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Abstract
Rationale Flexible bronchoscopy is an operator-dependent procedure. An automatic bronchial
identification system based on artificial intelligence (AI) could help bronchoscopists to perform more
complete and structured procedures through automatic guidance.
Methods 101 participants were included from six different continents at the European Respiratory Society
annual conference in Milan, 9–13 September 2023. Participants were split into three groups based on
experience: novices (0 bronchoscopies), intermediates (1–249 bronchoscopies) and experienced (⩾250
bronchoscopies). The participants performed two bronchoscopies on a realistic physical phantom, one with
AI (AmbuBronchoSimulatorTrainingGUIDEv.0.0.1, Prototype version, Ambu) and one Standard
procedure. The F1-group received AI guidance for their first procedure, the F2-group for their second. A
crossover randomisation controlled for learning by testing. All procedures were automatically rated
according to the outcome measures: inspected segments, structured progressions and procedure time.
Results AI guidance caused the participants to inspect more segments (mean difference, paired t-test: +6.0
segments, p<0.001), perform more structured progressions (+5.2 progressions, p<0.001) and spend more
time on the procedure (+72 s, p<0.001) compared to their standard procedures. The effects of AI guidance
on inspected segments and structured progression were highest for novices but significant for all
experience groups: novices (+8.2 segments, p=0.012 and +6.6 progressions, p<0.001), intermediates (+5.7
segments, p=0.006 and +5.1 progressions, p<0.001) and experienced (+4.3 segments, p=0.006 and +3.8
progressions, p<0.016).
Conclusions AI guidance helped bronchoscopists of all experience levels to inspect more segments in a
more structured order. Clinical implementation of AI guidance could help ensure and document more
complete bronchoscopy procedures in the future.

Introduction
Lung cancer is the leading cause of cancer mortality globally [1]. Lung cancer mortality has been
decreasing in Europe [2], but it still ranks the highest [3]. Several countries have implemented screening
programmes to decrease the mortality [4], and guidelines towards standardisation have been recommended
by the European Respiratory Society (ERS) [5]. With increasing screening programmes, more lesions in
their preliminary stages will be detected, increasing the number of flexible bronchoscopies as the primary
sampling technique [6]. Bronchoscopy is an operator-dependent procedure that should entail a full and
structured inspection of the bronchial tree in patients suspected of lung cancer, as some tumours are not
visible on low-dose computed tomography [7], and tumours can even appear in patients not suspected of
lung cancer [8]. Navigation through the bronchial maze where the segments look alike can cause
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confusion, resulting in missed segments. Therefore, the most frequently used assessment tool for
bronchoscopy competence is diagnostic completeness (DC), i.e., inspected segments [9]. Novices tend to
have a lower DC than more experienced [10], but even experienced bronchoscopists with >500
bronchoscopies performed miss segments [10, 11]. Additionally, a systematic inspection order (structured
progression, SP) and procedure efficiency (mean intersegmental time, MIT) have been proposed and
shown discriminatory effect of competence [12–14]. Systematic approaches to teach and train in
bronchoscopy have been suggested [15–17], but widespread implementation of individual teaching
preferences beyond the traditional apprenticeship model of “see one, do one, teach one” is difficult. A
recent study found that novices benefitted significantly from training using a novel bronchial lumen
identification system based on artificial intelligence (AI) [18]. AI could ensure a full, systematic and
efficient inspection of the bronchial tree that could help even experienced bronchoscopists perform more
thorough and structured procedures.

The objective of this study was to test the impact of AI-driven anatomical guidance on bronchoscopy
performance of endoscopists with varying experience.

Material and methods
Study site, equipment and settings
The study was conducted in a simulated setting at the Clinical Skills Zone at the ERS Annual Conference
2023, 9–13 September in Milan, Italy, to provide a standardised setting with the inclusion of a high
number of participants with varying experience levels. The primary investigators (KC and KA) enrolled
participants from their booth using two identical set-ups (figure 1) with the following settings: a single use
scope (aScop 5 Broncho HD 5.0/2.2, Ambu, Ballerup, Denmark) connected to a portable monitor (aView
2 Advance, Ambu, Ballerup, Denmark) and further displayed on a 27 inch monitor with the AI interface
turned on or off (supplementary material 1 – video, Ambu Broncho Simulator, Prototype version,
AmbuBronchoSimultatortrainingGUIDEv.0.0.1, Ambu). All procedures were performed on a realistic
phantom mimicking the first four to five divisions of the bronchial tree (Bronchoscopy Training Model
LM-092, Koken Co., LTH, Tokyo, Japan). The Ambu Broncho Simulator prototype was developed using a
neural network for visually recognising anatomical locations using an aScope 5 Broncho HD, in order to
provide the user with real-time positioning support during a bronchoscopy training session on a
standardised typical anatomical model (Bronchoscopy training model LM-092, Koken Co.).

Participation was voluntary and all participants who came by and wanted to participate were enrolled.
When multiple participants wanted to participate, they waited for their turn on a first-come-first-served
basis. All participants gave oral and written informed consent before participating in the study and
provided their demographic information (supplementary material 2).

FIGURE 1 The Ambu AI feedback with its three feedback features: on screen labels, lung tree diagram and
structured progression score.
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Study design, outcome measures, randomisation and rating
The study was designed as a randomised crossover trial and adhered to the CONSORT statement for
simulation-based trials (figure 2, supplementary material 3) [18]. The participants were instructed to
perform two bronchoscopies by the primary investigators. To accommodate for a “learning-by-testing”
effect, we randomised the participants into two groups. The F1-group received AI-driven guidance for their
first bronchoscopy (AI-First), but not their second bronchoscopy (Standard-Second). The F2-group
received AI-driven guidance for their second bronchoscopy (AI-Second) but not their first bronchoscopy
(Standard-First). The participants were randomised using Sealed Envelope (Sealed Envelope, London,
UK). The participants were stratified by sex as previous research has indicated that sex can affect skill
acquisition in the initial stages of the learning process [19], and into three groups by experience level
(novices: 0 bronchoscopies; intermediates: 1–249 bronchoscopies; and experienced: ⩾250 bronchoscopies).

The participants were given a brief introduction about the interface of the AI. They were instructed to
visualise all 18 segments of the phantom (10 segments on the right side and eight segments on the left
with segment 1 and 2 fused together and no segment 7). They could start either on the left or right lung,
but were instructed to proceed according to the segment numbering (for the right side: RB1→RB2→RB3)
in as little time as possible but with no time constraint, as they were rated by the AI according to the
following four outcome measures, which were chosen as they all showed discriminatory abilities in a
previous randomised controlled trial using the AI [20], and have been used in previous simulation-based
trials [12–14]:

Diagnostic completeness (DC): This was measured as the number of entered bronchial segments.
Maximum score for DC was 18 segments.

Structured progress (SP): A point was rewarded every time the bronchoscopist passed from a segment to
the immediately succeeding segment (RB1→RB2=1 point, RB2→RB1=0 points) [13].

Procedure time (PT): A timer was started automatically when the main carina was visualised and ended
with extraction of the scope.

Mean intersegmental time (MIT): To have a measure for time spent navigating between the segments, PT
was divided with DC and referred to as MIT, as PT is an indicator of competence, but does not hold a
direct translation to the efficacy of the procedure.

Randomised

(n=102)

F1 (n=50) F2 (n=52)

Allocation

Intervention

Included

F1-AI-First

(n=50)

F2-Standard-First 

(n=52)

F1-Standard-Second

(n=49)

F2-AI-Second

(n=52)

F1 (n=49)

Novices=10

Intermediates=28

Experienced=11

F2 (n=52)

Novices=13

Intermediates=27

Experienced=12

FIGURE 2 Flowchart of the study. Standard procedure: the bronchoscopists did not receive feedback from the
artificial intelligence (AI); AI procedure: the bronchoscopists received feedback from the AI. One participant
dropped out after the F1-AI-First procedure.
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The primary investigators did not provide the participants with any feedback doing the procedures but
helped to interpret the scoring by the AI when the procedure was finalised. The AI automatically rated all
procedures, as it is an unbiased and automatic rating tool with a high level of validity evidence [21].

Statistical analysis by effect of AI
All statistical testing was conducted for all participants and their subgroups for all four outcome measures
(DC, SP, PT and MIT). Statistical testing was completed in R (R version 4.1.2, Vienna, Austria) by
K. Cold and in Statistical Package for the Social Sciences (SPSS) version 27 (PASW v27.0; SPSS Inc.,
Chicago, IL, USA) by L. Konge to ensure statistical robustness and that the test’s assumptions were being
met. To ensure transparency, all data are available as supplementary material 4.

To test for the effect of AI guidance, all procedures using AI (AI-First and AI-Second) were compared to
the procedures without AI (Standard-First and Standard-Second) using paired t-tests. This was done for all
participants and for each of the three experience groups. To test for the learning-by-testing effect of a
single procedure with AI guidance, Standard-Second procedures were compared to Standard-First
procedures using independent samples t-test. Conversely, to test for the learning-by-testing effect of a
single procedure without AI guidance, AI-Second procedures were compared to AI-First procedures using
independent samples t-test. To test for the validity of using SP, its correlation to DC was calculated using
Pearson’s correlation, r.

Results
101 participants completed the study (23 novices, 55 intermediates and 23 experienced) from 38 countries
of six continents (participant demographic, table 1). One participant was excluded due to dropping out
during the first procedure (p_031 F1-AI-First, supplementary material 4). Another participant had their
second procedure interrupted by system shut down but redid the second procedure from the beginning
(p_046, F2-AI-Second, supplementary material 4).

Comparing AI procedures to standard procedures, the participants visualised more of the bronchial tree;
DC (mean difference, +6.0 segments, p<0.001), in a more structured order; SP (+5.2 progressions,
p<0.001), spending longer time doing so; PT (+72 s, p<0.001), however, with a higher level of efficiency;
MIT (−10.3 s, p<0.001). Table 2 shows that these findings were also significant within each experience
group (table 2).

TABLE 1 Participant demographics

Group F1 F2

Participants, n (female sex) Total 49 (15) 52 (13)
Novice 10 (3) 13 (2)
Intermediate 28 (10) 27 (11)
Experienced 11 (2) 12 (0)

Age years Total 36.8±10.0 36.5±9.1
Novice 29.1±3.8 34.0±10.2
Intermediate 36.4±9.8 34.4±6.4
Experienced 44.5±8.8 43.9±9.9

Countries represented#, n Total 24 27
Novice 6 10
Intermediate 19 16
Experienced 10 8

Bronchoscopies performed Total 242±540 373±1415
Novice 0±0 0±0
Intermediate 83±78 75±64
Experienced 868±905 1446±2764

Bronchoscopies performed within last 6 months Total 39±97 33±49
Novice 0±0 0±0
Intermediate 19±22 25±27
Experienced 124±182 85±71

Values are presented as mean±SD, unless otherwise indicated. Novice (0 bronchoscopies, n=23), intermediate
(10–200 bronchoscopies, n=55) and experienced (⩾250 bronchoscopies, n=23). #: for countries, the total is lower
than the sum of the individual groups, as similar nationalities were represented in different groups.
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Comparing standard procedures between the groups, the F1-Standard-Second visualised more segments
than the F2-Standard-First; DC (mean difference +3.7 segments, p<0.001) in a more structured order; SP
(+2.2 progressions, p=0.002), however without increasing the PT significantly (+20 s, p=0.45), but
decreasing MIT (−11 s, p=0.016). This was the same pattern for both experienced and intermediate
participants but not for novices (table 3).

For the AI procedures (F1-AI-First and F2-AI-Second), none of the outcome measures between the two
groups were statistically significant (supplementary material 5).

DC correlated significantly with SP (Pearson’s r=0.76, p<0.001) in total and for each subgroup: novices
(0.84, p<0.001), intermediates (0.73, p<0.001) and experienced (0.77, p<0.001).

TABLE 2 Artificial intelligence (AI) procedures (F1-AI-First and F2-AI-Second) versus standard procedures (F1-Standard-Second and F2-Standard-First)

AI procedures versus standard procedures AI procedures Standard procedures Mean difference p-value

Total DC, segments 16.2±3.4 10.2±4.8 6.0 <0.001
Total SP, progressions 9.4±5.0 4.2±3.7 5.2 <0.001
Total PT, seconds 346±174 273±128 72 <0.001
Total MIT, seconds 23±14.8 33±23.3 −10 <0.001
Novice DC, segments 16.2±3.4 8.0±3.7 8.2 0.012
Novice SP, progressions 8.4±4.0 1.8±1.7 6.6 <0.001
Novice PT, seconds 467±200 351±169 116 <0.001
Novice MIT, seconds 30±12.6 52±32.3 −22 0.002
Intermediate DC, segments 16.4±3.0 10.7±4.7 5.7 0.006
Intermediate SP, progressions 9.7±4.9 4.6±3.5 5.1 <0.001
Intermediate PT, seconds 323±155 269±104 54 <0.001
Intermediate MIT, seconds 21±14.4 31±17.5 −10 <0.001
Experienced DC, segments 15.8±4.4 11.4±5.3 4.3 0.006
Experienced SP, progressions 9.7±6.0 5.8±4.4 3.8 0.016
Experienced PT, seconds 278±131 205±90 73 <0.001
Experienced MIT, seconds 21±16.4 19±8.6 2 0.53

All 101 AI procedures (F1-AI-First and F2-AI-Second) are pairwise compared for each participant to all 101 standard procedures (F1-Standard-Second
and F2-Standard-First) using a paired t-test and for the three subgroups alike: novice (0 bronchoscopies, n=23), intermediate (1–249 bronchoscopies,
n=55) and experienced (⩾250 bronchoscopies, n=23). Values are presented as mean±SD. DC: diagnostic completeness; SP: structured progress;
PT: procedure time; MIT: mean intersegmental time.

TABLE 3 Difference in performance between standard procedures (F1-Standard-Second and F2-Standard-First)

Standard procedures F1-Standard-Second F2-Standard-First Mean difference p-value

Total DC, segments 12.2±4.1 8.4±4.7 3.7 <0.001
Total SP, progressions 5.4±3.8 3.2±3.8 2.2 0.002
Total PT, seconds 283±108 264±145 19 0.45
Total MIT, seconds 28±17.2 39±27.0 −11 0.016
Novice DC, segments 8.5±3.0 7.6±4.3 0.9 0.56
Novice SP, progressions 1.8 ±1.4 1.8±1.9 −0.1 0.94
Novice PT, seconds 318±152 376±183 −57 0.42
Novice MIT, seconds 41±22.4 60±36.9 −19 0.16
Intermediate DC, segments 12.6±3.6 8.7±4.9 3.94 0.001
Intermediate SP, progressions 5.5±3.2 3.6±3.5 1.9 0.037
Intermediate PT, seconds 293±93 243±110 50 0.07
Intermediate MIT, seconds 27±14.5 36±19.4 −9 0.05
Experienced DC, segments 14.4±4.2 8.6±4.9 5.6 0.007
Experienced SP, progressions 8.3±4.3 3.7±3.7 4.6 0.011
Experienced PT, seconds 225±81 188±99 38 0.33
Experienced MIT, seconds 18±11.0 20±5.6 −2 0.57

All standard procedures (F1-Standard-Second and F2-Standard-First) are compared, using independent samples t-test in total and for the
subgroups: novice (0 bronchoscopies, n=23), intermediate (10–200 bronchoscopies, n=55) and experienced (⩾250 bronchoscopies, n=23). Values are
presented as mean±SD. DC: diagnostic completeness; SP: structured progress; PT: procedure time; MIT: mean intersegmental time.
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Discussion
This study is the first to explore the efficacy of AI-driven guidance in bronchoscopy across all experience
levels (table 1).

When comparing the AI-guided procedures with the standard procedures without AI guidance, the mean
difference for DC was +6.0 segments (p<0.001) and for +SP 5.2 progressions (p<001), indicating both a
more thorough and a more structured inspection of the bronchial tree when using AI. Novices benefitted
most (DC=+8.2 segments, SP=+6.6 progressions) from AI-driven guidance; however both Intermediates
(DC=+5.7 segments, SP=+5.1 progressions) and even experienced bronchoscopists (DC=+4.3 segments,
SP=+3.8 progressions) benefitted significantly from it (table 2).

A bronchoscopy should entail a full inspection of the bronchial tree [22, 23], and therefore DC is the most
frequently used assessment measure for bronchoscopy performance [9]. Experienced bronchoscopists have a
higher level of diagnostic yield [24], but the experienced bronchoscopists did not visit all segments although
they were instructed to do so. This finding is in accordance with other simulation-based bronchoscopy studies
[11–14, 25, 26]. One clinical study analysed 27 bronchoscopy recordings from nine experienced consultants
with a mean of 1506 bronchoscopies performed previously; with an average of one missed lobe per procedure
[10]. A learning curve study in bronchoscopy illustrated a mean asymptotic level at the 75th bronchoscopy,
but that some trainees need up to 250 bronchoscopies to reach their asymptotic level. This is in accordance
with another learning curve study in bronchoscopy that identified fast and slow learners [27]. The
improvement of DC is therefore important even for intermediates and experienced bronchoscopists, and the AI
has potential to do so. No large-scale studies exploring DC for clinical bronchoscopies exist, but the AI should
be tested in a clinical setting both to assess DC and whether AI-driven guidance can improve it.

After just one procedure with the AI, the F1-Standard-Second performed better compared to the
F2-Standard-First (table 3). This could be due to learning by testing as the F1-group might be more familiar
with the phantom for their second procedure than for the F2-group for their first procedure. However, when
doing the opposite comparison by testing the AI procedures, no significant differences regarding the outcome
measures were found (supplementary material 5), indicating that the F2-group did not gain an advantage by
performing a standard procedure before using the AI. Additionally, an increase for the novices was not
detectable with just one procedure with the AI, as F1-Standard-Second did not perform better than
F2-Standard-First (table 3). This finding could be attributed to the novices’ sparse skill level and very limited
anatomical knowledge. Since the AI improved the performance of all groups, a training effect could be
possible for intermediates and experienced as well, as observed for novices in a previous trial, where training
with the AI made novice participants perform better, even with the AI turned off [20]. Future training and
clinical implementation studies using the AI for intermediates and experienced should be performed.

All participants were instructed to progress according to the SP score. The most recent systematic review
on the effectiveness of simulation-based bronchoscopy training found the score to have a high degree of
validity evidence and suggested implementing it into future studies [9]. SP correlated significantly with
DC (Pearson’s r, p-value: 0.76, p<0.001) in total and for each subgroup: novices (0.84, p<0.001),
intermediates (0.73, p<0.001) and experienced (0.77, p<0.001). These findings supply further validity
evidence for the SP score as those bronchoscopists who progress according to the score visit more
segments. However, SP should be interpreted with caution. Experienced bronchoscopists might develop
their own route for navigating the bronchial tree, and if done systematically progressing from
RB3→RB2→RB1 can be as useful as progressing according to the SP score. Different bronchial segment
nomenclatures, like the numerical used in this study or the anatomical (R1=right upper lobe, apical
segment, etc.), are used. All intermediates and experienced were familiar with the numerical nomenclature
used for the SP score and were asked to progress according to it. Unfortunately, we did not register which
nomenclature the participants used in their daily practice, which could have impacted their performance.
As the only automatic measure of structuredness and thereby anatomical knowledge, we propose to train
and assess novice bronchoscopists according to the SP score like done in this study.

The AI increased the performance regarding DC and SP, however also increasing PT. PT is widely used
[9], as it is very intuitively understood and easy to monitor. However, it holds no intrinsic value towards
the efficacy of the procedure. MIT is a direct indicator of the efficacy of the procedure by adjusting to DC
(i.e. PT/DC) [13]. Procedures with AI-driven guidance had a lower MIT than standard procedures (mean
difference, paired t-test: −10.3 s, p<0.001). The AI therefore helped the participants to spend a
significantly shorter amount of time navigating between the segments, and therefore the increase in PT per
se should not be regarded as an undesired side-effect of the AI. We therefore recommend future studies to
add MIT when using PT as an outcome measure, as an indication towards the efficacy of the procedure.
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The longer PT might also be due to getting familiar with a new system, as the participants were tested by
their first procedure with the AI. Training with the AI decreased PT for novices in a previous trial [20].
This study only tested the use of AI for one bronchoscopy, and it must be assumed that for a potential
second and third procedure with the AI, participants will be more familiar with it and be able to interact
more efficiently with it. Future studies should therefore examine the impact of training with the AI on
consecutive procedures for the assessment of learning curves.

Our study has several strengths. This is the largest study exploring AI in bronchoscopy, with 101 participants
ranging all experience levels and spanning six continents, providing a high level of external validity. We used
a randomised cross-over design to assess bronchoscopy performance with and without the AI in accordance
with current guidelines for randomised controlled trials [18]. We used the AI to assess bronchoscopy
performance, which is an automatic and unbiased tool with solid validity evidence [21]. We did not perform a
power calculation but included every participant with interest in participating in the study throughout the
conference. Only one participant dropped out and only one had their second procedure interrupted by system
shut down. The study has the highest number of participants of any study exploring bronchoscopy performance
and achieved a high level of participants compared to other simulation-based studies in general [28].

There are however limitations in the study. Framework and reporting tools in endoscopy exist when
developing AI [29]. Private companies do not publicly report on the development and internal validation
when developing AI. We therefore only tested the AI application, as the training and validation is a
company secret kept by the provider, Ambu A/S. However, the Ambu A/S informed us that the AI was
developed by their AI team based on machine learning using a neural network. We did not test how the AI
would function on different phantoms with different anatomical variations, and therefore do not know if
the AI system would be compatible with different bronchoscopy models. We performed the study in a
simulation-based setting for standardisation of the procedure and environment and only tested for standard
navigational skills; however, bronchoscopy is a more complex procedure with biopsies, patient monitoring,
coughing and tumour detection, which the phantom does not facilitate. Extrapolations of our result must be
done with absolute caution, e.g. that novices with AI seem to approximate intermediate performance
without AI regarding procedure efficiency (MIT, mean±SD): 30±12.6 versus 31±17.5 s, and intermediates
with AI to approximate expert performance without AI regarding MIT: 21±14.4 versus 19±8.6 s (table 2).
As clinical impact of the AI was not studied, transfer or testing in a clinical setting should be conducted
for future studies to test direct clinical impact [22, 30]. We only tested two bronchoscopies for each
participant and not how AI impacted consecutive procedures. Additionally, the AI does not test for wall
collisions; however an AI co-pilot for safe steering has been developed [31, 32], highlighting how AI
might help assist different aspects of the bronchoscopy procedure [33]. We did not systematically ask
participants if they believed that the AI system could improve their or their colleagues’ performance. Such
information could have proven useful, but due to the design of the study at a conference with limited time
for each participant, we decided not to hand out questionnaires.

In conclusion, bronchoscopists of all experiences perform better with AI than without, by visiting more
segments, in a more structured order, and more efficiently.
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