two additional studies have also shown
the efficacy of this combination.(42,43)

Combination of mTORC1 ⁄ 2 inhibitor and BCL-2 ⁄BCL-XL inhibi-

tor. We have recently showed KRAS mutant colorectal cancers
are particularly vulnerable to simultaneous inhibition of the
BCL-2 anti-apoptotic proteins BCL-2, BCL-XL and MCL-
1.(44) Pure mTORC catalytic site inhibitors downregulated
MCL-1 in KRAS mutant colorectal cancers, and targeting
KRAS with shRNA similarly reduced mTORC1 signaling and
MCL-1 levels, suggesting MCL-1 to be a vital KRAS-effector
molecule in these cancers. When combined with the BCL-2
⁄BCL-XL inhibitor navitoclax, the mTORC1 ⁄2 inhibitor
AZD8055 induced tumor regressions in KRAS mutant human
colorectal cancer xenografts and Kras mutant genetically
engineered mouse models of colorectal cancers. In all, this
study provides the rationale to use mTORC inhibitors in com-
bination with BCL-2 ⁄BCL-XL inhibitors in KRAS mutant
colorectal cancers. Altogether, these data mark the apoptotic
machinery as an attractive target to treat KRAS mutant cancers
(Fig. 2).

Combination of MEK inhibitor and docetaxel. Several studies
have demonstrated that cytotoxic agents, including microtubule
stabilizing drugs, stimulate MAPK signaling upon administra-
tion. Combining inhibitors of MAPK signaling with one such
drug, docetaxel, results in an enhanced anti-tumorigenic pheno-
type.(45) One of the key mechanisms of this synergy is induc-
tion of pro-apoptotic proteins by inhibiting MAPK signaling,
which reduces the threshold for apoptosis induction by cyto-
toxic agents. In fact, prolonged exposure to the MEK inhibitor
selumetinib induced BIM expression in the KRAS mutant
HCT-116 xenograft model. A prospective randomized phase II
study assessing the impact of adding selumetinib to docetaxel
in previously treated patients with advanced KRAS mutant
NSCLC was conducted based on these pre-clinical results.
Despite no differences in median overall survival, there was
significant improvements in both progression-free survival and
objective response rate in patients administered selumetinib.(46)

Concurrently with the clinical trials in human subjects, a
Kras mutant transgenic mouse model was used to optimize
treatment modalities, a so-called “co-clinical” trial.(47) This
mouse study revealed that adding selumetinib was beneficial
for mice with Kras or Kras ⁄ p53 mutant lung cancer, but
not with Kras and Lkb1 mutations. Interestingly, Kras ⁄Lkb1
tumors show substantially less phosphorylation of ERK, sug-
gesting that the ERK pathway is less active in these cancers.
Furthermore, integrated genomic and proteomic profiles
revealed SRC is activated in Kras ⁄Lkb1 tumors,(48) suggest-
ing that Kras ⁄Lkb1 mutant tumors are a distinct subset of
KRAS mutant cancers that may be less dependent on ERK
signaling and more dependent on other pathways. Intrigu-
ingly, another recent report suggests that NSCLCs harboring
mutations both in KRAS and LKB1 are addicted to coatomer
complex I (COPI)-dependent lysosome acidification, which
participates in retrograde transport, is required for endosome
maturation and is a CDC42 effector required for CDC42
transformation.(49)

Identifying Synthetic Lethal Interaction with KRAS

Recent high-throughput screening has provided an expanded
list of targets for KRAS mutant tumors (Table 2). For example,
siRNA screening in KRAS mutant NSCLC cell lines identified
the transcription factor GATA2 as necessary for the survival

Fig. 2. Effector proteins of Kirsten rat-sarcoma (KRAS) and apoptosis.
The BCL-2 family of proteins regulates mitochondrial-driven apoptosis
in KRAS mutant cancers. The BCL-2 family consists of three subfami-
lies: the pro-survival members such as BCL-2 or MCL1, the pro-apopto-
tic BCL-2 homology domain 3 (BH3)-only proteins such as BIM and
PUMA, and the pro-apoptotic BAX and BCL-2 antagonist ⁄ killer (BAK;
not shown in this figure). The anti-apoptotic function of oncogenic
KRAS is mediated by several effector pathways that converge on the
BCL-2 family of proteins. The PI3K effector pathway suppresses pro-
apoptotic protein PUMA and BAX, the RAS–RAF pathway downregu-
lates the pro-apoptotic protein BIM, and the mTORC1 pathway
regulates MCL-1. In addition, the Ral-NF-jB pathway has been impli-
cated in the regulation of BCL-XL. Thus, KRAS suppresses cell death
responses through regulation of both pro-apoptotic and anti-apopto-
tic BCL-2 family proteins.
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of these cancers.(50) GATA2 maintains cell survival via the
proteasome machinery, the IL-1 ⁄NF-jB signaling pathway,
and the Rho-signaling cascade. Combined inhibition of the
proteasome and Rho signaling recapitulates the effect of
GATA2 loss on KRAS-driven tumorigenesis. CDC6, a critical
regulator of DNA replication, has also been identified as a syn-
thetic lethal protein with mutant KRAS.(51) Bioinformatic
analysis suggests proteasome components functionally interact
with CDC6, and knockdown of CDC6 showed additional syn-
thetic lethal effects with proteasome inhibitor treatment. Other
targets identified by synthetic lethal approaches include, as dis-
cussed above, TBK1,(38) as well as COPI,(49) STK33,(52)

TAK1,(53) APC ⁄C,(54) CDK4,(55) Polo-like kinase (PLK) 1,(54)

and reactive oxygen species (ROS).(56) It should be cautioned
that a major caveat associated with RNAi screening is poten-
tial off-target effects and the potential disconnect between
reduction of total expression and inhibition of kinase function.
For example, while STK33 knockdown was synthetic lethal
for KRAS mutant cancers, inhibition of STK33 kinase activity
does not appear to be effective therapy for KRAS mutant can-
cers.(57)

Other Means to Target KRAS

“Outlier kinase” approach. Using an innovative approach of
identifying “outlier kinase” expression through analysis of
transcriptome sequencing data from a large number of can-
cers, polo-like kinases (PLKs) were noted to be overexpres-
sed in a subset of KRAS mutant pancreatic cancers, and these
cancers had specific sensitivity to the PLK-pan inhibitor, BI-
6727.(58)

HSP90 inhibitor combinations. Pharmaceutically targeting
HSP90 has attracted significant interest. HSP90 inhibitors tar-
get HSP90 client proteins resulting in their rapid degradation.
Although KRAS is not a client protein of HSP90, KRAS
mutant NSCLCs are exquisitely sensitive to HSP90 inhibi-
tion,(59) most likely through the HSP90-inhibitor-mediated deg-
radation of downstream signaling proteins such as C-RAF(60)

as well as the production of ROS.(61) Interestingly, HSP90
inhibitors may have particular activity in combination with the
mTOR inhibitor rapamycin in KRAS ⁄p53 mutant NSCLCs
through rapamycin-mediated suppression of glutathione in the
presence of HSP90-inhibitor induced ROS.(61)

Targeting posttranslational modification of KRAS. Lastly,
targeting mutant KRAS by interfering with important KRAS

post-translational modifications has recently been explored.
The phosphorylation of KRAS on Serine 181, which is medi-
ated by PKC,(62) is indispensable for full KRAS oncogenic
activity.(63,64) As such, treatment of KRAS mutant cancers with
PKC inhibitors has anti-proliferative and pro-apoptotic activ-
ity,(63,64) marking PKC as an intriguing therapeutic target.

Conclusion

Targeted therapies that directly disrupt oncogene function have
changed the way cancers are treated. While one of the most
obvious targets is oncogenic KRAS, mutated in roughly one-
fourth of all cancers, direct targeting of KRAS has remained
largely elusive. Instead, co-targeting pathways downstream of
mutant KRAS has emerged in pre-clinical studies as a promis-
ing therapeutic strategy. However, validation of these pre-clini-
cal studies has been hindered by unanticipated challenges,
such as dose-limiting toxicity of combinatorial inhibition of
PI3K and MEK ⁄ERK signaling. Alternatively, blocking
upstream activators of PI3K, such as IGF-IR, in combination
with MEK inhibition, may be a less toxic and thus more suc-
cessful strategy. More recently, targeting the apoptotic machin-
ery in KRAS mutant cancers has garnered attention. For
instance, mTORC inhibitors in combination with BCL-2 ⁄BCL-
XL inhibitors showed dramatic pre-clinical efficacy in KRAS
mutant colorectal cancers in vivo. Moreover, the identification
of novel targets that offer synthetic lethality with mutant KRAS
has paved the way toward new therapeutic strategies. How-
ever, whether effective drugs can be designed to disrupt these
targets, and whether these drugs can be administered at doses
high enough to inhibit their targets, remains to be seen. Lastly,
the identification of already clinically available drugs that
show efficacy in subsets of KRAS mutant cancers, such as the
combination of docetaxel and selumetinib in KRAS mutant
NSCLC with wild type LKB1, may speed up the implementa-
tion of much needed novel therapies.
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Table 2. Candidate genes showing synthetic lethal interaction with Kirsten rat-sarcoma (KRAS)

Synthetic lethal genes

or pathways
Methodology Pharmacological inhibition References

TBK1 shRNA screening Not assessed 38

Coatomer complex I (COPI) Parallel screening of

chemical and genetic perturbations

Saliphenylhalamide A 49

GATA2 siRNA screening Bortezomib with Fasudil 50

CDC6 siRNA screening Bortezomib and topotecan 51

STK33 shRNA screening Specific inhibitor was subsequently developed,

but failed to suppress growth of cells

52, 57

TAK1 Expression data based

bioinfomatic analysis

5Z-7-oxozeaenol 53

Polo-like kinase (PLK) 1 and 2 shRNA screening and

outlier kinase analysis

BI-2536 54, 58

CDK4 Mouse genetic studies PD0332991 55

Reactive oxygen species Chemical screening Lanperisone 56

Fasudil is a Rho signaling inhibitor, approved for the treatment of cerebrovascular spasm in Japan.
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