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Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-
CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows
reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular
range of about 140∘, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an
object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to
reconstruct a region-of-interest (ROI) from truncated data in a theoretically exact fashion via the total variation (TV)minimization
under the condition that the ROI is piecewise constant. In this paper, we employ a TVminimization interior tomography algorithm
to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered
backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering con-
firms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.

1. Introduction

Teeth are important and interesting biomineralized tissues
with remarkable mechanical properties through their hierar-
chy of structures [1]. Enamel, a hard, resistantmaterial almost
totally composed of carbonated apatite (cAp), covers the
outer, exposed portion of the tooth. The tooth’s interior (and
the majority of its volume) consists of dentin, a tough com-
posite of carbonated apatite (cAp) and collagen. Prominent
features within dentin are the tubules that extend from near
the junctionwith enamel to the pulp cavity in the tooth’s inter-
ior. Tubule diameters are typically 1-2 𝜇m, and tubule spacing
is ∼5–10𝜇m. Smaller channels called canaliculi run from the
tubules into the surrounding dentin, and their diameters are
in the range of 100–300 nm [2].

Dentin tubules and their surroundings remain of interest
not just tomicroanatomists but also to those studying the effi-
cacy of prostheses’ attachment.The small dimensions of den-
tin tubules make them difficult to evaluate and have moti-
vatedmajor research efforts. Up to date, tubules and their sur-
roundings have been characterized with microradiography
[3], scanning electron microscopy (SEM) [4], transmission
electron microscopy (TEM) [5], secondary ion mass spec-
troscopy (SIMS) [6] position-resolved X-ray diffractometry
[7], micro-CT [8, 9] and nano-CT [10, 11].With the exception
of the CT techniques, these techniques provide essentially 2D
views of intrinsically 3D tubules.

Of particular interest, nano-CT provides the requisite 3D
spatial resolution for studying dentin’s tubules and canaliculi.
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However, exact nano-CT reconstruction typically requires
that the specimen remains within the field-of-view (FOV)
during a 180∘ scan. Suitable cross sections, say 25𝜇m across,
can be machined from thin wafers of dentin using focused
ion beams, but this process is quite slow and would limit the
number of tubules that could be examined. Local or region-
of-interest (ROI) tomography is quite valuable for recon-
structing samples larger than the FOV but requires reason-
able X-ray transmissivity for all projection directions and
would be subject to the throughput limitations. Plate-like
samples 25–50𝜇m thick and millimeters in lateral extent
would contain hundreds of tubules extending significant
lengths, but any attempts at nano-CT reconstruction would
suffer from significant data truncation and angular limitation,
significantly degrading image quality. If plate-like dentin
samples could be used for nano-CT, dozens of tubules would
be imaged without extraordinary sample preparation efforts.
Such datasets would greatly improve understanding of tubule
morphology and its variability within a tooth. Accordingly,
we performed synchrotron nano-CT on a thin dentin plate
and reconstructed its microstructure using an interior tomo-
graphy method.

In classic CT theory, an interior ROI cannot be recon-
structed exactly from truncated projections. As a result, fea-
tures outside theROImay seriously disturb the features inside
the ROI, often hiding or distorting vital information. A recent
progress demonstrated that the interior problem can be
exactly and stably solved if a subregion in the ROI is known
[12–15], which is referred to as interior tomography. However,
it can be difficult to obtain precise prior knowledge of a sub-
region in many cases. A further progress in interior tomo-
graphy was inspired by compressive sensing (CS) theory.The
main idea of CS theory is that an image can be reconstructed
from a rather limited amount of data as long as an underlying
image can be sparsely represented in an appropriate domain
and determined from these data [16–18]. Inspired by CS the-
ory, it was found that an interior ROI can be exactly and stably
reconstructed via the total variation (TV)minimization if the
ROI is piecewise constant [19, 20].

For dentin image reconstruction, we employed an order-
ed-subset simultaneous algebraic reconstruction technique
(OS-SART) to reconstruct the dentin slice images [21–24].
After analyzing the characteristics of the dentin slices, we
found that the dentin slice can be divided into two types
of regions: the pores and the dentin between the pores. The
attenuation coefficient inside the pores differs from that of the
dentin, but both are approximately constant. Therefore, the
sample images can be sparsified by a discrete gradient trans-
form (DGT), and the total variation (TV) minimization can
be used to reconstruct high-quality dentin images from trun-
cated projections even if the angular range of a scan is limited,
as we observed in this project.

This paper is organized as follows. Section 2 describes a
specimen anddata acquisition, characteristics of the data, and
our interior tomography algorithm. Section 3 compares the
reconstructions by interior tomography and filtered backpro-
jection (FBP) methods. Section 4 discusses relevant issues
and concludes the paper.

2. Materials and Methods

2.1. Sample Preparation. A thin wafer of bovine dentin was
cut from amolar using a diamondwafering saw (Isomet 1000,
Buehler, Lake Bluff, IL) to a thickness of about 150𝜇m. The
wafer was thinned to ∼25–50𝜇m by polishing with 1000 grit
SiC paper between two glass microscope slides. Its lateral
dimensions were greater than 2mm.

2.2. Nano-CT. Compared to medical and micro-CT, nano-
CT uses an X-ray lens to bring spatial resolution into the
nanometer domain. To date, better than 20 nm has been
achieved for routine use with multi-keV hard X-ray radiation
which is able to penetrate hundreds of microns of dental
tissue [25].

The dentin specimen was imaged by the transmission
X-ray microscope at Sector 32-ID of the Advanced Photon
Source, ArgonneNational Laboratory, USA.The synchrotron
nano-CT system can be viewed as in a typical parallel-beam
geometry and employs monochromatic 8 keV X-radiation.
TheX-ray detector contained 2048 × 2048 pixels with 12.5 nm
pixel size and 25 × 25 micron FOV. The angular scanning
range for nano-CTwas ±70∘ with a 0.25∘ steps, producing 561
projections.The voxel size in the reconstruction was 12.5 nm.
Due to the small FOVof the nano-CT system, the X-ray beam
could not cover the specimen completely, and all of the pro-
jections were truncated. Figure 1 shows a truncated projec-
tion of the specimen in which several tubules can be clearly
seen running from upper left to lower right. Figure 2 is an
extracted sinogram for one image slice along the marked
line in Figure 1. Preliminary reconstructions revealed that the
specimen consisted of two types of material, pores (tubules
and canaliculi) and the dentin between the pores. The speci-
men is, therefore, approximately piecewise constant.

2.3. Reconstruction Algorithm. The conventional CT
approach cannot exactly reconstruct an internal ROI only
from truncated projections through the ROI because this
interior problem does not have a unique solution in an
unconstrained setting. Interestingly, recent results show that
the interior problem is solvable if appropriate yet practical
prior information is available. In particular, if the attenua-
tion coefficient distribution on a small sub-region in an ROI
is known, or the attenuation coefficient distribution over
the ROI is piecewise constant, the interior problem has a
unique solution.Theoretically, a function can bewell approxi-
mated by piecewise constant functions, so the present dentin
specimen is modeled as being piecewise constant. In this
project, the piecewise-constant-model-based interior tomo-
graphy algorithmwas used to reconstruct dentin images from
truncated projections over a limited angular range. The
interior tomography algorithm is robust against noise by
minimizing the image TV. Specifically, we employed the
ordered-subset simultaneous algebraic reconstruction tech-
nique (OS-SART) for interior reconstruction of the dentin
specimen.

The imaging process can be modeled as a linear system
in terms of the popular pixel basis functions: 𝐴𝑓 = 𝑏, where
𝑏 = (𝑏

1

, . . . , 𝑏
𝑀

) ∈ 𝑅
𝑀 represents the truncated projection
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Figure 1: One truncated projection of the dentin specimen.
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Figure 2: Sinogram consisting of 561 truncated projections for the
slice marked by the red line in Figure 1.

data with𝑀 being the total projection number, 𝑓 = (𝑓
1
, . . . ,

𝑓
𝑁
) ∈ 𝑅

𝑁 denotes an object to be reconstructed with 𝑁

being the total pixel number, and 𝐴 = (𝑎
𝑖𝑗
) is the system

measurement matrix with 𝑖 = 1, . . . ,𝑀, 𝑗 = 1, . . . , 𝑁. The
major algorithmic steps are described as follows.

While theARTmethod is the first iterative algorithmused
for CT reconstruction [26], the SART is amajor refinement to
theART [27]. In recent years, some advanced techniqueswere
developed to accelerate the iterative reconstruction, among
which the ordered-subset (OS) scheme is very attractive. As
a result, the SART algorithm can be accelerated by the OS
scheme.This combination is called OS-SART [23, 24]. To for-
mulate an OS version of the SART technique, we assume that
the index set 𝐵 = {1, . . . ,𝑀} can be partitioned into 𝑇 non-
empty disjoint subsets 𝐵

𝑡
= {𝑖
𝑡

1

, . . . , 𝑖
𝑡

𝑀(𝑡)

} such that

𝐵 = {1, . . . ,𝑀} = ⋃

1≤𝑡≤𝑇

𝐵
𝑡
. (1)

Then, a possible version of the OS-SART formulation can
be expressed as

𝑓
𝑗

(𝑛+1)

= 𝑓
𝑗

(𝑛)

+ ∑
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where 𝑎
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The above OS-SART reconstruction method can be em-

powered by the CS technique to improve the image quality
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Figure 3: Dentin phantom.The circular region indicates a ROI, with
the line labeled “X” for subsequent profiling.

under less favorable measurement conditions. As mentioned
earlier, the discrete gradient transform (DGT) is a valid sparse
transform for dental images. Hence, a dentin image can be
reconstructed from truncated projections data via the ℓ

1
-

norm minimization of the DGT, which is the TV minimiza-
tion [19, 28]. Mathematically, it can be modeled as

min
𝑓

∇𝑓
1, subject to 𝐴𝑓 = 𝑏, 𝑓 > 0, (3)

where ‖∇𝑓‖
1

denotes TV of 𝑓, and

∇𝑓
1 = ∑

𝑖,𝑗

𝑑
𝑖,𝑗
, 𝑑
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= √(𝑓
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)
2

+ (𝑓
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𝑖,𝑗+1

)
2

,

(4)

where 𝑓
𝑖,𝑗

is a pixel value of the discrete 2D image and 𝑑
𝑖,𝑗

is
a discrete gradient.

Equation (3) can be implemented in two loops.The outer
loop implements OS-SART to reduce data discrepancy, and
the inner loop minimizes the image TV. In the inner loop, we
use the gradient descent method:

𝑓
(𝑚+1)

= 𝑓
(𝑚)

− 𝜆𝜔𝜐, (5)

where 𝜆 is a gradient descent control coefficient, 𝜐 =

(𝜕‖∇𝑓‖
1

/𝜕𝑓
𝑖,𝑗
)|
𝑓𝑖,𝑗=𝑓𝑖,𝑗[𝑛,𝑚]

is a gradient direction with 𝑓
𝑖,𝑗

=

𝑓
𝑖,𝑗
[𝑛,𝑚], 𝜔 = max(|𝑓(𝑚)|)/max(|𝜐|) is a scaling coefficient

of the gradient descent and n and m are the outer and inner
loop iteration indices, respectively.

Thewhole iteration process can be summarized in the fol-
lowing steps.

Step 1. Input measured data 𝑏 and an initial image 𝑓 = 0.

Step 2. Update the current image using OS-SART by (2).
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(a) (b)

(c) (d)

Figure 4: Reconstruction results. (a) The reconstructed ROI using FBP from 561 projections, (b) the reconstructed ROI using interior
tomography from 561 projections, (c) the reconstructed ROI using FBP from 141 projections, and (d) the reconstructed ROI using interior
tomography from 141 projections. The display window is [0, 585] cm−1.

263.25
234

204.75
175.5

146.25
117

87.75
58.5

29.25
0

80 100 120 140 160 180 200 220
Pixel number

Phantom value
FBP (561 projections)

FBP (141 projections)
Interior tomography
(141 projections)Interior tomography

(561 projections)

Th
e l

in
ea

r a
tte

nu
at

io
n 

co
effi

ci
en

t
(c

m
 −1

)

Figure 5: Profiles corresponding to the line “X” in Figure 3.

Step 3. Minimize the TV of the current image using the grad-
ient descent method by (5).

Step 4. Go to Step 2 until a stopping criterion is met.

In our implementation, the gradient descent control coef-
ficient was 𝜆 = 0.2, the TV iteration number was 𝑚 = 30,
and the OS-SART iteration number was 𝑛 = 20.

3. Results and Analysis

3.1. Numerical Simulation. To evaluate the performance of
interior tomography for studying the dentin specimen, we
designed a dentin phantom as shown in Figure 3. This phan-
tom has two distinct sizes of pores representing tubules and
canaliculi. The dentin phantom was made 25 𝜇m × 50 𝜇m in
size and discretized into a 150 × 300 matrix (the pixel size:
0.17 𝜇m× 0.17 𝜇m).The tubules and canaliculi outside a pre-
specified ROI represent structures that might affect the inter-
ior reconstruction. Because the dentin composition is similar
to cortical bone, we used cortical bone to mimic dentin
attenuation characteristics in the simulation.The linear atten-
uation coefficient of cortical bone was estimated as 117 cm−1
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Figure 6: Reconstruction results from the data with 1% Gaussian noise. (a) The reconstructed ROI using FBP from 561 projections, (b) the
reconstructed ROI using interior tomography from 561 projections, (c) the reconstructed ROI using FBP from 141 projections, and (d) the
reconstructed ROI using interior tomography from 141 projections. The display window is [0, 585] cm−1.

292.5

263.25

234

204.75

175.5

146.25

117

87.75

58.5

29.25

0

80 100 120 140 160 180 200 220

Pixel number

Phantom value
FBP (561 projections)

FBP (141 projections)

Th
e l

in
ea

r a
tte

nu
at

io
n 

co
effi

ci
en

t
(c

m
 −1

)

Interior tomography
(561 projections)

Interior tomography
(141 projections)

Figure 7: Profiles corresponding to the line “X” in Figure 3.

for an X-ray energy 8 keV according to the X-ray Attenuation
Databases reported by theNational Institute of Standards and

Technology (NIST).The scanning range was −70∘ to +70∘ (0∘
is for the normal to the plate-like specimen)with either a 0.25∘
or 1∘ angular increment and captured two groups of truncated
projection data (a total of 561 or 141 projections, resp.). We
then used FBP and CS-based interior tomography methods,
respectively, to reconstruct the ROI from the two datasets for
comparison.

The reconstructed results are in Figure 4. It can be seen
in Figure 4 that there were some streak and shadow artifacts
in the reconstructed images using FBP from truncated pro-
jections, and the interior tomographymethod could suppress
these artifacts effectively. Figure 5 shows the profiles along the
line “X” in Figure 4.

To test the stability of interior tomography against data
noise, we repeated the reconstructions from projections con-
taminated with 1% Gaussian noise level. The reconstructed
results from the data with 1% Gaussian noise are in Figure 6.
It can be seen that there were strong noises in the images
reconstructed using FBP from noise projections, and interior
tomography could suppress these noises well. Figure 7 shows
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Canaliculi
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Figure 8: ROI reconstruction of the dentin specimen. (a)The recon-
struction using FBP from 561 projections, (b) The reconstruction
using interior tomography from 561 projections, and (c) the recon-
struction of interior tomography from 141 projections. The display
window is consistent.

Table 1: RMSE values for the reconstructed ROI images.

Reconstruction protocol Noise-free
data

Data with 1%
noise

FBP (561 projections) 117.00 122.85
FBP (141 projections) 140.40 152.10
Interior tomography (561 projections) 9.65 10.59
Interior tomography (141 projections) 11.81 12.75

representative profiles corresponding to Figure 6, along the
line “X” in Figure 3.

Then, we used the root mean square error (RMSE) to
quantify the reconstructed results, which is expressed as

RMSE =
√
∑
𝑖,𝑗∈ROI (𝜇𝑖,𝑗 − 𝜇

𝑖,𝑗
)
2

𝑁ROI
,

(6)

where 𝜇
𝑖,𝑗

is the reconstructed pixel value, 𝜇
𝑖,𝑗

is the true
value of the phantom, and 𝑁ROI is the number of the pixels in
the ROI. The RMSE values are in Table 1.

3.2. Experimental Study. Supported by our encouraging nu-
merical results, we applied the interior tomography method
to study the dentin specimen. Figure 8 compares the recon-
structions of the dentin specimen with FBP and interior
tomography. The interior tomographic reconstructions were
performed from 561 and 141 projections, respectively. Similar

(a)

(b)

(c)

Figure 9: Reconstructed dentin structures. (a) The volume render-
ing based on the FBP reconstruction from 561 projections, (b) the
volume rendering based on the interior tomographic reconstruction
from 561 projections, and (c) the volume rendering based on the
interior tomographic reconstruction from 141 projections. The 3D
visualization display window is consistent.

to simulation analysis, there were some noise and artifacts in
the reconstructed results from actual data. In theory, the pixel
values in canaliculi and tubules regions should be similar and
smaller than that of dentin. From the FBP reconstruction
(Figure 8(a)), the gray values of the tubule region can be
found, which may be imperfect due to data noise (higher
brightness). Quantitatively, the slices reconstructed using
interior tomography produced less noises and artifacts than
the FBP image, and interior tomography has better stability
than FBP.

To analyze the internal microstructures, two volumes of
600 high-resolution dentin slices were reconstructed using
interior tomography from561 projections and 141 projections,
respectively. As a benchmark, a volume of the same 600 high-
resolution dentin slices was also reconstructed using FBP
from the 561 projections. All of these image volumes were
rendered, as shown in Figure 9. Figure 9(a) shows the 3D
result using FBP from truncated projections. In the interior
tomographic reconstructions from truncated projections,
noises and artifacts were significantly suppressed, producing
3D visualization with a better signal-to-noise ratio, even with
only 141 projections, as shown in Figures 9(b) and 9(c).
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4. Discussions and Conclusion

For high-resolution image reconstructions, the FBP algo-
rithm is very efficient and accurate. With truncated datasets,
however, the FBP method is subject to more noises and
artifacts than those reconstructed by the iterative approach.
In the piecewise-constant-model-based interior tomography
framework, we have employed several techniques to increase
convergence rate while improving image quality. First, an OS
version of the Landweber scheme has been used. Second, the
code has been optimized, combining the merits of C++ and
multicore techniques. Third, a high-performance computer
has been utilized to run our code program. Particularly, we
have simultaneously reconstructed 8 slices using 8 central
processing units (CPU).

The CS theory indicates that an image can be often accu-
rately reconstructed from a rather limited amount of data
when it can be sparsely represented in an appropriate domain.
The internal feature of the dentin specimen is complex, and
porosity is characteristic.We consider a dentin object approx-
imately piecewise constant.Then, a dentin image is sparsified
by a discrete gradient transform. Because the dentin projec-
tions are intrinsically truncated, it is inevitable that there are
some artifacts in the image reconstructed using the FBP
method. On the other hand, interior tomography is shown
to be promising in meeting the challenge. In particular, the
ability to generate a volume rendering with a high signal-to-
noise ratio from a very limited number of truncated projec-
tions is quite feasible using interior tomography.

For real data study, our purpose is to reconstruct a high-
quality dentin image. For 2D image reconstruction, there
were some shadows (lower brightness) in the canaliculi and
tubules regions reconstructed by the CS-based interior tomo-
graphy method, which could reflect the attenuation charac-
teristics of dentin interior structure. However, for 3D image
reconstruction, the CS-based interior tomography method
could suppress image artifacts and noises for the recon-
structed images from truncated projections. Moreover, the
CS-based interior tomography minimizes the TV of a recon-
structed image by the steepest gradient descent method to
generate a better looking 3D perspective view, which might
oversmooth fine details if the number of views is too small. In
the future studies we will analyze more dentin specimens to
evaluate the performance of interior tomography and use the
dictionary learning technique to capture more information.

In conclusion, we have developed a piecewise-constant-
model-based interior tomography method to deal with trun-
cated projections collected over a limited angular range, and
investigated the feasibility and potential of the interior tomo-
graphic application in dentin characterization. It has been
demonstrated that theCS-based interior tomographymethod
is advantageous for the dentin reconstruction from incom-
plete nano-CT data. Further improvements are underway to
facilitate dental research.
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