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Abstract: Lupus is a chronic, systemic inflammatory condition in which eicosanoids, 

cytokines, nitric oxide (NO), a deranged immune system, and genetics play a significant role. 

Our studies revealed that an imbalance in the pro- and antioxidants and NO and an alteration 

in the metabolism of essential fatty acids exist in lupus. The current strategy of management 

includes administration of nonsteroidal anti-inflammatory drugs such as hydroxychloroquine and 

immunosuppressive drugs such as corticosteroids. Investigational drugs include the following: 

1) belimumab, a fully human monoclonal antibody that specifically recognizes and inhibits 

the biological activity of B-lymphocyte stimulator, also known as B-cell-activation factor of 

the TNF family; 2) stem cell transplantation; 3) rituximab, a chimeric monoclonal antibody 

against CD20, which is primarily found on the surface of B-cells and can therefore destroy 

B-cells; and 4) IL-27, which has potent anti-inflammatory actions. Our studies showed that a 

regimen of corticosteroids and cyclophosphamide, and methods designed to enhance endothelial 

NO synthesis and augment antioxidant defenses, led to induction of long-lasting remission of 

the disease. These results suggest that methods designed to modulate molecular signatures of 

the disease process and suppress inflammation could be of significant benefit in lupus. Some 

of these strategies could be vagal nerve stimulation, glucose–insulin infusion, and administra-

tion of lipoxins, resolvins, protectins, and nitrolipids by themselves or their stable synthetic 

analogs that are known to suppress inflammation and help in the resolution and healing of the 

inflammation-induced damage. These strategies are likely to be useful not only in lupus but 

also in other conditions, such as rheumatoid arthritis, scleroderma, ischemia-reperfusion injury 

to the myocardium, ischemic heart disease, and sepsis.
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Introduction
Systemic lupus erythematosus (SLE), a disease of unknown etiology that is more 

common in women than in men, is characterized by nondestructive arthritis/arthral-

gias, a cutaneous rash, vasculitis, involvement of the central nervous system (CNS), 

and renal and cardiopulmonary manifestations. Although genetic, environmental, and 

sex hormonal factors have been implicated in the pathogenesis of SLE (also called as 

‘lupus’), it is known that several cytokines, nitric oxide (NO), free radicals, a deranged 

immune system, deficient antioxidant defenses, and toll-like receptors have a significant 

role both in the initiation and perpetuation of the inflammatory process observed. The 

fundamental process in lupus appears to be rendering DNA and RNA antigenic, which 

leads to the production of anti-DNA and anti-RNA antibodies and the formation of 
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Figure 1 Scheme showing generation of ROS and NO and formation of RNIs. 
Stimulus could be injury, infection, foreign particles, or release of various 
proinflammatory cytokines. A close interaction exists between NADPH oxidase 
and MPO (see the text). Superoxide anion can inactivate NO, and in turn NO can 
inactivate superoxide anion. NO and superoxide anion interact to form reactive 
nitrogen intermediates that are potent inflammatory substances. In general, iNO is 
proinflammatory, whereas eNO is anti-inflammatory in nature.
Abbreviations: MPO, myeloperoxidase; NADPH, nicotinamide adenine dinucleotide 
phosphate; PMNLs, polymorphonuclear leukocytes; RNI, reactive nitrogen intermediates; 
ROS, reactive oxygen species.
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immune complexes. These antibodies and immune complexes 

in turn trigger both a local and systemic inflammatory response 

that ultimately leads to target organ/tissue damage seen in 

lupus. The susceptibility for a given individual to develop 

lupus seems to have, at least partly, a genetic basis, though 

this is still not very clear. Once the inflammatory process is 

triggered, this leads to the production of a variety of proin-

flammatory cytokines such as interleukin (IL)-1, IL-6, tumor 

necrosis factor-α (TNF-α), interferons (IFNs), macrophage 

migration inhibitory factor (MIF), HMGB-1 (high-mobility 

group B1), and possibly a reduction in the elaboration of 

anti-inflammatory cytokines such as IL-10, IL-4, and trans-

forming growth factor-β (TGF-β). This imbalance between 

the pro- and anti-inflammatory cytokines coupled with 

increased secretion of free radicals such as superoxide anion 

(O
2
−), hydrogen peroxide (H

2
O

2
), singlet oxygen, inducible 

nitric oxide (iNO), and other reactive oxygen species (ROS) 

by activated monocytes, macrophages, polymorphonuclear 

leukocytes (PMNL), T-cells, Kupffer cells, glial cells in 

the brain, and other organ-specific reticuloendothelial cells 

would ultimately cause target tissue/organ damage seen in 

lupus (see Figure 1 for the formation of free radicals, NO, 

and reactive nitrogen intermediates). No lupus patients have 

the same manifestations, and the clinical presentation of 

the same patient at different time periods could be variable. 

For example, initially, a particular patient may present with 

cutaneous manifestations and over a period of time might 

develop involvement of joints, kidneys, and other organs. 

Similarly, the response of patients with lupus and rheumatoid 

arthritis is variable. Some respond, others may not respond, 

and some show only partial response to the same therapeutic 

measures. This type of varied presentation(s) and differential 

response to the same treatment is at times baffling and suggests 

that the involvement of various organs and tissues due to the 

underlying inflammatory process is varied, and the degree of 

involvement may differ in both time and extent and, more 

importantly, is unpredictable. It is also possible that continued 

inflammatory events seen in lupus, rheumatoid arthritis (RA), 

and other rheumatological conditions could be due to failure 

of the resolution of inflammation. Thus, the balance between 

inflammation and resolution is disturbed more in favor of 

proinflammatory events and/or failure of resolution-inducing 

molecules to be produced at the most appropriate time, leading 

to nonresolution of inflammation. In other words, even after 

the inciting agent responsible for the initiation of inflamma-

tion is removed, inappropriate inflammation continues simply 

because resolution failed to occur. This leads to delay in the 

healing/repair process and so tissue/organ damage continues. 

This may explain why target organ damage continues even 

when these patients are continuing to take anti-inflammatory 

and immunosuppressive medicines. In view of this, it is 

imperative that administration of proresolution-inducing 

agents is needed to obtain full remission and restore normal 

physiological function of the target tissues/organs in these 

diseases. Such endogenous proresolution-inducing molecules 

include lipoxins (LXs), resolvins, protectins, maresins, NO, 

nitrolipids, 15 deoxy∆12–14 PGJ
2
, PGD

2
, anti-inflammatory 

cytokines such as IL-4, IL-10, and some polyunsaturated 

fatty acids (PUFAs). Hence, understanding the interaction(s) 

between proinflammatory and anti-inflammatory and prore-

solution molecules is important to devise newer therapeutic 

strategies in several inflammatory conditions.

Pathobiology of inflammation  
with specific reference  
to chronic inflammation
Inflammation is a reaction to injurious agents, either exter-

nal or internal, that consists of both vascular and cellular 

responses. Inflammation may be local or systemic, and it 

can be acute or chronic. During inflammation, the reaction of 

blood vessels is unique and leads to the accumulation of fluid 

and leukocytes in extravascular tissues. This reaction can be 

in the form of vasodilatation, which is seen as hyperemia at 

the site(s) of injury and which serves the essential function of 

increasing the blood supply to the injured tissue/organ so that 
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adequate elimination of the inflammation-inducing agent is 

achieved and/or the repair process can occur after the inflam-

mation subsides. Thus, injury and repair are two faces of the 

inflammatory process, and it is difficult to separate these two 

processes. In fact, in the majority of instances, inflammation 

to injury and repair occur almost simultaneously.1

Mediators of inflammation
Some of the important mediators of inflammation include 

histamine, serotonin, lysosomal enzymes, PGs, LTs, PAFs, 

ROS, NO, HOCL, various cytokines, kinin system, coagulation/

fibrinolysis system, and complement system.1 The role of arachi-

donic acid and other PUFAs and their products in inflammation 

deserves special mention in view of their role in inflammation, 

resolution of inflammation, and inhibition of production of 

proinflammatory cytokines, which may be relevant to their 

involvement in lupus and other rheumatological conditions.

Metabolism of essential fatty acids
Cis-linoleic acid (LA, 18:2 ω-6) and α-linolenic acid (ALA, 

18:3 ω-3) are essential nutrients because they cannot be syn-

thesized by the human body and are hence called ‘essential 

fatty acids’ (EFAs). LA is converted to γ-linolenic acid (GLA, 

18:3, ω-6) by the action of the enzyme ∆6 desaturase, and GLA 

is elongated to form dihomo-GLA (DGLA, 20:3, ω-6), the 

precursor of the 1 series of prostaglandins. ∆6 desaturase is the 

rate-limiting step in the metabolism of EFAs. DGLA can also 

be converted to arachidonic acid (AA, 20:4, ω-6) by the action 

of the enzyme ∆5 desaturase. AA forms the precursor of two 

series of prostaglandins, thromboxanes, and the four series 

of leukotrienes (LTs). ALA is converted to eicosapentaenoic 

acid (EPA, 20:5, ω-3) by ∆6 and ∆5 desaturases. EPA forms 

the precursor of the three series of prostaglandins and the five 

series of LTs. EPA can be elongated to form docosahexaenoic 

acid (DHA, 22:6, ω-3). AA, EPA, and DHA also form precur-

sors to a group of novel compounds such as LXs, resolvins, 

protectins, and maresins2–9 that exhibit anti-inflammatory 

action (see Figure 2 for metabolism of EFAs). Eicosanoids 

bind to G-protein-coupled receptors (GPCRs) on many cell 

types and mediate virtually every step of inflammation. They 

are found in inflammatory exudates, and their synthesis is 

increased at sites of inflammation. Nonsteroidal anti-inflam-

matory drugs (NSAIDs) such as aspirin inhibit cyclooxyge-

nase (COX) activity and are thus believed to bring about their 

anti-inflammatory action, though this has been disputed. On 

the basis of the involvement of eicosanoids in inflammation, 

COX-2  inhibitors have been developed. However, recent 

studies showed that COX-2 inhibitors enhance cardiovascular 

events,6,10 suggesting that there is a close interaction between 

eicosanoids and cardiovascular system.

Lipoxins, resolvins, protectins,  
and maresins
There are two COX enzymes: the constitutively expressed 

COX-1 and the inducible enzyme COX-2. Different types of 

PGs are formed by the action of COX enzymes depending on 

the substrate fatty acid from which they are derived. Different 

types of PGs exhibit different actions and sometimes diametri-

cally opposite actions. For example, PGE
2
, PGF

2α, thrombox-

ane A
2
 (TXA

2
), and LTs exhibit proinflammatory actions, 

whereas PGE
1
 and prostacyclin (PGI

2
) show anti-inflammatory 

actions. Furthermore, the distributions of COX-1 and COX-2 

enzymes have restricted tissue distribution. Platelets contain 

thromboxane synthetase, and hence TXA
2
, a potent platelet 

aggregator and vasoconstrictor, is formed in these cells, 

whereas vascular endothelial cells possess PGI
2
 synthetase but 

lack thromboxane synthetase and thus they mainly form, PGI
2
, 

a potent platelet antiaggregator and vasodilator. The balance 

between TXA
2
 and PGI

2
 is important in thrombus formation 
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Figure 2 Metabolism of essential fatty acids. Prostaglandins of 3  series are less 
proinflammatory compared with prostaglandins of 2 series. Resolvins are formed 
from both EPA and DHA and are known to have anti-inflammatory actions and 
participate in the resolution of inflammation. EPA can be converted to DHA. DHA 
can be retroconverted to EPA. (+) indicates increase in the synthesis or action; 
(−) indicates inhibition of synthesis or action. Insulin augments whereas glucose 
inhibits the activity of ∆6 and ∆5 desaturases. Pyruvate inhibits COX-2 activity. Insulin 
increases, whereas glucose decreases the levels of pyruvate.
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in coronary and cerebral blood vessels. PGE
2
 is hyperalgesic, 

causes a marked increase in pain produced by intradermal 

injection of suboptimal concentrations of histamine and 

bradykinin, and is involved in cytokine-induced fever during 

infections. PGD
2
, PGE

2
, and PGF

2α, major metabolites of the 

COX pathway in mast cells, cause vasodilatation and increase 

the permeability of postcapillary venules, thus potentiating 

edema formation. COX-2 enzyme is absent in most tissues 

under normal ‘resting’ conditions and is expressed only in 

response to proinflammatory stimuli, whereas COX-1 is 

constitutively expressed in most tissues. Thus, PGs produced 

by COX-1 serve a homeostatic function (such as fluid and 

electrolyte balance in the kidneys and cytoprotection in the 

gastrointestinal tract), whereas COX-2 stimulates the produc-

tion of the PGs that are involved in inflammatory reactions.

There are three types of lipoxygenases and they are present 

in only a few types of cells. 5-lipoxygenase (5-LO), present 

in neutrophils, produces 5-HETE, which is chemotactic for 

neutrophils and is converted into LTs. LTB
4
, a potent chemot-

actic and activator of neutrophils, induces aggregation and 

adhesion of leukocytes to vascular endothelium, generation 

of ROS, and release of lysosomal enzymes. The cysteinyl-

containing LTs C
4
, D

4
, and E

4
 (LTC

4
, LTD

4
, and LTE

4
) induce 

vasoconstriction, bronchospasm, and vascular permeability 

in venules. LTs are more potent than histamine in increas-

ing vascular permeability and causing bronchospasm. LTs 

mediate their actions by binding to cysteinyl leukotriene 1 

(CysLT1) and CysLT2 receptors.

LXs are generated from AA, EPA, and DHA by transcel-

lular biosynthetic mechanisms involving two cell popula-

tions. Neutrophils produce intermediates in LX synthesis, 

and these are converted to LXs by platelets interacting with 

leukocytes. LXA
4
 and LXB

4
 are generated by the action 

of platelet 12-lipoxygenase on neutrophil-derived LTA
4
. 

LXs inhibit leukocyte recruitment, neutrophil chemotaxis, 

and adhesion to endothelium.7 LXs have a negative regula-

tion on LT synthesis and action and help in the resolution 

of inflammation. An inverse relationship generally exists 

between LXs and LTs, and the balance between these two 

molecules appears to be crucial in the determination of degree 

of inflammation and its final resolution (see Figures 3–7 for 

the formation of LXs, resolvins, and protectins).

Aspirin-triggered 15 epimer  
LXs, resolvins, and protectins
Aspirin-triggered 15 epimer LXs (ATLs) are potent counter-

regulators of polymorphonuclear neutrophils (PMNs)-mediated 

injury and acute inflammation. Acetylated COX-2 enzyme of 

endothelial cells generates 15R-hydroxyeicosatetraenoic acid 

(15R-HETE) from AA that is converted by activated PMNs 

to the 15-epimeric LXs that have potent anti-inflammatory 

properties.2–11 This cross-talk between endothelial cells and 

PMNs, leading to the formation of 15R-HETE and its sub-

sequent conversion to 15-epimeric LXs by aspirin-acetylated 

COX-2, is a protective mechanism to prevent local inflamma-

tion on the vessel wall by regulating the motility of PMNs, 

eosinophils, and monocytes.9 Endothelial cells also oxidize 

AA, EPA, and DHA via P450 enzyme system to form vari-

ous hydroxyeicosatetraenoic acids and epoxyeicosatrienoic 

acids such as 11,12-epoxy-eicosatetraenoic acid(s) that have 

many biological actions, including blocking endothelial cell 

activation, whereas nonenzymatic oxidation products of EPA 

inhibit phagocyte-endothelium interaction and suppress the 

expression of adhesion molecules6,12–17 (see Figure 8 for the 

formation of isoprostane-like compounds formed from EPA). 

The anti-inflammatory activity of EPA and its derivatives 

such as isoprostane-like compounds is supported by the 

observation that when hospitalized patients of acute guttate 

psoriasis with a minimum 10% of body surface area involve-

ment (range 10%–90%) were given an n-3 fatty acid-based 

lipid emulsion (100 mL/day with 2.1 g EPA and 21 g DHA) 

for 10 days, the severity of disease markedly decreased in all 

the patients. In these patients, platelet-activating factor (PAF) 

generation in ionophore-stimulated neutrophils on days 0, 1, 

3, 5, 10, and 40 decreased, and a more than tenfold increase 

in neutrophil EPA-derived 5-LO product formation (LTB
5
, 

its omega-oxidation products, nonenzymatic degradation 

products of LTA5, and 5-hydroxyeicosapentaenoic acid) was 

noted in the n-3 group. These results conclusively suggest 

that modulation of eicosanoid metabolism by intravenous 
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n-3 fatty acid supplementation exerts a rapid beneficial effect 

on inflammation by forming nonenzymatic isoprostane-like 

compounds.18

It is likely that similar isoprostane-like compounds may 

also be formed from DHA. However, this needs to be firmly 

established.

Akin to the formation of 15R-HETE and 15-epimeric LXs 

from AA, similar compounds are also formed from EPA and 

DHA. In the presence of aspirin, activated COX-2 of human 

endothelial cells converts EPA to 18R-HEPE, 18-HEPE, and 

15R-HEPE. Activated human PMNs in turn converted 18R-

HEPE to 5,12,18R-triHEPE and 15R-HEPE to 15-epi-LXA
5
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by their 5-LO. Both 18R-HEPE and 5,12,18R-triHEPE 

inhibited LTB
4
-stimulated PMN transendothelial migration. 

5,12,18R-triHEPE effectively competed with LTB
4
 for its 

receptors and inhibited PMN infiltration, suggesting that it 

suppresses LT-mediated responses at the sites of inflamma-

tion (reviewed in Das6 and Serhan et al19,20).

The conversion of EPA by human endothelial cells 

with upregulated COX-2 treated with ASA of EPA to 

15-epi-LX, also termed aspirin-triggered LX (ATL), 

and to 18R-hydroxyeicosapentaenoic acid (HEPE) and 

15R-HEPE is interesting. These compounds in turn are 

used by PMNLs to generate separate classes of novel 

trihydroxy-containing mediators, including 5-series 15R-

LX(5) and 5,12,18R-triHEPE, which are potent inhibitors 

of human PMNL transendothelial migration and infiltration 

in vivo (ATL analogue . 5,12,18R-triHEPE . 18R-HEPE). 

Acetaminophen and indomethacin also permitted 18R-HEPE 

and 15R-HEPE generation with recombinant COX-2. The 

formation of these bioactive lipid mediators via COX-2-

NSAID-dependent oxygenations and cell–cell interactions 

may have significant therapeutic benefits in inflammation, 

neoplasia, and vascular diseases.19,20

Murine brain cells expressing COX-2 and treated with 

aspirin transformed enzymatically DHA to 17R series of 

hydroxy DHAs (HDHAs), which, in turn, is converted 

enzymatically by PMNs to di- and trihydroxy-containing 

docosanoids.19–22 DHA is converted by leukocytes, brain, and 

glial cells to 17S-hydroxy-containing docosanoids denoted 

as docosatrienes (the main bioactive member of the series 

was 10,17S-docosatriene) and 17S series resolvins, and they 

serve as regulators of both leukocytes, reducing infiltration 

in vivo, and glial cells, blocking their cytokine production. 

These results indicate that DHA is the precursor to potent 

protective mediators generated via enzymatic oxygenations 

to novel docosatrienes and 17S series resolvins that have 

significant anti-inflammatory action and participate in the 

resolution of inflammatory events (see Figures 2–6 for the 

formation of LXs, resolvins, and protectins from their pre-

cursors and structures).

Similar small-molecular-weight compounds are also 

generated from AA, EPA, and DHA: 15R-hydroxyl-

containing compounds from AA, 18R series from EPA, 

and 17R-hydroxy series from DHA. All these compounds 

have potent anti-inflammatory actions and resolve inflam-

mation and hence are called ‘resolvins.’ Resolvins inhibited 

cytokine generation, leukocyte recruitment, leukocyte dia-

pedesis, and exudate formation. The formation of resolvins 

from AA, EPA, and DHA and from acetylated COX-2 is 

generated via transcellular biosynthesis (eg, due to cell–cell 

communication between endothelial cells and PMNs), and 

their main purpose appears to be to suppress inflammation. 

Resolvins inhibited brain ischemia-reperfusion injury.21,22 It 

is possible that LXs, resolvins, and protectins (docosanoids 

are also called as protectins because they have neuroprotec-

tive actions) behave as endogenous anti-inflammatory and 

cytoprotective molecules. The general cytoprotective proper-

ties that have been attributed to AA, EPA, and DHA can be 

related to their conversion to LXs, resolvins, and docosanoids 

(protectins). Hence, any defect in the synthesis of LXs, 

resolvins, and protectins or their inappropriate degradation 

could lead to perpetuation of inflammation. This could be 

one mechanism by which acute inflammation assumes its 

chronic phase as seen in lupus and other rheumatological 

conditions.

In addition, continued production of proinflammatory 

molecules such as macrophage MIF and HMGB-1 seems 

to have a significant role in the pathobiology of lupus and 

other conditions. It is possible that both MIF and HMGB-1 

are able to overcome the anti-inflammatory actions of 

LXs, resolvins, protectins, and maresins. Alternatively, 

inadequate production of LXs, resolvins, protectins, and 

maresins may fail to suppress the production of MIF and 
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HMGB-1, which may allow the inflammatory process to 

continue.

In this context, it is noteworthy that anti-inflammatory 

cytokines IL-4 and IL-10  may have the ability to trigger 

the conversion of AA, EPA, and DHA to LXs, resolvins, 

protectins, and maresins, suggesting a mechanism by which 

they are able to suppress inflammation.23 For example, it was 

shown that IL-4 upregulated 15-LO gene expression in human 

leukocytes. (It may be noted here that 15-S-HETE (a 15-LO 

product; LO = lipoxygenase enzyme) and LXs (interaction 
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products between 5-LO and either 12-LO or 15-LO) coun-

teract the proinflammatory actions of LTs.) Glomerular 

12/15-LO mRNA increased significantly over controls 24 and 

48 h after nephrotoxic serum injection then decreased at 72 h. 

RNA from nephrotoxic-serum-injected glomeruli contained 

higher levels of 12/15-LO mRNA than that from unstimulated 

peripheral leukocytes, suggesting that 12/15-LO transcription 

is upregulated locally in native and/or infiltrating glomeru-

lar cells. Glomerular IL-4  mRNA increased markedly 16 

h post-nephrotoxic serum injection, and was then reduced, 

suggesting a potential role for T-cell-derived IL-4 in direct-

ing the expression of 12/15-LO during glomerulonephritis. 

This suggested tandem-regulated in vivo gene expression for 

IL-4 and LO, both of which promote counterinflammatory 

influences in immune complex-mediated injury.

The 5-lipoxygenated metabolites of AA, the LTs, are 

major mediators of early glomerular hemodynamic and 

structural deterioration during experimental glomerulone-

phritis, which is generated largely by infiltrating leukocytes 

but can also occur by intrinsic glomerular cells via trans-

cellular metabolism of intermediates. In animal models of 

glomerulonephritis and other renal pathologic states, LTs 

have been shown to exert adverse effects in the glomeru-

lus. LTB
4
 augments neutrophil infiltration, and LTC

4
 and 

LTD
4
 mediate potent vasoconstrictor effects on the glomeru-

lar microcirculation. Selective blockade of the 5-LO pathway 

produced a significant amelioration of the deterioration of 

renal hemodynamic and structural parameters. On the other 

hand, 15-S-hydroxyeicosatetraenoic acid (15-S-HETE), the 

immediate product of arachidonate 15-lipoxygenase, and the 

LXs, which are produced by sequential 15- and 5- or 5- and 

12-lipoxygenation of AA, are also generated in the course 

of glomerular injury that antagonizes LT-induced neutro-

phil chemotaxis, and lipoxin A4 antagonizes the effects of 

LTD4 and LTC4 on the glomerular microcirculation. Thus, 

the contrasting effects of 5- and 15-lipoxygenase products 

represent endogenous pro- and anti-inflammatory influences 

that ultimately determine and regulate the extent and sever-

ity of glomerular inflammation.24–27

These results are in favor of the proposal that anti-

inflammatory cytokines IL-4 and IL-10 induce the expression 

and synthesis of anti-inflammatory lipid mediators such as LXs, 

resolvins, protectins, and maresins in addition to their ability 

to suppress the production of proinflammatory cytokines such 

as IL-2, IL-6, TNF-α, MIF and HMGB-1, and LTs.

It is also relevant to note that monocytes and macrophages 

express an extensive repertoire of GPCRs that regulate 

inflammation and immunity.

A number of GPCRs (eg, Edg5, P2ry2, and 6) have been 

reported to be expressed by macrophages and two cell types 

closely related to macrophages (osteoclasts and dendritic 

cells), whereas Gpr84 expression was largely restricted 

to macrophage populations and granulocytes.28 It is now 

apparent that many PUFAs, especially AA, EPA, and DHA, 

and their metabolites, such as eicosanoids, LXs, resolvins, 

protectins, and maresins, also function directly as agonists 

at a number of GPCRs. Tissue distribution studies and 

siRNA knockdown experiments have indicated key roles 

for these GPCRs in glucose homeostasis, adipogenesis, 

leukocyte recruitment, and inflammation.29 A recent study 

showed that the GPCR120 functions as a ω-3 fatty acid 

receptor/sensor. Stimulation of GPR120 with ω-3 fatty acids 

(EPA and DHA) induced broad anti-inflammatory effects 

in monocytic RAW 264.7 cells and in primary intraperito-

neal macrophages. All of these effects were abrogated by 

GPR120 knockdown. The ω-3 fatty acid treatment not only 

inhibited inflammation but also enhanced systemic insulin 

sensitivity in wildtype mice, but was without effect in 

GPR120 knockout mice. These results suggest that GPR120 

is a functional ω-3 fatty acid receptor/sensor and mediates 

potent insulin-sensitizing and antidiabetic effects in vivo 

by repressing macrophage-induced tissue inflammation.30 

Thus, it is likely that PUFAs and their anti-inflammatory 

products such as LXs, resolvins, protectins, and maresins 

inhibit the production of various proinflammatory mol-

ecules, including MIF and HMGB-1, and thus suppress 

inflammation in diseases such as lupus and RA.

In view of the role of MIF and HMGB-1 in lupus and RA 

and their interaction with corticosteroids, a brief discussion 

of their role in lupus and RA is given below.

Macrophage MIF
Macrophage MIF is a potent proinflammatory molecule 

produced by T-cells, macrophages, pituitary, adrenal, 

liver, spleen, lung, and skin, and its expression correlates 

with macrophage functions such as adherence, spreading, 

phagocytosis, and tumoricidal action. MIF is a modulator of 

inflammatory and immune responses.31 MIF released by ante-

rior pituitary cells counteracts the effects of glucocorticoids 

and serves as an integral part of the host’s stress response. 

Pituitary production of MIF is induced by corticotrophin-

releasing factor in a cyclic AMP-dependent manner. MIF 

is present within the intracellular pools of macrophages and 

hence is released rapidly in response to stimulation. MIF 

promotes TNF-α, IL-1β, IL-2, IL-6, IL-8, IFN-γ, and NO 

release, enhances matrix metalloproteinase expression, and 
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induces COX-2 pathway. TNF-α production is reduced by 

antisense MIF treatment of macrophages, and MIF is a potent 

stimulant of TNF-α production. Glucocorticoids stimulate 

the release of MIF, which can override the immunosuppres-

sive effects of glucocorticoids, suggesting that MIF acts in 

concert with glucocorticoids to control the ‘set point’ of the 

immune and inflammatory response. MIF has a role in the 

development of T
H
2-driven antibody production and is one 

of the mediators of sepsis and septic shock because neutral-

izing anti-MIF antibodies protect experimental animals from 

severe sepsis.32–41 MIF knockout mice are relatively resistant 

to LPS-induced sepsis.

In lupus and other rheumatological conditions, a good 

correlation has been found between the severity of the dis-

ease and plasma MIF levels. In those who showed successful 

immunosuppression, MIF production became negative,35 sug-

gesting that plasma MIF levels could be used as a marker of 

response to therapy. It was reported that plasma levels of MIF 

were increased in those with active lupus and RA, indicating 

that MIF plays a key role in these diseases.42–46

HMGB-1
HMGB-1 is a nonhistone nuclear protein that is constitutively 

expressed in quiescent cells and stored in the nucleus. It is 

one of the most evolutionarily preserved proteins in eukaryo-

cytes and has been implicated in many cellular functions, 

including binding of transcription factors to their cognate 

DNA sequences. In addition to the nucleus, HMGB-1 is also 

localized to the cell membrane, where it colocalizes and inter-

acts with the receptor for advanced glycation end products 

(RAGE) and toll-like receptor-4 (TLR-4) and is released by 

activated macrophages/monocytes and functions as a late 

mediator of lethal endotoxemia and sepsis.38,39 Following 

stimulation, endotoxin, TNF-α, IL-1β, IFN-γ macrophages, 

monocytes, and pituitary cells release HMGB-1 in a time- and 

dose-dependent fashion. HMGB-1 is also released passively 

from necrotic or damaged cells and after tissue ischemia 

and reperfusion injury. Apoptotic cells do seem to release 

HMGB-1. Because autoantibodies against double-stranded 

DNA (dsDNA) and nucleosomes represent a hallmark of 

lupus, it has been suggested that impaired phagocytosis of 

apoptotic cells with consecutive release of nuclear antigens 

may contribute to the immune pathogenesis. The architectural 

chromosomal protein and HMGB-1 are tightly attached to the 

chromatin of apoptotic cells. HMGB-1 bound to nucleosomes 

released from late apoptotic cells in vitro and HMGB-1-

nucleosome complexes were also detected in plasma from 

lupus patients. HMGB-1-containing nucleosomes from apop-

totic cells induced secretion of IL-1β, IL-6, IL-10, and TNF-α 

and expression of costimulatory molecules in macrophages 

and dendritic cells (DCs), respectively. HMGB-1-containing 

nucleosomes from apoptotic cells induced anti-dsDNA and 

antihistone IgG responses in a toll-like receptor (TLR)-2-

dependent manner, whereas nucleosomes from living cells did 

not. Thus, HMGB-1-nucleosome complexes activate antigen-

presenting cells and contribute to the pathogenesis of lupus via 

breaking the immunological tolerance against nucleosomes/

dsDNA.47 Furthermore, HMGB-1stimulates macrophages, 

monocytes, and neutrophils to release the proinflammatory 

cytokines TNF, IL-1, IL-6, IL-8, and macrophage inflamma-

tory protein-1. Thus, there is a close interaction between TNF, 

ILs, TLRs, and HMGB-1. Human microvascular endothelial 

cells are stimulated by HMGB-1 to increase their expression 

of ICAM-1, VCAM-1, TNF, and chemokines such as IL-8, 

suggesting that HMGB-1 can propagate the inflammatory 

response in the endothelium during infection and injury.

Anti-HMGB-1 antibodies protected mice against lethal 

endotoxemia in a dose-dependent fashion. Ethyl pyruvate 

(EP), stearoyl lysophosphatidylcholine, nicotine, and green 

tea extract significantly attenuated endotoxin-induced 

HMGB-1 release and protected animals from endotoxin-

induced lethal sepsis. Neutralizing antibodies against IFN-γ, a 

cytokine that is capable of stimulating HMGB-1 release, sig-

nificantly reduced circulating HMGB-1 levels in septic rats 

and protected animals from lethal sepsis.48 All the enumer-

ated actions of HMGB-1 suggest that it is a proinflammatory 

molecule and hence may have a role in lupus and RA.

It was reported that patients who developed autoantibod-

ies and/or lupus after treatment with procainamide or other 

drugs (drug-induced lupus) showed a high prevalence of 

antibodies to the nucleosomal core high-mobility-group pro-

teins such as HMGB-1.49 It was reported that the expression 

of HMGB-1 in the epidermis and dermis and an increase in 

the levels of TNF-α and IL-1β were reported in the dermal 

infiltrates of lesional skin. The high amount of extracel-

lular HMGB-1 observed in skin lesions in lupus indicates 

that HMGB-1 is involved in the inflammatory process of 

cutaneous lupus50 and, possibly, TNF-α and IL-1β may 

form a proinflammatory loop with HMGB-1, as they can 

induce the release of each other. In addition to HMGB-1, 

increased expression of TNF-α and IL-1β was noted in these 

dermal lesions, suggesting that extracellular and cytoplasmic 

HMGB-1 coincides with the clinically most active phase of 

cutaneous lupus.51 Because HMGB-1 can augment expres-

sion of TNF-α and IL-1β, and the latter can stimulate 

HMGB-1 formation, it is likely that a proinflammatory loop 
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between HMGB-1, TNF-α, and IL-1β operates, which could 

be responsible for the prolonged and sustained inflammation 

in cutaneous lupus. These results, coupled with the observa-

tion that plasma levels of HMGB-1 are increased in patients 

with active lupus, indicate an active role for HMGB-1  in 

lupus and other rheumatological conditions.

Inflammatory and anti-inflammatory 
molecules and antioxidants in lupus
Thus, lupus, RA, and other rheumatological conditions are 

characterized by increased production of IL-1, IL-6, TNF-α, 

IFN-γ, MIF, HMGB-1, iNO, ROS, various chemokines, 

MPO, GM-CSF, G-CSF, endothelin, and hs-CRP.52–58 On the 

other hand, the concentrations of PGI
2
, PGE

1
, eNO, and anti-

oxidants such as superoxide dismutase (SOD) and glutathione 

peroxidase are decreased, whereas those of lipid peroxides 

are increased.52,59–61 It is likely that IL-1, IL-6, TNF-α, IFN-γ, 

HMGB-1, and MIF are released in large amounts in lupus 

and RA by activated neutrophils, macrophages, T-cells, 

synovial cells, fibroblasts, and endothelial cells not only 

to initiate the inflammatory process but also to perpetuate 

the inflammation.52 In addition, IL-1 increases the produc-

tion by endothelial cells of endothelin-1, which is a potent 

vasoconstrictor that could lead to Raynaud’s phenomena 

seen in lupus and other collagen vascular conditions such as 

scleroderma.62 Furthermore, IL-2 stimulates the production 

of autoantibodies and worsens immune-mediated diseases.63 

Cytokines including IL-6 and CSF-1 (colony stimulating 

factor-1) initiate immune response, induce cell prolifera-

tion, augment matrix-degrading protease activity, and cause 

resorption of bone (osteoporosis). Proteases released by 

activated neutrophils are responsible for bone erosions that 

are more common in RA than in lupus.

At the same time, certain anti-inflammatory molecules 

are produced that try to contain the inflammatory process 

and induce resolution of the disease process. For instance, 

TGF-β downregulates inflammation. Various cells, including 

monocytes, fibroblasts, platelets, and synovial tissue, produce 

it. TGF-β suppresses IL-1-stimulated collagenase transcrip-

tion (reviewed in Das52). TGF-β counters the degradation of 

cartilage induced by IL-1 and other cytokines,64 inhibits the 

growth of capillary endothelial cells, suppresses IL-1- and 

IL-2-dependent T-cell proliferation, inhibits free radical gen-

eration by human monocytes, and participates in wound heal-

ing and fracture repair.52 This suggests that TGF-β negatively 

regulates all the destructive and proinflammatory actions of 

IL-1, IL-2, TNF-α, HMGB-1, and MIF that are important 

to initiate the repair process and restore normalcy in lupus 

and other collagen vascular conditions. In contrast, excess 

production of TGF-β provokes and perpetuates fibroblast 

proliferation, leading to abnormal sclerosis in the skin and 

internal organs in scleroderma and in the kidney in lupus. 

This leads to late-stage complications in these conditions. 

Thus, TGF-β is a double-edged sword. When present in 

subnormal amounts, inflammation may go unchecked, and 

higher amounts may provoke abnormal sclerosis as seen in 

scleroderma.65 Hence, it is important to maintain normal 

amounts of TGF-β at a given site for normal physiology.

Immune dysfunction in lupus
Studies focused on cytokines and T-helper cells in the periph-

eral blood in patients with lupus have revealed inconsistent 

results that have led to confusion about the exact role of T
H
1 

and T
H
2 cells in lupus.66–70 In this context, it may be noted that 

activation of T-cells occurs at the site of disease involvement, 

and so peripheral plasma measurement of cytokines may not 

reflect the actual type of T-cells that are actively participating 

in the disease. In lupus, kidney biopsy is ideal in order to study 

intrarenal lymphocyte activation. Recently, measurement of 

messenger RNA (mRNA) expression in urinary sediment 

has been described,71 and it was shown that urinary mRNA 

and protein expressions of T-bet were significantly higher in 

lupus with active nephritis compared with those with inac-

tive disease. In contrast, the urinary and protein expressions 

of GATA-3 were significantly lower in lupus patients with 

active nephritis. Furthermore, tubular expressions of T-bet 

and GATA-3  significantly correlated with the histological 

activity index,72  suggesting that active lupus nephritis is 

associated with increased T-bet and decreased GATA-3 

expression in the urinary sediment and kidney tissue and indi-

cating a predominant T
H
1 type of T-lymphocyte activation. 

It is relevant to note that T-bet promotes T
H
1 lineage com-

mitment and forms an autoregulatory positive-feedback loop 

with IFN-γ to maintain a T
H
1-mediated immune response,73 

whereas GATA-3 promotes T
H
2 differentiation and induces 

T
H
2 cytokine production.74 Thus, the relative expression of 

T-bet and GATA-3, resulting in a swing in the T
H
1 and T

H
2 

expressions, would ultimately determine the type of T-helper 

cell expression. These results suggest that measurement of 

T-helper cell transcription factor gene expression is helpful 

in the assessment and risk stratification of lupus patients.

Loss of self-tolerance in lupus
In rheumatological conditions, the presence of diverse 

autoantibodies directed against a variety of intra- and 

extracellular components before the development of the 
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disease75  suggests that normal physiologic mechanisms 

that maintain tolerance to self-antigens have been breached. 

A subpopulation of T-cells known as Tregs establishes and 

preserves self-tolerance,76 and so the existence of defective 

helper and suppressor cells with defective signaling cas-

cades could result in autoantibody generation by forbidden 

B-cell clones and lead to impaired effector functions in 

lupus.77 These effector dysfunctions are a result of skewed 

expression of various effector molecules including CD40 

ligand (eg, CD154) and various cytokines and may reflect 

an imbalance of gene expression. Impaired effector T-cells’ 

function as a result of skewed cytokine production creates a 

microenvironment that facilitates a strong T
H
2 response rela-

tive to T
H
1 and Treg activity, which leads to overproduction 

of IL-4, IL-6, and IL-10 by T
H
2 and underproduction of IL-2, 

IL-12, TGF-β, and IFN-γ by T
H
1 and Tregs. That results 

in imbalanced autocrine and paracrine effects on T- and 

B-cells in the microenvironment. This imbalance in the 

cytokine production and reduced numbers of CD4+CD25+ 

Tregs results in insufficient suppressor activity in lupus, 

which results in dysregulated immune response driving both 

physiologic and forbidden B-cell clones to overproduce 

antibodies and autoantibodies. That results in hypergam-

maglobulinemia. These events occur despite the existence 

of other counter-regulatory mechanisms, including expres-

sion of the cell surface molecule cytotoxic T-lymphocyte 

antigen 4 (CTLA4).78 Studies with IL-2−/− and IL-2R−/− 

knockout mice revealed that IL-2 serves as a third signal 

that stimulates clonal expansion of effector cells to promote 

tolerogenic responses and to regulate development and 

function of CD4+CD25+ Tregs and CD8+ Tregs to maintain 

tolerance.79,80 It was noted that the frequency of CD4+CD25+ 

Tregs was significantly decreased in patients with active 

pediatric lupus compared with patients with inactive lupus 

and controls and was inversely correlated with disease activ-

ity and serum anti-dsDNA levels.81 Furthermore, an elevated 

surface expression of GITR in CD4+CD25+ T-cells, elevated 

mRNA expression of CTLA-4 in CD4+ T-cells, and higher 

amounts of mRNA expression for FOXP3 in CD4+ cells in 

patients with active lupus disease compared with patients 

with inactive disease and control were noted, indicating 

that a defective Treg population in pediatric lupus occurs 

and implying a role for FOXP3, CTLA-4, GITR, and CD4+ 

Tregs in the pathogenesis of lupus. These results are sup-

ported by the observation that a significant decrease in the 

suppressive function of CD4+CD25+ Tregs from peripheral 

blood of patients with active lupus occurs when compared 

with normal donors and patients with inactive lupus.82 

CD4+CD25+ Tregs isolated from patients with active lupus 

expressed reduced levels of FoxP3 mRNA and protein and 

poorly suppressed the proliferation and cytokine secretion of 

CD4+ effector T-cells in vitro. On the other hand, the expres-

sion of FoxP3 mRNA and protein and in vitro suppression of 

the proliferation of CD4+ effector T-cells by Tregs isolated 

from inactive lupus patients were comparable with that of 

normal individuals. In vitro activation of CD4+CD25+ Tregs 

from patients with active lupus increased FoxP3 mRNA and 

protein expression and restored their suppressive function, 

demonstrating that the defect in CD4+CD25+ Treg function 

in patients with active lupus is reversible. It was also noted 

that in newly admitted patients with the first manifesta-

tions of the disease and those treated with cytostatics and 

steroids, the coexpression of FoxP3 on CD4+CD25 T-cells 

was significantly reduced in both groups regardless of the 

therapy.83 The ability of Tregs to suppress proliferation of 

autologous CD8+ and CD4+ T-cells was significantly reduced 

in both groups of patients compared with healthy donors, 

though impaired production of Tregs in lupus patients could 

be partly restored by conventional treatments. These results 

imply that measurement of FoxP3 on CD4+CD25 T-cells and 

Tregs in lupus could form a marker of response to therapy 

and prognostic indicator and can be a new therapeutic 

strategy in lupus. It may be noted here that these results are 

not without controversy.84 Despite these controversies, it is 

likely that analysis of peripheral blood FOXP3+ T-cells may 

be useful for the evaluation of lupus disease activity.

It is reasonable to suggest that inflammatory responses 

of the immune system against several autoantigens seen in 

lupus are due to the continuous presence of autoantibodies 

and leaked autoantigens, eg, from not properly cleared dying 

and dead cells. Various soluble molecules and biophysical 

properties of the surface of apoptotic cells play significant 

roles in the appropriate recognition and further processing 

of dying and dead cells. It is important that an efficient 

clearance of dying cells in early and late phases of cell death 

is important to prevent activation of the immune response 

against self-antigens. The exposure of phosphatidylserine 

(PS) on the surface of apoptosing cells is recognized by 

several receptors and adaptor molecules for their clearance. 

Dying cells have cell membranes with high lateral mobil-

ity of PS, which contributes to their efficient clearance. 

Complement binding is an early event in necrosis and a late 

event in apoptosis. Complement, C-reactive protein (CRP) 

and serum DNase I act as backup molecules in the clearance 

process. Inappropriate accumulation of secondary necrotic 

cells and cellular debris in the germinal centers of secondary 
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lymph organs can lead to autoimmunity, and thus clearance 

defects are major players in the development of autoimmune 

diseases such as lupus.85,86

It is also important to note that high-dose cyclosporine 

(50  mg/kg cyclosporine) to pretransplant donor-specific 

blood transfusion abrogated Tregs generation, whereas a 

lower dose (10  mg/kg) of cyclosporine promoted Tregs 

development either in synergy with perioperative donor-

specific blood transfusion or by its own effect.87 These data 

suggest that, at times, a lower dose of cyclosporine is more 

beneficial in patients with lupus and RA aimed at inducing 

Tregs.

UV radiation-induced skin lesions  
in lupus and mast cells
The ability of UV radiation to suppress immune system is 

particularly interesting because understanding the molecular 

mechanisms of its action could pave the way to developing 

newer therapeutic strategies for immunological disorders. 

The beauty of immunosuppression induced by UV radiation 

lies in the fact that in contrast to conventional immunosup-

pression by immunosuppressive drugs, UV radiation does 

not compromise the immune system in a general fashion 

but rather in an antigen-specific fashion via induction of 

immunotolerance that is mostly mediated via regulatory 

T-cells (Treg). UV-induced Tregs express CD4+ and CD25+ 

and release upon activation the immunosuppressive cytokine 

IL-10 that suppresses immune responses in a general fashion 

called bystander suppression.88

On the other hand, the absence of immunosuppression 

to UV radiation in patients with lupus is rather puzzling, 

given its immunosuppressive nature. UV radiation-induced 

worsening of skin lesions in patients with lupus suggests not 

only that the responses of keratinocytes to UV radiation in 

lupus do not generate CD4+CD25+ Tregs that release IL-10 

to produce immunosuppression but also that in fact they may 

induce inflammation.

The paradoxical role of UV radiation in inducing immu-

nosuppression in normal but worsening skin lesions in lupus 

can be related to the interaction of UV radiation with mast 

cells.89 There is evidence to suggest that mast cells play an 

important role in the pathogenesis of lupus, RA, and other 

collagen vascular diseases.90 Recent evidence suggests that 

mast cells and their mediators, including LTs, play a signifi-

cant role in collagen vascular diseases.91 Several studies are 

in agreement with the concept that mast cells may contribute 

to the pathogenesis of connective tissue diseases scleroderma, 

vasculitic syndromes, and lupus.92,93 For example, inhibition 

of the growth factor receptor of human mast cells, c-Kit, 

by the selective tyrosine kinase inhibitor imatinib mesylate 

induces apoptosis of synovial tissue mast cells, and pre-

liminary findings suggest that inhibition of c-Kit could have 

antirheumatic activity.

Recent studies have suggested that keratinocyte apoptosis 

induced by ultraviolet-B radiation could be a potential source 

of fragmented autoantigens in lupus. The expression of Bcl-2, 

PCNA, p53, and Ki-67 proteins was studied by immuno-

histochemistry. In dermatomyositis and cutaneous lupus 

skin, the number of apoptotic keratinocytes was found to be 

significantly increased compared with normal skin. A large 

number of apoptotic keratinocytes expressed p53 protein; an 

increase in the number of proliferating Ki-67-positive and 

PCNA (proliferating cell nuclear antigen)-positive nuclei 

associated with exaggerated and inappropriate keratinocyte 

apoptosis was reported in these diseases compared with 

control. These results suggest that solar radiation induces 

DNA damage and excessive keratinocyte apoptosis in der-

matomyositis and cutaneous lupus that could be responsible 

for the epidermal lesions observed in both diseases.94 These 

results, coupled with the observation that in UVB-induced 

and lupus skin lesions in lupus patients there could be a defect 

in the removal of the apoptotic cells,95 suggest that humoral 

factors that play a significant role in inducing macrophages 

to clear cell debris such as LXs, resolvins, protectins, and 

maresins96  may play a significant role in skin lesions in 

autoimmune diseases.

Based on these data, it is likely that methods designed to 

enhance NO generation, enhance the number of Treg cells, 

block proinflammatory PG synthesis, stabilize mast cells, and 

enhance the synthesis and release of anti-inflammatory lipid 

mediators such as LXs, resolvins, protectins, and maresins 

could be of benefit in lupus and other collagen vascular dis-

eases. In this context, the role of PUFAs and their pro- and 

anti-inflammatory metabolites in inflammation appears to 

be important.

Pro- and anti-inflammatory lipids  
and their role in lupus
Inflammation is not a single event but a process in which 

cellular influx, persistence, and resolution of inflammation 

are controlled by several endogenous stop and go signals. It 

is evident from the discussion (see Metabolism of essential 

fatty acids) that products from AA, EPA, and DHA not only 

form precursors to various proinflammatory molecules such 

as PGE
2
, PGF

2α, TXs, and LTs but also give rise to LXs and 

ATLs, resolvins, and protectins that are anti-inflammatory 
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in nature. For these pro- and anti-inflammatory compounds 

to form, initial activation of PLA
2
 that releases the precur-

sors from the cell membrane lipid pool is essential. Thus, 

there are two phases of release of PUFAs: one at onset 

of the generation of proinflammatory PGs, TXs, and LTs 

and one at the time of resolution for the synthesis of anti-

inflammatory LXs and ATLs, resolvins, and protectins.

There are three classes of phospholipases that control 

the release of AA and other PUFAs: calcium-independent 

PLA
2
 (iPLA

2
), secretory PLA

2
 (sPLA

2
), and cytosolic 

PLA
2
 (cPLA

2
).97 Each class of PLA

2
 is further divided into 

isoenzymes: 10 for mammalian sPLA
2
, at least three for 

cPLA
2
, and two for iPLA

2
. During the early phase of inflam-

mation, COX-derived PGs and lipoxygenase-derived LTs 

initiate exudate formation and inflammatory cell influx.8 

TNF-α causes an immediate influx of neutrophils concomi-

tant with PGE
2
 and LTB

4
 production, whereas during the 

phase of resolution of inflammation an increase in LXA
4
 

(lipoxin A
4
), PGD

2
, and its product 15deoxy∆12–14PGJ

2
 for-

mation occurs, which induces resolution of inflammation 

with a simultaneous decrease in PGE
2
 synthesis that stops 

neutrophil influx and enhances phagocytosis of debris.98,99 

Thus, there appears to be two waves of release of AA and 

other PUFAs: one at the onset of inflammation that causes the 

synthesis and release of PGE
2
, and a second at resolution for 

the synthesis of anti-inflammatory PGD
2
, 15deoxy∆12–14PGJ

2
, 

and LXs, which is necessary for the suppression of inflam-

mation. Thus, COX-2 enzyme has both harmful and useful 

actions by virtue of its ability to give rise to proinflammatory 

and anti-inflammatory PGs and LXs.

Increased type VI iPLA
2
 protein was found to be the 

principal isoform expressed from the onset of inflammation 

up to 24 h, whereas type IIa and V sPLA
2
 were expressed 

from the beginning of 48 h to 72 h. Type IV cPLA
2
 was not 

detectable during the early phase of acute inflammation but 

increased progressively during resolution, peaking at 72 h. 

This increase in type IV cPLA
2
 was mirrored by a parallel 

increase in COX-2 expression.100 The increase in cPLA
2
 and 

COX-2 occurred in parallel, suggesting a close enzymatic 

coupling between them. Thus, there is a clear-cut role for 

different types of PLA
2
 in distinct and different phases of 

inflammation. Selective inhibition of cPLA
2
 resulted in 

the reduction of proinflammatory molecules PGE
2
, LTB

4
, 

IL-1β, and PAF. Furthermore, inhibition of types IIa and V 

sPLA
2
 not only decreased PAF and LXA

4
 but also resulted 

in a reduction in cPLA
2
 and COX-2 activities. These results 

suggest that sPLA
2
-derived PAF and LXA

4
 induce COX-2 

and type IV cPLA
2
. IL-1β induced cPLA

2
 expression. This 

suggests that one of the functions of IL-1 is not only to induce 

inflammation but also to induce cPLA
2
 expression to initiate 

resolution of inflammation.101,102 Synthetic glucocorticoid 

dexamethasone inhibited both cPLA
2
 and sPLA

2
 expression, 

whereas type IV iPLA
2
 expression is refractory to its sup-

pressive actions.5,100,103 Activated iPLA
2
 contributes to the 

conversion of inactive proIL-1β to active IL-1β, which in 

turn induces cPLA
2
 expression that is necessary for resolu-

tion of inflammation. Both TNF-α and MIF might have a 

direct suppressive action on the synthesis of LXs, PGD
2
, 

and 15deoxy∆12–14PGJ
2
 from cPLA

2
-induced release of AA/

EPA/DHA. On the other hand, LXs, especially LXA
4
, inhibit 

TNF-α-induced production of ILs; promote TNF-α mRNA 

decay, TNF-α secretion, and leukocyte trafficking; and thus 

attenuate inflammation. This close interaction among PLA
2
s, 

COX-2, PGD
2
, LXA

4
, and PAF in the initiation, maintenance, 

and resolution of inflammation suggests that any imbal-

ance in this complex interplay during the various phases of 

inflammation could lead to either less optimal inflammation 

or persistence of inflammation.

Local levels of endogenous glucocorticoids appear to 

play a major role in the resolution of the inflammatory 

process. Corticosterone is released very early in the course 

of inflammation by stimulating the hypothalamic-pituitary-

adrenal axis by TNF-α, IL-1β, and IL-6, an event that is 

critical to the resolution of inflammation.104 It is known 

that iPLA
2
 is resistant to the inhibitory actions of dexam-

ethasone, whereas both cPLA
2
 and sPLA

2
 are inhibited. 

During the normal course of an inflammatory process, the 

local concentrations of endogenous corticosterone are high, 

whereas at the time of resolution they are low so that both 

cPLA
2
 and sPLA

2
 can be expressed to augment the produc-

tion of LXs, PGD
2
, and 15deoxy∆12–14PGJ

2
 to induce resolu-

tion of inflammation. Chronic use of corticosteroids would 

suppress sPLA
2
 and cPLA

2
 expression that is essential for 

the production of LXs, PGD
2
, and 15deoxy∆12–14PGJ

2
 to 

resolve inflammation, which explains why long-term use 

of steroids leads to nonhealing of inflammatory lesions 

and a flare-up of the inflammatory process when steroids 

are stopped.

It is interesting that iPLA
2
 enhances the conversion of 

pro-IL-1β to IL-1β by IL-converting enzyme.105 In contrast, 

high concentrations of cPLA
2
  suppress the conversion of 

pro-IL-1β to IL-1β. The formation of both LXA
4
 and PAF is 

maximal at the initiation of resolution of inflammation. Fur-

thermore, both LXA
4
 and PAF have the ability to upregulate 

COX-2 and cPLA
2
 expression, and COX-2 brings about 

the synthesis of PGD
2
 and 15deoxy∆12–14PGJ

2
, which have 
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anti-inflammatory actions. These results suggest that under 

normal physiological conditions, several lipid molecules act 

in a coordinated manner to resolve inflammation.

These findings suggest that both in RA and lupus, the flares 

and remissions are somewhat similar to onset and resolution 

of acute inflammatory process described above, in as much 

as the cell profile and mediators that initiate the response 

are similar. It is evident from the preceding discussion that 

COX-2 has an important role in resolving inflammation,19 

and hence the failure of NSAIDs to halt the progression of 

disease(s) could be due to the inhibition of COX-2.

Glucocorticoids and lipid  
mediators in inflammation
Corticosteroids are widely used in the treatment of vari-

ous inflammatory conditions. Although corticosteroids are 

effective anti-inflammatory compounds, they also have 

significant side effects. Glucocorticoids bring about their 

anti-inflammatory actions by 1) the induction and activation 

of annexin 1 (also called lipocortin-1),106 2) the induction of 

mitogen-activated protein kinase (MAPK) phosphatase 1,107 

and 3) the inhibition of COX-2108 and iNOS.109,110 Annexin-1 

or lipocortin-1 physically interacts with and inhibits cPLA
2α so 

that AA is not released in adequate amounts to form precursors 

to various proinflammatory eicosanoids. Increased expres-

sion of cPLA
2
 is necessary to give rise to anti-inflammatory 

molecules PGD
2
 and 15deoxy∆12–14PGJ

2
, and LXs. Thus, 

the timing and quality and quantity of expression (perhaps a 

pulsatile expression) of cPLA
2
 and the local concentrations 

of glucocorticoids could be important factors that determine 

the progression and/or resolution of inflammation. Glucocorti-

coids also inhibit the production of proinflammatory cytokines 

such as IL-1, IL-6, TNF-α, and MIF.111–113 It is known that 

eNO activates constitutive COX-1, resulting in optimal release 

of PGE
2
, whereas iNO activates COX-2, resulting in markedly 

increased release of PGE
2
 and thereby inflammation.114 This 

implies that constitutive production of NO and PGE
2
 is anti-

inflammatory in nature, whereas inducible production of NO 

and PGE
2
 is proinflammatory, simply because the quantities of 

NO and PGE
2
 are extremely high in the latter instance. Low 

concentrations of glucocorticoids enhance MIF synthesis, 

which in turn overrides glucocorticoid-mediated inhibition of 

secretion of other proinflammatory cytokines. MIF induces 

the production of TNF-α and vice versa. Thus, there is a 

close interaction among glucocorticoids, MIF, TNF-α, NO, 

and eicosanoids (see Figure 9).

Glucocorticoids accelerated the catabolism of LTC
4
 

(leukotriene C
4
), a proinflammatory molecule;115 reduced 

PGD
2
, 15-HETE, LTB

4
, and TXB

2
; and enhanced 5-HETE 

and LTE
4
 (a less proinflammatory metabolite of LTC

4
)116 to 

dampen the inflammatory process. In addition, 15-HPETE 

and LXs, anti-inflammatory eicosanoids, cause a significant 

increase in the rate of TNF degradation.117 On the other hand, 

LXA
4
 not only inhibited the secretion of TNF-α118 but also 

prevented TNF-α-induced production of IL-1β, IL-6, cyclin 

E expression, and NF-κB activation.119 Thus, glucocorti-

coids and LXs have similar actions on inflammation; both 

are anti-inflammatory, but their mechanisms of action seem 

to be different. It is relevant to note that both TNF-α and 

glucocorticoids have opposite actions on PLA
2
: the former 

stimulates120 while the latter inhibits.110 Thus, a close inter-

action exists among proinflammatory cytokines and lipid 

mediators of inflammatory and anti-inflammatory process 

and tissue repair (see Figure 10).

Because the amount and type of PUFA(s) released 

in response to inflammatory stimuli depend on the cell 

membrane phospholipid fatty acid content, it is reasonable 

to propose that dietary content PUFAs could be one fac-

tor that determines the degree of inflammation. Increased 

dietary intake of GLA, DGLA, and EPA/DHA substantially 

decreases inflammatory response121–126 as a result of decreased 

formation of proinflammatory eicosanoids and cytokines, 

and increases the production of beneficial eicosanoids such 

as PGE
1
, PGI

2
, PGI

3
, HPETEs, and eNO.19,127–132 It was noted 

that human embryonic kidney cells, in the presence of exog-

enous PUFAs (fatty acids that were used in this study were 

AA, LA, and oleic acid), on exposure to IL-1, preferentially 

released AA due to the activation of sPLA
2
-IIA, type IV 

cPLA
2
, and type VI iPLA

2
. The degree of activation of these 

PLA
2
 was as follows: sPLA

2
-IIA . type IV cPLA

2
 . type 

VI iPLA
2
, indicating that exogenous PUFAs preferentially 

activate type IIA sPLA
2
-mediated AA release from IL-1-

stimulated cells. The order of release was AA . LA . oleic 

acid.133 This is interesting because it is evident from the 

preceding discussion that activation of cPLA
2
 and sPLA

2
 

would lead to the formation of anti-inflammatory LXs, PGD
2
, 

and 15deoxy∆12–14PGJ
2
, lending support to the hypothesis 

that lipid composition of the cell membrane can potentially 

modulate response to inflammation.

It is also reasonable to suggest that failure to generate ade-

quate amounts of LXs and resolvins could lead to persistence 

of inflammation as seen in RA, lupus, glomerulonephritis, and 

other conditions that could be due to continued synthesis and 

secretion of inflammatory cytokines IL-1, IL-2, IL-6, IL-8, 

TNF-α, and MIF. On the other hand, IFN-γ and IL-13 could 

trigger production of LXs and resolvins such that resolution of 
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Figure 9 Scheme showing possible interaction between PUFAs (AA, EPA, and DHA), their products such as PGs, LTs, TXs, LXs, resolvins, protectins, and maresins, and TH1 
and TH2 and their respective cytokines. PUFAs have direct actions on TH1 and TH2 responses and cytokines by themselves without being converted to their products. Ghrelin, 
isoprostanes (formed due to the action of free radicals on PUFAs), insulin, and pyruvate also exhibit anti-inflammatory actions. For further details see text.
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inflammation is initiated. When this delicate balance between 

pro- and anti-inflammatory cytokines and PGs and LXs and 

resolvins is dysregulated, it will lead to persistence of inflam-

mation (see Figure 10). It is possible that the balance (or ratio) 

between the concentrations of AA, EPA, and DHA in the cell 

membrane could be one factor that determines the amount of 

LXs, resolvins, PGD
2
, and 15deoxy∆12–14PGJ

2
 formed.

Nitric oxide, lipid peroxides,  
and antioxidant status in lupus
Serum nitrite levels were reported to be significantly elevated 

in patients with lupus (mean ± SEM = 37 ± 6 µM/L) compared 

with controls (15 ± µM/L; P , 0.01), and were elevated in 

patients with active lupus compared with those with inactive 

disease (46 ± 7 versus 30 ± 7 µM/L; P , 0.01), and serum 

nitrite levels correlated with disease activity and with levels 

of antibodies to dsDNA. Endothelial cell expression of iNOS 

in lupus patients was significantly greater compared with 

controls, and higher in patients with active disease compared 

with those with inactive lupus. Even keratinocyte expression 

of iNOS was significantly elevated in lupus compared with 

controls, whereas eNOS activity was similar in patients with 

active lupus and inactive lupus and normal controls in either 

the vascular endothelium or the keratinocytes.134 These and 

other results suggest that iNO production is enhanced in active 

lupus, including neuropsychiatric lupus,135–137 which could be 

responsible for vascular and cutaneous inflammation seen 

in these patients. Similar results have been reported in IgA 

nephropathy and lupus nephropathy,138–140 and the beneficial 

effect of the immunosuppressive drug mycophenolate mofetil 
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Figure 10 Scheme showing the role of prostaglandins and lipoxins in inflammation and its resolution. (−) indicates inhibition or suppression of action; (+) indicates activation 
or enhancement of action. For further details see text.
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and anti-inflammatory compound PGJ
2
 has been attributed 

to their ability to suppress iNOS.139,140

1,25-Dihydroxyvitamin  
D3 suppresses autoimmunity
The active form of vitamin D3, 1-α,25-dihydroxyvitamin 

D
3
 (1,25-vitamin D

3
), suppresses in vitro immunoglobulin 

production and inhibits IL-2 production by activated blood 

mononuclear cells (PBM) by specifically targeting TH lym-

phocytes.141 In addition, 1,25-vitamin D
3
 not only inhibited 

IL-12-generated IFN-γ production but also suppressed IL-4 

and IL-13 expression induced by IL-4.142 It also prevented 

partly reversed experimental autoimmune uveitis (EAU) 

disease by suppressing immunological responses by directly 

suppressing IL-17  induction in purified naive CD4(+) 

T-cells.143 Thus, 1,25-dihydroxyvitamin D
3
 appears to sup-

press autoimmunity by inhibiting the Th-17 response. This 

evidence suggests that 1,25-dihydroxyvitamin D
3
  may be 

useful in suppressing disease activity in patients with lupus, 

RA, and other rheumatological conditions.52

ADMA in rheumatological conditions
Plasma eNO levels are low in patients with lupus and 

RA,52,60,61 which could trigger vasospasm and cause 

Raynaud’s phenomenon seen in rheumatological conditions. 

These low NO levels could be due to 1) substrate deficiency, 

2) low activity of the eNOS enzyme, and 3) rapid inactiva-

tion of eNO.

Arginase and NO synthase (NOS) compete for the 

same substrate, l-arginine, and the reciprocal regulation 

of arginase and NOS in l-arginine-metabolizing pathways 

is known. Both serum arginase activity and protein levels 
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were significantly higher in patients with RA compared with 

healthy controls. A significant correlation between the serum 

concentrations of arginase protein and rheumatoid factor 

was also noted in RA patients, suggesting that increased 

arginase production may be responsible for low l-arginine 

levels and eNO formation.144

Asymmetric dimethylarginine (ADMA), an endogenous 

NO synthesis inhibitor, is an independent risk factor for 

endothelial dysfunction and cardiovascular disease. Mean 

plasma ADMA levels were significantly higher in patients 

with lupus with a history of cardiovascular episodes than in 

patients without such a history, and high SLEDAI (SLE dis-

ease activity index) score, high titer of anti-dsDNA antibod-

ies, and low serum HDL were significantly associated with 

high plasma ADMA levels. These results suggest that patients 

with lupus are at high risk of developing cardiovascular 

diseases due to high plasma ADMA levels.145 In addition, it 

was reported that TNF-α levels and other indices that reflect 

endothelial damage, such as sVCAM-1, were found to be 

elevated in lupus and other rheumatological conditions.146,147 

Further support to the role of NO in rheumatological condi-

tions is derived from previous studies where it was observed 

that drug-resistant Raynaud’s phenomenon in lupus responds 

to oral l-arginine therapy.148 That could be attributed to an 

increase in the generation of NO. These results are supported 

by the work of Fries et al,149 who showed that sildenafil, the 

NO donor, is of benefit in the management of Raynaud’s 

phenomenon.

Increased production of IL-1, IL-6, TNF-α, IFN-γ, 

MIF, and HMGB-1 attracts neutrophils, macrophages, and 

T-cells to initiate and perpetuate the inflammatory process 

by increasing the production of free radicals, eicosanoids, 

and cytokines in an autocrine fashion.1 IL-1  increases the 

production of endothelin-1 in cultured endothelial cells,150 

and this contributes to vasospasm seen in lupus. Endothelial 

cells also produce PGI
2
 and NO, which are potent vasodila-

tors and platelet antiaggregators and natural antagonists of 

endothelin-1. Hence, enhancing the production of NO and/

or decreasing endothelin-1 and suppressing the production of 

proinflammatory molecules and enhancing the synthesis of 

anti-inflammatory molecules could be of significant benefit 

in lupus and other rheumatological conditions.

In this context, it is interesting to note that recent stud-

ies have led to the identification of several newer methods 

of suppressing inappropriate generation of free radicals 

and proinflammatory cytokines, enhancing resolution of 

inflammation, and restoring immune balance and organ 

dysfunction to normal. Some of these strategies include 

immunosuppressive drugs such as FK-506, B-cell-targeted 

therapies, complement-component-targeted therapies, use 

of monoclonal antibodies against IFN-α, glucose–insulin 

infusion, administration of EP, lipid-enriched albumin, vagal 

nerve stimulation, and use of endogenous anti-inflammatory 

lipids such as LXs, resolvins, protectins, or their synthetic 

analogs along with their precursor PUFAs in combination 

with aspirin. These newer methods could be adopted in addi-

tion to the existing therapeutic modalities. A brief summary 

of these proposed newer therapeutic strategies is outlined 

below.

FK-506
Tacrolimus (also FK-506 or Fujimycin) is an immunosup-

pressive drug that is mainly used after allogeneic organ 

transplant to reduce the activity of the immune system, 

thereby lowering the risk of organ rejection. It reduces IL-2 

production by T-cells. It is also used in a topical prepara-

tion in the treatment of severe atopic dermatitis (eczema), 

severe refractory uveitis after bone marrow transplanta-

tion, and the skin condition vitiligo. It is a 23-membered 

macrolide lactone derived from the bacteria Streptomyces 

tsukubaensis.

In T-cells, activation of the T-cell receptor increases 

intracellular calcium, which acts via calmodulin to activate 

calcineurin. That dephosphorylates the transcription factor 

NF-AT (nuclear factor of activated T-cells), which moves 

to the nucleus of the T-cell and increases the activity of 

gene coding for IL-2 and related cytokines. Tacrolimus 

prevents the dephosphorylation of NF-AT. Tacrolimus 

reduces peptidylprolyl isomerase activity by binding to 

the immunophilin FKBP12 (FK-506 binding protein), 

forming FKBP12-FK-506 complex, which interacts with 

and inhibits calcineurin, thus inhibiting both T-lymphocyte 

signal transduction and IL-2 transcription.151 Although this 

activity is similar to cyclosporin, studies have shown that 

the incidence of acute rejection is reduced by tacrolimus 

use over cyclosporin. Although short-term immunosuppres-

sion concerning patient and graft survival is found to be 

similar between the two drugs, tacrolimus results in a more 

favorable lipid profile. This may have important long-term 

implications, given the prognostic influence of rejection on 

graft survival.

In a study involving patients with end-stage renal disease 

secondary to lupus who received kidney transplantation, the 

actuarial patient and graft survivals at 5 years were noted to be 

100% and 93%, respectively, in those who received calcineu-

rin-based immunosuppression (cyclosporine or tacrolimus). 
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Recurrence of clinical or serological disease of lupus was 

never detected. This favorable response observed in these 

patients of lupus suggested that tacrolimus or cyclosporine 

at low doses is effective in preventing lupus reactivation.152 

Several recent studies have confirmed the beneficial actions 

of tacrolimus or FK-506, especially in the management of 

lupus nephritis.153,154

B-cell-targeted therapies for lupus
Rituximab is a chimeric monoclonal antibody against the 

protein CD20, which is primarily found on the surface of 

B-cells. It can therefore destroy B-cells. Rituximab is used in 

the treatment of many lymphomas and leukemias, to suppress 

transplant rejection and autoimmune disorders.

There are increasing data from open-label studies to 

suggest that B-cell depletion using rituximab is useful in the 

treatment of lupus.155 However, larger double-blind clinical 

trials to confirm this belief are awaited. Rituximab has been 

shown to be an effective RA treatment in three randomized 

controlled trials and is now licensed for use in refractory rheu-

matoid disease.156 In the United States, it has been approved 

for use in combination with methotrexate for reducing signs 

and symptoms in adult patients with moderately to severely 

active RA who have had an inadequate response to one or 

more anti-TNF-α therapies. There is some evidence for 

efficacy, but not necessarily safety, and rituximab is widely 

used off-label to treat lupus. There are significant concerns 

about progressive multifocal leukoencephalopathy (PML) 

infection in lupus.

Another B-cell-targeted therapeutic approach is to 

block costimulatory interactions between T- and B-cells. 

Blockade of the CD40–CD40 ligand pathway has met with 

variable clinical benefit and unfortunate thromboembolic 

complications, although inhibition of the B7 pathway with 

cytotoxic T-lymphocyte antigen-4Ig is currently under early 

investigation in lupus clinical trials. In a phase II, double-

blind, placebo-controlled trial of the safety and efficacy 

of three different doses administered in addition to standard 

therapy, belimumab, a fully human monoclonal antibody 

that specifically binds to and neutralizes the B-lymphocyte 

stimulator (BLyS or B-cell-activating factor (BAFF)), was 

well tolerated but reportedly did not meet primary efficacy 

endpoints.157 Blockade of BAFF is still viewed as a promis-

ing therapeutic approach, and additional agents that interfere 

with the BAFF pathway are under study. Overall, therapies 

targeting B-cells appear to be promising in the treatment of 

lupus, but more convincing data need to be obtained before 

their approval for use in the clinic.158

Complement-component-targeted 
therapy for lupus
Two members of the pentraxin family of proteins, CRP and 

serum amyloid P component (SAP), bind to chromatin and 

are involved in the solubilization and clearance of nuclear 

material. It is known that CRP binding to chromatin is medi-

ated by histones. SAP differs from CRP in being able to bind 

to DNA. CRP is an activator of the classical complement 

pathway, and complement-dependent cleavage of chromatin 

in the presence of CRP and serum is known to occur. Oligom-

ers of SAP have been found to bind to C1q and consume total 

C and C4, indicating that SAP can activate complement as 

well. SAP binding to histones H1 and H2A was observed as 

well as SAP binding to chromatin. In contrast to CRP, SAP 

binding to chromatin did not require H1. SAP partially inhib-

ited CRP binding to chromatin and to H1. Binding of either 

CRP or SAP to H2A activated complement in SAP-depleted 

serum, leading to the deposition of C4 and C3. Complement 

activation required C1q and produced C4d, indicating that it 

occurred through the classical pathway and suggesting that 

CRP and SAP share histone as well as chromatin binding 

and that both pentraxins can activate the classical C pathway 

after ligand binding.159

SAP shows specific calcium-dependent binding to DNA 

and chromatin in physiological conditions. The avid binding 

of SAP displaces H1-type histones and thereby solubilizes 

native long chromatin, which is otherwise profoundly 

insoluble at the physiological ionic strength of extracellular 

fluids. SAP binds in vivo to apoptotic cells, the surface 

blebs of which bear chromatin fragments, and to nuclear 

debris released by necrosis. SAP may therefore participate 

in handling of chromatin exposed by cell death. Mice with 

targeted deletion of the SAP gene spontaneously develop 

antinuclear autoimmunity and severe glomerulonephritis, a 

phenotype resembling human lupus. The SAP−/− mice also 

have enhanced anti-DNA responses to immunization with 

extrinsic chromatin, and degradation of long chromatin is 

retarded in the presence of SAP both in vitro and in vivo, 

suggesting that SAP has an important physiological role 

of inhibiting the formation of pathogenic autoantibodies 

against chromatin and DNA, probably by binding to chro-

matin and regulating its degradation.160,161 This is supported 

by the observation that the measurement of antichromatin, 

but not anti-C1q, antibodies in patients with lupus increases 

diagnostic sensitivity and specificity for lupus and assists 

in treatment decisions in anti-dsDNA-negative patients.162 

However, the role of SAP in the development of autoimmune 

diseases has been disputed.163
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Nevertheless, it is useful to measure serum levels of 

CH50, C3, and C4 in patients with immune-mediated dis-

eases. Recent studies have demonstrated that the defect in 

the clearance of immune complexes and apoptotic cells is 

associated with autoimmune disease. Mice deficient in Clq 

show a lupus-like phenotype with the appearance of anti-

nuclear antibodies and glomerulonephritis due to a defect 

in the clearance of immune complexes and apoptotic cells. 

This at least explains the paradox that, in humans, deficiency 

in an early complement component is a major risk factor for 

lupus. Because the complement system is a central mediator 

of inflammation, it is considered as a promising therapeutic 

target. Anti-C5 monoclonal antibody blocks the final stage of 

complement activation. Pexelizumab is a single-chain, short-

acting, anti-C5 antibody and is used for reperfusion after 

myocardial infarction, or for coronary artery bypass graft 

surgery with cardiopulmonary bypass, whereas eculizumab 

is a long-acting, anti-C5 antibody used for paroxysmal noc-

turnal hemoglobinuria, rheumatoid arthritis, and membranous 

glomerulonephritis with promising results.164,165

Monoclonal antibodies against IFN-α
The immunoregulator human γ-interferon (IFN-γ) suppressed 

the spontaneous in vitro synthesis and secretion of anti-

DNA antibodies by peripheral blood mononuclear cells of 

patients with lupus. Comparable levels of suppression were 

observed with both natural human IFN-γ and recombinant 

derived human IFN-γ, and the inhibitory effects of human 

IFN-γ could be completely neutralized by a monoclonal 

antibody directed against it. Human IFN-γ also inhibited 

the antigen-induced production of anti-DNA synthesis by 

peripheral blood mononuclear cells of patients with lupus, 

probably by acting directly on the B-cell. Furthermore, 

human IFN-γ suppressed the spontaneous production of IgG 

and IgM by peripheral blood mononuclear cells of patients 

with lupus.166 These findings support the possibility that 

immunoglobulin production in lupus can be regulated and 

that human IFN-γ could be useful in the treatment of lupus 

and other immune complex diseases. However, this optimism 

was short-lived.167

Subsequent studies showed that patients with lupus 

have an increased expression of type I IFN-regulated 

genes because of a continuous production of IFN-α. 

Plasmacytoid dendritic cells (pDCs) activated by immune 

complexes containing nucleic acids secrete type I IFN in 

lupus. Type I IFN causes differentiation of monocytes to 

myeloid-derived dendritic cell (mDC) and activation of 

autoreactive T- and B-cells. Therefore, it is argued that 

inhibition of IFN-α could be useful in the management 

of lupus. Recent data from a phase I clinical trial suggest 

that administration of neutralizing monoclonal antibod-

ies against anti-IFN-α can ameliorate disease activity.168 

However, more clinical data are necessary before the use 

of neutralizing monoclonal antibodies against anti-IFN-α 

comes into clinical practice.

Proresolution of inflammation, repair,  
and wound healing induction  
as a therapeutic strategy for lupus  
and other autoimmune diseases
It is evident from the preceding discussion that current 

therapeutic approaches have been directed to suppress 

inflammation and immune response as their major objec-

tives in the management of lupus and other autoimmune 

disorders. Although these strategies have been reasonably 

successful, they are associated with many side effects, 

and induction of disease remission has not been truly suc-

cessful. The current therapeutic approaches are associated 

with many side effects, such as susceptibility to infec-

tions, development of hypertension and diabetes mellitus 

(especially with corticosteroids and cyclosporine), the 

unpredictable nature of remission, and recurrences of the 

underlying disease and in the long-term development of 

malignancies. These unwarranted side effects suggest that 

more robust and reliable and, perhaps, novel therapeutic 

approaches are needed in the management of lupus and 

other autoimmune diseases. Until now, relatively little 

attention has been paid to the resolution and repair phase 

of inflammation and to exploiting these mechanisms to 

devise newer therapeutic approaches to lupus. The natural 

process of resolution of inflammation and wound healing 

is successfully implemented by our body to allow many 

patients to recover completely from inflammation induced 

by infections, injury, and surgery. Such a natural process 

of resolution and wound repair has the capability to restore 

tissue architecture and function to normal. Hence, I propose 

that newer therapeutic strategies to manage lupus and other 

autoimmune diseases could be based on the principles of 

enhancing natural process(s) of resolution of inflammation, 

wound healing, and repair, so that relatively few side 

effects are likely to occur. Such a natural process of reso-

lution and repair could depend on a better understanding 

of the normal physiology of wound healing as discussed 

previously. Some of the endogenous molecules involved 

in such resolution of inflammation, wound healing, and 

repair are discussed below.
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Glucose–insulin–potassium regimen
A glucose–insulin–potassium (GIK) regimen is used to treat 

patients with a moderate degree of hyperglycemia, even in 

the absence of ketoacidosis, and those with diabetic ketoaci-

dosis. Satomi et  al169  showed that glucose administration 

and insulin injections to presensitized mice inhibited TNF 

production. Fraker et al170 reported that recombinant human 

TNF-cachectin-induced decrease in food intake, nitrogen bal-

ance, and body weight gain compared with saline controls in 

rats can be reversed by concurrent administration of insulin 

without causing any treatment deaths. Further, 5 days of TNF-

cachectin treatment induced severe interstitial pneumonitis 

and periportal inflammation in the liver, and an increase in 

wet organ weight in the heart, lungs, kidney, and spleen in the 

rats could be reverted to normal when insulin treatment was 

given concurrently. These results suggest that administration 

of insulin reverses the nutritional and histopathologic toxic-

ity of sublethal doses of TNF. Ottlecz et al171–173 showed that 

insulin may have anti-inflammatory action against carrageen-

an-induced paw edema. Boichot et al174 demonstrated that 

luminol-dependent chemiluminescence by the mononuclear 

cells in the bronchoalveolar lavage (BAL) fluid and the levels 

of TNF-α in the BAL supernatant reverted to normal levels 

after treatment of Wistar diabetic rats with insulin, indicating 

that insulin regulates superoxide anion generation and TNF-α 

synthesis and release, and thus may have anti-inflammatory 

action.170–175 Insulin enhances the expression of the eNOS 

gene both in vitro and in vivo.176 Because NO can quench the 

superoxide anion,177 this may be of benefit in inflammatory 

conditions. Furthermore, the expression of MIF in adipocytes 

can be modulated by insulin and glucose.178 MIF is secreted 

together with insulin from pancreatic β cells and acts as an 

autocrine factor to stimulate insulin release.179 During the 

systemic inflammatory process, including RA and lupus, 

MIF is secreted from the pituitary gland, accompanied by an 

increase in glucocorticoid secretion. The increase in plasma 

glucose levels that occurs as a result of this glucocorticoid 

secretion is probably controlled by MIF by its positive effect 

on insulin secretion. TNF-α upregulates MIF secretion.180 On 

the other hand, TNF-α induces insulin resistance.181 Thus, 

glucose homeostasis during systemic inflammatory process 

is regulated by glucocorticoids, TNF-α, MIF, and insulin. 

In view of the feedback control among MIF, glucose, and 

insulin, it is likely that infusion of glucose and insulin inhibits 

MIF production and release similar to their inhibitory action 

on TNF-α.182–184 In support of this postulation, we recently 

showed that insulin inhibited ischemia/reperfusion-induced 

TNF-α and MPO (myeloperoxidase) production through 

the Akt-activated and eNOS-NO-dependent pathway in 

cardiomyocytes. Thus, insulin has potent anti-inflammatory 

properties that may contribute to its cardioprotective and 

cytoprotective actions. That explains its prosurvival effects 

in the critically ill.185 In view of this, it will be interesting to 

use GIK regimen in the management of patients with lupus, 

RA, and other rheumatological conditions. Perhaps it is 

worthwhile to administer insulin (without inducing hypo-

glycemia) twice or three times daily and monitor the clinical 

manifestations and plasma IL-6, TNF-α, MIF, and NO levels 

in these patients. For those who are critically ill with lupus 

and RA, it may be interesting to administer a GIK regimen 

in a hospital setting and monitor their response.

Ethyl pyruvate
Pyruvic acid is present in the cells and extracellular fluids as 

its conjugate anion, pyruvate. Pyruvic acid, being the final 

product of glycolysis and the starting substrate for the tricar-

boxylic acid (TCA) cycle, plays a crucial role in intermediary 

metabolism. Pyruvate is unstable in solutions, and spontane-

ously undergoes condensation and cyclization. EP, a deriva-

tive of pyruvic acid, in a calcium- and potassium-containing 

balanced salt solution (called a Ringer EP solution) is not only 

stable and nontoxic but a more effective anti-inflammatory 

molecule than pyruvate.186 EP is extensively used and 

approved by the Food and Drug Administration (FDA) as 

a food additive. EP is used in a calcium-containing solu-

tion because it is a hydrophilic compound. The calcium 

prevents emulsion and increases the solubility. Because EP 

is chemically related to lactate, substituting lactate for EP 

can provide a therapeutic anti-inflammatory property to the 

Ringer’s solution. EP, derived from ethanol and pyruvic 

acid, in a Ringer-type Ca2+- and K+-containing balanced 

salt solution is not only stable but also more effective than 

sodium pyruvate.187

Ringer EP solution prolonged survival of rats that were 

in hemorrhagic shock186,187 by effectively scavenging the free 

radicals.188–190 In vitro studies showed that EP inhibited the 

release of TNF-α and HMGB-1 from endotoxin-stimulated 

murine macrophages and attenuated activation of NF-κB sig-

naling pathways. In an LPS-induced endotoxic shock animal 

model, EP improved survival by lowering circulating con-

centrations of nitrite/nitrate (metabolites of NO) and IL-6, 

which are proinflammatory molecules, and enhanced plasma 

levels of IL-10, an anti-inflammatory cytokine,191 suggesting 

that EP has significant anti-inflammatory actions.

In view of these significant anti-inflammatory actions,192–194 

it is anticipated that administration of EP may be of use in 
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suppressing inflammatory events in lupus, RA, and other 

rheumatological conditions.

Lipid-enriched albumin
Albumin, the major protein produced by hepatocytes in the 

liver, maintains oncostatic pressure. Albumin traps oxygen rad-

ical and quenches free radicals, inhibits copper-ion-dependent 

lipid peroxidation, and retards the formation of hydroxyl 

radicals, and thus exhibits both neuroprotective and cytopro-

tective actions. This beneficial action of albumin is due to its 

ability to mobilize DHA and possibly other PUFAs from liver 

and other tissue that, in turn, are converted to anti-inflamma-

tory molecules such as protectins, LXs, and resolvins.

On administration of albumin-DHA complex containing 

2.1 ± 0.1 µM DHA/mL of albumin to the 2 h middle cerebral 

artery suture-occlusion animal model, high-degree neu-

robehavioral and histological neuroprotection was noted.195 

Albumin-DHA complex facilitates DHA delivery to the brain 

so that significant amounts of NPD
1
 could be formed to prevent 

ischemia-reperfusion injury. DHA confers neuroprotection by 

opening background K+ channels and inhibiting apoptosis. 

Administration of albumin-DHA complex increased the 

formation of NPD
1
 and infusion of NPD

1
; reduced infarct 

size; and diminished PMNL infiltration, NF-κB activation, 

and proinflammatory COX-2 expression.21,196 In view of these 

anti-inflammatory actions, it is possible that albumin-PUFA 

complexes could be of significant benefit in the management 

of rheumatological conditions RA and lupus.

Vagal nerve stimulation suppresses 
inflammation
CNS regulates the production of proinflammatory cytokines, 

such as TNF, IL-1, HMGB-1, IL-6, and MIF, through the 

efferent vagus nerve.197–199 Acetylcholine, the principal vagus 

neurotransmitter, inhibits the production of proinflammatory 

cytokines through a mechanism dependent on the α7 nicotinic 

acetylcholine receptor subunit. Thus, vagus nerve stimulation 

(VNS) controls the production of proinflammatory cytokines. 

Strong expression of a7nAChR in the synovium of RA and 

psoriatic arthritis patients was detected.200 Both peripheral mac-

rophages and synovial fibroblasts have been shown to respond 

in vitro to specific a7nAChR cholinergic stimulation with potent 

inhibition of proinflammatory cytokines.197–199 It is likely that 

fibroblasts, especially in the lining layer, may have the ability 

to balance inflammatory mechanisms and arthritis development 

through feedback cholinergic stimulation by nearby immune 

cells. It is possible that specific cholinergic mechanisms may 

also be involved in regulation of antibody production locally in 

the joint. This implies that new therapies directed at regulation 

of the cholinergic and a7nAChR-mediated mechanisms in the 

management of lupus and RA could be developed.

This proposal is supported by the recent observation 

that measurement of RR interval variability (heart rate 

variability, HRV) as a marker of vagus nerve tone (which 

reflects parasympathetic activity) in RA patients revealed 

that vagus nerve activity was significantly depressed in 

patients compared with control.201 These findings suggest 

that it is possible to pharmacologically target the a7nAChR-

dependent control of cytokine release in RA patients with 

suppressed vagus nerve activity. As a7nAChR agonists 

ameliorate the clinical course of collagen-induced arthritis 

in animals, it may be possible to explore whether a7nAChR 

agonists can improve clinical activity in RA patients. Fur-

thermore, it was reported that collagen-induced arthritis 

in a7nAChR(–/–) mice was significantly severe and showed 

increased synovial inflammation and joint destruction com-

pared with the wildtype mice. Exacerbation of the arthritis 

was associated with elevated systemic proinflammatory 

cytokines and enhanced T-helper cell 1 (Th1)-cytokine and 

TNF-α production by spleen cells. These results indicate 

that immune cell function in a model of RA is regulated by 

the cholinergic system and, at least in part, mediated by the 

a7nAChR.202 The clinical implications of these findings are 

that VNS could be employed in the treatment of lupus, RA, 

and other autoimmune diseases.

VNS is currently in use as an adjunctive treatment for 

certain types of intractable epilepsy and major depression.203 

VNS uses an implanted stimulator that sends electric impulses 

to the left vagus nerve in the neck via a lead wire implanted 

under the skin. VNS implantation devices consist of a titani-

um-encased generator about the size of a pocket watch with a 

lithium battery to fuel the generator, a lead wire system with 

electrodes, and an anchor tether to secure leads to the vagus 

nerve. The battery life for the pulse generator is between 1 

and 16 years, depending on the settings, ie, how strong the 

signal being sent is, the length of time the device stimulates 

the nerve each time, and how frequently the device stimulates 

the nerve. Implantation of the VNS device is usually done as 

an outpatient procedure. Because the VNS device is already 

in use and is relatively safe, this could be tried for the man-

agement of lupus and other autoimmune diseases.

Lipoxins, resolvins, protectins,  
or their synthetic analogs
As discussed previously, LXs, resolvins, and protectins are 

potent endogenous anti-inflammatory compounds whose 
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deficiency could lead to unabated inflammation. Hence, 

methods designed to enhance their formation, such as coad-

ministration of aspirin with PUFAs and/or development and 

use of their stable synthetic analogs, may prove to be useful 

in various rheumatological conditions. Such an approach is 

urgently needed.

Ghrelin
Ghrelin is a growth hormone secretagogue produced by the 

gut and is expressed in the hypothalamus and other tissues 

as well. Ghrelin not only plays an important role in the regu-

lation of appetite, energy balance, and glucose homeostasis 

but also shows antibacterial activity, suppresses proinflam-

matory cytokine production, and restores gut barrier func-

tion. Ghrelin inhibits proinflammatory cytokine production, 

mononuclear cell binding, and nuclear factor-κB activation 

in human endothelial cells in vitro and endotoxin-induced 

cytokine production in vivo.204 Ghrelin stimulates the vagus 

nerve. Experimental studies revealed that vagotomy pre-

vented ghrelin’s downregulatory effect on TNF-α and IL-6 

production, confirming that ghrelin downregulates proin-

flammatory cytokines in sepsis through activation of the 

vagus nerve.205 Ghrelin has sympathoinhibitory properties 

that are mediated by central ghrelin receptors involving a 

NPY/Y1-receptor-dependent pathway.206 Ghrelin inhibited 

the production of HMGB-1 by activated macrophages,207 

which may explain its beneficial action in sepsis and other 

inflammatory conditions.208,209 These results suggest that 

ghrelin infusion could be of significant benefit in lupus, RA, 

and other autoimmune diseases not only by its direct action 

of the production of proinflammatory cytokines but also 

by its ability to stimulate vagus that has anti-inflammatory 

actions.

Conclusion
Lupus, RA, and other autoimmune diseases are chronic 

inflammatory conditions that often have acute and intermit-

tent inflammatory episodes. More often than not, these are 

lifelong diseases and are associated with considerable renal, 

pulmonary, and cardiac complications that could lead to 

death. Current therapeutic approaches depend on the use 

of synthetic and potent anti-inflammatory and immunosup-

pressive drugs that are often associated with significant side 

effects. Some of the current drugs in use include nonsteroidal 

anti-inflammatory compounds, chloroquine (hydroxychloro-

quine), corticosteroids (oral or parenteral), d-penicillamine, 

sulfasalazine, methotrexate, anti-TNF antibodies (treat-

ment with anti-TNF monoclonal antibodies, infliximab, 

adalimumab, and certolizumab pegol has been shown to 

provide substantial benefit to patients of RA, Crohn’s disease, 

and psoriasis through reductions in both localized and sys-

temic expression of markers associated with inflammation), 

Table 1 Response and/or prognosis of lupus, RA, and other rheumatological conditions can be assessed biochemically by measuring 
the various indices mentioned below. These indices need to be measured/assessed in addition to clinical features while employing 
various therapeutic approaches

Biochemical/immunological test Significance/comments

Plasma insulin Insulin resistance is likely in lupus and RA. Insulin has anti-inflammatory  
actions

Plasma hs-CRP, IL-6, TNF-α, MIF, HMGB-1, IL-1, IL-2,  
ICAM-1, VCAM-1, PECAM, IFN-γ, IL-17, IL-18, IL-12, PAF

Marker of inflammation and disease activity

IL-4, IL-10, IL-27, TGF-β These are anti-inflammatory cytokines, and their increase suggests a decrease in 
the activity of the disease and possible impending remission

Plasma AA, EPA, DHA, lipoxins, resolvins, protectins,  
maresins, nitrolipids

These are anti-inflammatory lipid molecules; their measurement prior to disease 
and after institution of therapy may indicate remission or progression of disease. 
Their increase suggests a decrease or resolution of inflammation

Plasma ADMA Inhibits eNO, and its levels are increased in CHD, metabolic syndrome, and 
rheumatological conditions

Plasma pyruvate Pyruvate is an antioxidant and suppresses IL-6, TNF-α, and MIF production
Plasma 1, 25 vitamin D3 Has immunosuppressive and anti-inflammatory properties and levels are low in 

metabolic syndrome and rheumatological conditions
Acetylcholinesterase and butyrylcholinesterase Their activity indicates the vagal tone and the amount of acetylcholine released 

and indirectly serve as markers of inflammation as acetylcholine is an anti-
inflammatory molecule

a7nAChR expression on peripheral macrophages and  
synovial fibroblasts

a7nAChR expression may indicate the status of cholinergic anti-inflammatory 
pathway and could be used to assess response to therapy as prognostic marker

Catecholamines in peripheral leukocytes Catecholamines have proinflammatory action and suggest their role and 
contribution to inflammation
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and immunosuppressive drugs (such as cyclosporine, cyclo-

phosphamide, and azathioprine). Although there have been 

significant advances in the management of autoimmune 

diseases by the use of these drugs, especially biologics, their 

actions are often unpredictable: Not all patients respond 

adequately to these therapeutic approaches; moreover, sig-

nificant side effects might result. Hence, as suggested above, 

newer therapeutic approaches are needed.

It is possible that GIK, EP, lipid-enriched albumin, 

VNS, PUFAs and their products LXs, resolvins, protectins, 

and ghrelin altogether may not be able to produce adequate 

immunosuppression and anti-inflammatory actions that 

lead to amelioration of the disease process in lupus, RA, 

and other autoimmune diseases. It is recommended that 

some of these suggested approaches could be performed in 

combination with the currently available therapeutic drugs. 

For example, GIK regimen, ethylpyruvate, lipid-enriched 

albumin, VNS, LXs, resolvins, protectins and their synthetic 

analogs, and ghrelin could be tried in combination with 

nonsteroidal anti-inflammatory compounds, chloroquine 

(hydroxychloroquine), corticosteroids (oral or parenteral), 

d-penicillamine, sulfasalazine, methotrexate, anti-TNF anti-

bodies, and immunosuppressive drugs (such as cyclosporine, 

cyclophosphamide, and azathioprine). Another option that 

could be investigated is the use of anti-TNF-α and other bio-

logics in combination (as a complex or separately) with EP, 

ghrelin, PUFAs, LXs, resolvins and protectins, and insulin 

and be used as parenteral infusion. All these permutations 

and combinations need to be tried both in the animal models 

of various autoimmune diseases and other inflammatory con-

ditions and in the clinic before knowing which therapeutic 

approach is of significant benefit to these patients. With such 

an approach, one can measure various plasma tissue factors, 

as shown in Table 1, to determine the effectiveness of the 

therapeutic approach employed.
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