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ABSTRACT
Background: Terrestrial ecosystems play a significant role in carbon (C) storage.
Human activities, such as urbanization, infrastructure, and land use change, can
reduce significantly the C stored in the soil. The aim of this research was to measure
the spatial variability of soil organic C (SOC) in the national park La Malinche
(NPLM) in the central highlands of Mexico as an example of highland ecosystems
and to determine the impact of land use change on the SOC stocks through
deterministic and geostatistical geographic information system (GIS) based methods.
Methods: The soil was collected from different landscapes, that is, pine, fir, oak and
mixed forests, natural grassland, moor and arable land, and organic C content
determined. Different GIS-based deterministic (inverse distance weighting, local
polynomial interpolation and radial basis function) and geostatistical interpolation
techniques (ordinary kriging, cokriging and empirical Bayes kriging) were used to
map the SOC stocks and other environmental variables of the top soil layer.
Results: All interpolation GIS-based methods described the spatial distribution of
SOC of the NPLM satisfactorily. The total SOC stock of the NPLM was 2.45 Tg C
with 85.3% in the forest (1.26 Tg C in the A horizon and 0.83 Tg C in the O horizon),
11.4% in the arable soil (0.23 Tg in the A horizon and only 0.05 Tg C in the O
horizon) and 3.3% in the high moor (0.07 Tg C in the A horizon and <0.01 Tg C in
the O horizon). The estimated total SOC stock in a preserved part of the forest in
NPLM was 4.98 Tg C in 1938 and has nearly halved since then. Continuing this trend
of converting all the remaining forest to arable land will decrease the total SOC stock
to 0.52 Tg C.
Discussion: Different factors explain the large variations in SOC stocks found in this
study but the change in land use (conversion of forests into agricultural lands) was
the major reason for the reduction of the SOC stocks in the high mountain ecosystem
of the NPLM. Large amounts of C, however, could be stored potentially in this
ecosystem if the area was used more sustainable. The information derived from this
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study could be used to recommend strategies to reverse the SOC loss in NPLM and
other high-altitude temperate forests and sequester larger quantities of C. This
research can serve as a reference for the analysis of SOC distribution in similar
mountain ecosystems in central part of Mexico and in other parts of the world.

Subjects Ecosystem Science, Soil Science, Environmental Impacts, Spatial and Geographic
Information Science
Keywords Arable land, High altitude temperate forest, Geostatistical interpolation, Deterministic
interpolation, Forest soil, Climate change

INTRODUCTION
Climate change is arguably one of the most important environmental challenges of the 21st
century (Roose et al., 2005; Gerber et al., 2013; Feulner, 2017). Climate change and global
warming will affect humanity, as rising temperatures will change weather patterns with
more extreme natural events. These will cause serious damage to infrastructure and
ecosystems and affect crop production, and have a strong and enduring social, economic
and environmental impact (FAO, 2008; Dodo, 2014; Gobiet et al., 2014).

Human activities, such as fossil fuel burning, raising livestock, land use change
and agriculture increases greenhouse gas (GHG) emissions (Stocker, 2014). These
anthropogenic activities are the main reason for the increase of GHG in the atmosphere,
that is, mostly carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which leads
to the greenhouse effect and global warming (Roose et al., 2005; Steinfeld et al., 2006;
Reddy, 2015).

Atmospheric CO2 concentrations can be lowered either by reducing emissions derived
from human activities or by sequestering carbon, that is, taking CO2 out of the atmosphere
and storing in organic material of terrestrial, oceanic or freshwater aquatic ecosystems
(Roose et al., 2005; Lal, 2007). Terrestrial ecosystems play a significant role in C storage in
plant biomass and soil organic matter (Scharlemann et al., 2014; Navarrete-Segueda et al.,
2018). The amount of organic C that can be sequestered in these terrestrial ecosystems
depends on multiple factors, that is, soil characteristics, climatic conditions, vegetation and
land use (Lal, 2004; Roose et al., 2005; Shah & Venkatramanan, 2009). Forests play a
crucial function in the global C cycle as large amounts of C can be sequestered in the
vegetation and soil (Lal, 2007; Achat et al., 2015; Sedjo, Sohngen & Riddle, 2015).
For instance, the organic C content (SOC) in the 20 cm top layer of mountain soils can
be as high as 115 g kg−1, but is often much lower and highly variable (Perry, Oren &
Hart, 1994; Wei et al., 2008; Zhang et al., 2012; Liu et al., 2014; Zhang et al., 2015; Jeelani
et al., 2017). A decrease in SOC in a forest soil is due to a decline in litter input, reduction
in density and abundance of vegetation and changes in the distribution of plant roots
(Lal, 2004; Jandl et al., 2007). The drive to conserve these ecosystems is mostly science-
based, but limited often by socio-economic restrains (Catalán et al., 2017). Human
activities, such as land use change for agriculture and husbandry, and ecotourism,
compromise ecological conservation (Pèlachs et al., 2017) and can reduce SOC stocks
sharply (Houghton & Nassikas, 2018). In particular, conversion of forests to arable land
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and grassland decreased SOC stocks by 20–89% depending on the region, soil
characteristics, environmental factors and vegetation (Guo & Gifford, 2002; Murty et al.,
2002; Xia et al., 2017).

The geographic information system (GIS) is a computerized database management
system for capture, storage, retrieval, manipulation, analysis and display of spatial data.
This enables to visualize, analyse and understand environmental patterns and relationships
between ecosystem parameters (Chang, 2015; http://www.esri.com/environment).
Different geostatistical GIS-based algorithms have been used to describe and determine
the spatial distribution of SOC and to determine landscape or regional SOC stocks in
different soil ecosystems (Karydas et al., 2009; Sarmadian et al., 2014; Chen et al., 2015;
Chabala, Mulolwa & Lungu, 2017; Bhunia, Shit & Maiti, 2018). For instance, Bhunia,
Shit & Maiti (2018) used five interpolation methods, that is, inverse distance weighting
(IDW), local polynomial interpolation (LPI), radial basis function (RBF), ordinary kriging
(OK) and empirical Bayes kriging (EBK) to model the spatial distribution of SOC in the
area of Medinipur Block (India). Cross-validation showed that the OK technique was
the best interpolation method. Three different interpolation techniques, that is, IDW, OK
and RBF, were used to generate maps of clay content, organic matter, total calcium
carbonate (CaCO3) and electric conductivity in the topsoil of an agricultural area close to
the town of Archanes (Greece). The IDW was the best interpolation technique to describe
the spatial variability of organic matter (Karydas et al., 2009). A good description of
spatial variability of SOC provides valuable information for evaluating soil fertility,
ecological modeling, environmental prediction, natural resources management, soil
restoration, woodland regeneration and precision agriculture (Clay & Shanahan, 2011).

The national park La Malinche (NPLM) is located to the east of Mexico City and covers
most of the Malinche or Matlalcuéyatl volcano (Arriaga-Cabrera et al., 2009; Osorio,
Haas & MacMillan, 2011). The volcano is part of the Trans-Mexican Volcanic Belt and is
the sixth highest mountain of the country. The vegetation at the NPLM includes pine, fir-
pine, oak and mixed forests with natural grassland and moor near the top of the volcano,
and agriculture on the lower slopes (SEMARNAT, 2013). Although it is a national park,
local people extract wood from the forest and agriculture is expanding, which lead to a
sharp drop in the retained organic C. This research aimed to determine the spatial
variability of SOC in the mountainous ecosystem of NPLM trough GIS-based methods and
to link it to land use. Therefore, the soil was sampled extensively to cover the heterogeneity
of the landscapes in NPLM in detail. As such, this research can serve as a reference
model for the analysis of SOC distribution in similar ecosystems of the Trans-Mexican
Volcanic Belt and provides information how to increase C sequestered in them and other
similar high altitude forests in the world. The objectives of this study were (i) to compare
the six most common interpolation methods to obtain a satisfactory map of SOC so
that we could determine which method was the best for further studies in similar
ecosystems, (ii) to estimate SOC stocks in a high mountain ecosystem, and (iii) to explore
the effects of the land use on spatial distribution of SOC and on SOC stocks in the
ecosystem studied.
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MATERIALS AND METHODS
Study area
La Malinche is an eroded stratovolcano that rises to 4,461 masl cut by deep canyons.
The NPLM (482 km2) covers most of the volcano and is located to the east Mexico City
(Latitude N from 19�06′51″ to 19�20′58″; Longitude W from 97�55′10″ to 98�09′46″)
(Fig. 1). It is a “Priority Land Region for the Conservation” for its biological diversity
(Arriaga-Cabrera et al., 2009; Osorio, Haas & MacMillan, 2011).

The vegetation at NPLM includes: 24.2% pine, 4.5% fir-pine, 3.4% oak and 6.9% mixed
forests, 7.0% natural grassland and moor, and 53.3% seasonal agriculture (SEMARNAT,
2013). The spatial distribution of the landscapes was obtained from the National Park
Management Program of the Comisión Nacional de Áreas Naturales Protegidas
(CONANP) (2014). The soils in the NPLM are mainly regosols, fluvisols and cambisols
(IUSS Working Group, 2015). Luvisol sands and some gleysols are found in lowlands and
alluvial cones on the eastern and western side of NPLM.

Sampling and soil properties analysis
The topographic maps (scale 1:50000) of the “Instituto Nacional de Estadística y Geografía
of Mexico” (Instituto Nacional de Estadística y Geografía (INEGI), 2018): E14B33 (act.
2015), E14B34 (act. 2015), E14B43 (act. 2014) and E14B44 (act. 2015) were used for
cartography. The altitudinal gradient of NPLM was obtained from the digital elevation
model “Continuo de Elevaciones Mexicano 3.0” (CEM 3.0) with a resolution of 15 m ×
15 m (Instituto Nacional de Estadística y Geografía (INEGI), 2018).

Figure 1 Study area at the national park La Malinche (NPLM).
Full-size DOI: 10.7717/peerj.7897/fig-1
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The geographic area of the NPLM was divided into 440 100-ha square grids with the
software ArcGis. These grids were used as a preliminary template for soil sampling.
The geography of the volcano did not allow to access some areas, for example, the rock
face in the south east part of the national park. The sampling sites were designed to
cover the area evenly and to include different soil types and land use, that is, 163 in arable
land, 177 in pine forest, 76 in mixed forests, and 24 in natural grassland and moor soil
samples.

The soil samples were collected from September to December 2016. Field sampling was
done with a permission of the ‘Secretaría de Medio Ambiente y Recursos Naturales’
(SEMARNAT, Mexico City, Mexico) under the collecting permit SGPA/DGVS/15396/
15. In each grid, the O horizon was collected if present and 2 kg soil from the A horizon,
that is, the 0–15 cm soil top layer. The thickness of O horizon was measured. The NPLM
is classified as young volcano. The soils are thin and poorly developed so most of the
organic C is concentrated in the top soil (SEMARNAT, 2013). Therefore, the SOC stocks
were calculated considering the O horizon and the 0–15 cm top soil layer. A cylindrical
core cutter (dimensions: height 15 cm, diameter 3 cm) was used to measure the relative soil
density. Coordinates of each sample point were determined with a portable global
positioning system (GPS, Garmin ETrex 20).

Soil and organic matter samples were air-dried and passed through a 2 mm sieve before
analysis (Motsara & Roy, 2008). The soil particle size distribution was determined by
the hydrometer method after a pre-treatment with sodium hexametaphosphate as a
dispersant (Bouyoucos, 1962) and classified according to the USDA soil texture triangle.
The SOC was measured with a total organic carbon analyzer TOC-VCSN (Shimadzu,
Canby, OR, USA).

Interpolation methods
Different GIS-based deterministic and geostatistical interpolation techniques were used to
map the SOC and other environmental variables of the top soil layer (Scull et al., 2003).
Deterministic interpolation techniques create surfaces from measured sampling points
based on either the extent of similarity, the proximity and the spatial distribution of
sampling points or the degree of smoothing. Geostatistical interpolation techniques use
a different approach and create surfaces from the statistical properties of the measured
sampling points. Three deterministic methods, that is, IDW, LPI and RBF, and three
geostatistical interpolation techniques, that is, OK, EBK and cokriging (CK), were used to
analyse and compare the data (Johnston et al., 2001).

Deterministic methods
The IDW is a determinist interpolation technique used most frequently to describe the
spatial distribution of SOC (Bhunia, Shit & Maiti, 2018). The IDW method uses the
sampling points surrounding each prediction location to determine a SOC value for any
unmeasured location. The measured SOC values closest to the prediction location weight
more on the predicted value than those further away (Johnston et al., 2001). The best
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results with IDW are obtained when sampling density is highly depended on the local
variation (Watson & Philip, 1985). The IDW is described by the following equation.

Z x0ð Þ ¼

XN

i¼1

xi

hβijXN

i¼1

1

hβij

(1)

where Z(x0) was the interpolated value, N was the number of sample sites, xi was the ith
data value, hij represented the distance between interpolated value and the sample data
value and finally β denoted the weighting power (Johnston et al., 2001; Liao et al., 2006).

The RBF method uses one of its five basis functions, that is, thin-plate spline, spline with
tension, completely regularized spline, multiquadric function and inverse multiquadric
function, to interpolate surfaces that pass through the input sampling points exactly.
Each basis function has a different shape and results in different interpolation surfaces.
The objective of each function is to minimize the total curvature of the interpolation
surface Johnston et al. (2001). The RBFs differ from the global and local polynomial
interpolators, both inexact interpolators that do not require the surface to pass through the
measured sampling points. The RBFs are unsuitable when the SOC of neighboring
sampling points is highly variable (Johnston et al., 2001; Losser, Li & Piltner, 2014).

The LPI method does not make an exact interpolation, as the surface generated does not
have to pass through all measured sampling points of a predetermined square. The surface
generated from LPI is smooth and does not present cusps. For a correct use of LPI,
the neighborhood must be itemized correctly. Similar values found in sampling points
close to each other enable to maximize the results as the method can produce surfaces that
capture the short-range variation (Johnston et al., 2001).

Geostatistical interpolation methods
The OK method assigns weights to neighboring sampling points. Sampling points close to
each other have a strong effect on the results. The OK incorporates the statistical properties
of the sampling dataset through autocorrelation and the kriging weights come from a
semivariogram developed in correlation with the spatial structure of the sampling dataset
(Johnston et al., 2001). In OK the values at the unsampled locations Z�(x0) was determined
by a linear weighted moving average of the values at the sampled locations (Isaaks &
Srivastava, 1989), that is:

Z� x0ð Þ ¼
XN
i¼1

�i � Z xið Þ (2)

XN
i¼1

�i ¼ 1 (3)

where λi is the weight assigned to the known value of the variable at location xi determined
based on a semivariogram model, and N represent the number of neighboring
observations.
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The error estimation variance σ2k (x0) at any point x0 was estimated as:

σ2k x0ð Þ ¼ mþ
XN
i¼1

�iγ x0 � xið Þ (4)

where m was the Lagrange parameter for minimization the kriging variance and γ(x0–xi)
was the semivariogram value corresponding to the distance between x0 and xi (Vauclin
et al., 1983; Agrawal et al., 1995).

The semivariogram was used as the basic tool to examine the spatial distribution
structure of the soil properties and was calculated using the following equation:

γ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

Z xið Þ � Z xi þ hð Þ½ �2 (5)

where γ(h) was the semivariance, h the lag distance, Z the parameter of the soil property,
N(h) was the number of pairs of locations separated by a lag distance h, Z(xi), and Z (xi + h)
were values of Z at positions xi and xi + h (Wang & Shao, 2013).

The EBK method requires minimal interactive modeling as it automates the steps to
create a kriging model and calculates the parameters through a process of sub setting and
simulations. The EBK technique generates many semivariogram models (spectrum of
semivariograms) rather than a single semivariogram. This differentiates it from other
classical kriging methods and makes it a robust non-stationary spatial prediction
algorithm that can determine standard errors of the predictions (Krivoruchko, 2012;
Krivoruchko & Butler, 2013).

Cokriging uses additional datasets or secondary variables (up to four) to refine the
predicted values of primary variable and, hypothetically, to create a map with greater
precision. The addition of the secondary variables to CK allows to reduce the variance of
the estimation error. These secondary variables are generally spatially cross correlated with
the main variable (Yalçin, 2005). The normalized difference vegetation index (NDVI)
altitude and terrain slope were the secondary variables used in this study.

Cross-validation of the different methods
Cross-validation is a statistical method to determine the efficiency of algorithms of
different interpolation techniques by dividing the sampling points into two datasets.
In this study, the data set was divided into two groups at random each covering uniformly
the study area. The first group of data with 395 samples was used to construct the
thematic SOC maps and the second with 45 remaining samples to cross-validate the
results. The following criteria were used to select the second data group. The minimum
distance between the samples was greater generally than 1 km and the number of
samples was proportional to the extension of the different landscapes, that is,
seven samples from the grassland, 17 from the forest and 21 from the agriculture
fields. The samples were taken as much as possible from the four cardinal points of the
mountain.
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The indices used for cross-validation were: mean standardized error (ME), root
mean square error (RMSE) and mean relative error (MRE) (Yang et al., 2009;
Bhunia, Shit & Pourghasemi, 2019):

ME ¼
XN

i¼1
Z xið Þ � Z0 xið Þ½ �

N
(6)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Z xið Þ � Z0 xið Þ½ �2

N

s
(7)

MRE ¼ RMSE
�

(8)

with Z(xi) the measured value of SOC of each sampling point, Z′(xi) the predicted value
derived from the interpolation methods, N the number of validation points and Δ the
range between the maximum and minimum data obtained.

Calculation of carbon stocks
The SOC stocki for each point was determined as given by FAO (2018):

SOC stocki ¼ T � SOCi � Bi � ð1� Ci=100Þ
10

(9)

where SOC stocki is expressed in t C ha−1, T is the 15 cm top soil layer for the A horizon or
the thickness of the O horizon, B is the bulk density (g cm−3), SOC is the soil organic
carbon (SOC) content (g kg−1) and C is the volume percentage of the >2 mm fraction in
the soil layer.

The total SOC stock of the NPLM was calculated as:

Total SOC stock ¼
Xn
i¼1

SOC stocki � Si

 !
� 10�6 (10)

where the total SOC stock is expressed in Tg. The SOC stocki (Mg ha−1) is the mean SOC
stock of each specific landscape (forest, agricultural land, grassland) and each horizon, Si
(ha) the area of each landscape.

The NDVI index
The NDVI derived from the Landsat 8 imagery Operational Land Imager (OLI) is an
indicator of vegetation growth, coverage and biomass, based on the “greenness” of a
defined area (Tucker, 1979; Tucker et al., 2005). The data contained 12 monthly satellite
imageries (January to December 2017) acquired from the USGS Global Visualization
Viewer (GloVis) (2017) (https://glovis.usgs.gov). The Landsat 8 imageries OLI were
processed with the atmospheric correction algorithm “dark object subtraction” (DOS1)
(Ding et al., 2015) and the reflectance data were used instead of digital numbers.
The algorithm was developed in QGIS through the semi-automatic classification plugin
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that allows a semi-automatic classification (also supervised and unsupervised
classification) of remote sensing images (Landsat, Sentinel-2, Sentinel-3, ASTER, MODIS)
(Congedo, 2016). Individual Landsat 8 TM bands include near-infrared (NIR) and red
(RED). The NDVI of each Landsat 8 imagery was determined using NIR and RED bands
as reported by Tucker & Sellers (1986) (Eq. 11).

NDVI ¼ ðNIR� REDÞ=ðNIRþ REDÞ (11)

RESULTS
Spatial variation of soil organic carbon content
The summary statistics of the SOC in the A horizon are given in Table 1. Statistics of the
SOC in the A horizon related to land use and altitude are given in Fig. 2 and Table 2.

Between 2,200 and 2,500 masl, the climate is temperate and semi-arid. Planted trees and
cultivated crops were predominant in this area. The SOC in the A horizon ranged from
3.12 g kg−1 to 12.51 g kg−1 with mean 6.15 g kg−1, standard deviation 2.40 g kg−1 and
skewness 1.59. These values were indicative of a homogeneous spatial distribution of SOC.
The soil texture varied from coarse sand to sandy loam. Generally, the arable soil did not
have an O horizon, except for some fields were conservation agricultural practices were
applied, that is, crop residue was retained on the soil surface, where its thickness reached
3 cm. In the latter, the SOC varied between 289.12 g kg−1 and 387.27 g kg−1.

Between 2,500 and 3,000 masl, the climate is temperate sub-humid. This area was
characterised by pine, oak forest and cultivated crops. The SOC in the A horizon varied
between 2.33 g kg−1 and 44.32 g kg−1 with mean 13.24 g kg−1, standard deviation
11.64 g kg−1 and skewness 0.93. The soil texture varied from coarse sand to sandy loam.
In the forest soils, the O horizon reached 16 cm and the SOC varied between 287.82 g kg−1

and 412.47 g kg−1.
Between 3,000 and 3,500 masl, the climate is semi-cold and sub-humid. The vegetation

was composed mainly of pine and fir. The SOC in the A horizon was highly variable due

Table 1 Soil Organic carbon (SOC) content in the 0–15 cm top soil layer of the national park La Malinche (NPLM).

SOC (g kg1)

Na Minb Maxc Range Mean Median SDd CV (%)e Skewness Kurtosis 1� Quartile 3� Quartile IQRf

Ecosystem 440 2.33 114.87 112.54 25.81 22.76 22.10 85.66 0.96 0.48 5.48 41.32 35.84

Forest 253 8.02 114.87 106.85 40.31 37.81 18.55 45.91 0.97 1.06 25.82 50.36 24.54

Grassland 24 2.63 21.73 19.10 12.82 11.66 5.17 40.63 0.90 0.67 8.74 15.03 6.29

Seasonal agriculture 163 2.33 14.26 11.93 5.19 4.91 1.98 38.15 1.93 5.89 3.79 5.98 2.19

Notes:
Statistic soil organic carbon (SOC) parameters of pedestrian soil layer of the national park La Malinche (NPLM).
a N, number of samples.
b Min, minimum.
c Max, maximum.
d SD, standard deviation.
e CV, coefficient of variation.
f IQR, interquartile range.
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to the heterogeneous characteristics of the landscape and ranged from 2.81 g kg−1 to
100.82 g kg−1, with mean 46.90 g kg−1, standard deviation 17.50 g kg−1 and skewness 0.28.
The soil texture was mostly sandy loam. The thickest O horizons that were found in
this area measured 35 cm in some places. The SOC in this area varied between
291.23 g kg−1 and 484.20 g kg−1.

Between 3,500 and 4,000 masl, the climate is cold. Pine forests were found throughout
this area with Pinus hartwegii Lindley 1839 in the highest zone. The SOC in the A horizon
varied between 8.12 g kg−1 and 114.87 g kg−1, with the highest amounts found in a
pine forest at approximately 3,750 masl. The mean SOC content was 38.42 g kg−1, standard

Figure 2 Correlation between soil organic carbon content (SOCs) in the A horizon and land use in
the national park La Malinche (NPLM). (A) Scatter plot with SOC in forest (green diamonds), (B) in
seasonal agriculture (yellow squares), and (C) in grassland soil (red triangles), and (D) boxplot with SOCs
in the forest, grassland and seasonal agriculture soil. Full-size DOI: 10.7717/peerj.7897/fig-2
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deviation 25.85 g kg−1 and skewness 0.98. The predominant regosol soil had a sandy loam
texture. The O horizon varied between 2 and 30 cm and the SOC ranged from
284.76 g kg−1 to 473.12 g kg−1.

Over 4,000 masl, the vegetation was limited to grasses and high moor. The morphology
on the top of the volcano was relatively young with steep peaks and little soil (regosol)
on the more recent volcanic deposits. The regosol had a coarse sand or sandy loam
texture. The SOC in the A horizon varied between 2.63 g kg−1 and 21.73 g kg−1 with
mean 12.82 g kg−1, standard deviation 5.28 g kg−1 and skewness 0.90 indicating a
homogenous SOC spatial distribution. The O horizon was <2 cm due to accentuated slopes
and water and wind erosion with a SOC of 315.39 g kg−1.

The peak of the mountain (70 ha approximately) was exclusively made up of volcanic
stones and no soil was formed yet.

The NDVI of forest landscape
The NDVI varied between 0.23 and 0.46 (mean 0.32) in the forest of NPLM (Fig. 3).
The highest NDVI was found in the state of Tlaxcala (Northern part of NPLM) and ranged
from 0.35 to 0.40. This area was also characterized by the highest SOC in the A horizon
ranging from 67.32 g kg−1 to 100.81 g kg−1 (Fig. 3A). In the state of Puebla (Southern
part of NPLM), the NDVI of the forest varied between 0.25 and 0.32 while the SOC in the
A horizon ranged from 34.66 g kg−1 to 71.53 g kg−1. In the NPLM, the NDVI values were
positively correlated with SOC in the A horizon (Fig. 3B) and SOC in the O horizon.

SOC stocks variability and total SOC stock
The SOC stocks in the A horizon in the NPLM ranged from 3.81 to 196.33 t C ha−1

(Table 3). These SOC stocks were significantly higher in the forest than in the high
moor and arable soils. The mean SOC stock in the forest was 68.94 t C ha−1 and only
8.82 t C ha−1 in the arable soil. The arable soils in the state of Tlaxcala with limited
tillage had a higher SOC stock (mean 20.51 t C ha−1) than those in the state of Puebla

Table 2 Organic carbon (SOC) content in the top 0–15 cm soil in the different ecosystems and altitudes of national park La Malinche (NPLM).

SOC (g kg−1)

Altitude (masl) Ecosystem Na Minb Maxc Range Mean Median SDd CV (%)e Skewness 1� Quartile 3� Quartile IQRf

2,200–2,500 Seasonal agriculture 19 3.12 12.51 9.39 6.15 5.34 2.40 38.25 1.59 5.04 6.71 1.67

2,501–3,000 Seasonal agriculture
& Forest

217 2.33 44.32 41.99 13.24 8.13 11.64 88.01 0.93 4.32 24.03 19.71

3,001–3,500 Forest 132 2.81 100.82 98.01 46.90 45.52 17.50 37.31 0.28 35.10 59.14 24.04

3,501–4,000 Forest 48 8.02 114.87 106.85 38.42 30.75 25.85 67.19 0.98 16.42 57.23 40.81

Over 4,000 Grassland 24 2.63 21.73 19.10 12.82 11.78 5.28 40.63 0.90 8.78 15.02 6.29

Notes:
Statistic soil organic carbon (SOC) parameters of pedestrian soil layer of the national park La Malinche (NPLM) linked with land use and altitude.
a N, number of samples.
b Min, minimum.
c Max, maximum.
d SD, standard deviation.
e CV, coefficient of variation.
f IQR, interquartile range.
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(mean 4.14 t C ha−1) where more conventional agricultural practices prevailed. The mean
SOC stocks was 21.81 t C ha−1 in the grassland and moor soil.

The SOC stocks in the O horizon in the NPLM ranged from 0 t C ha−1 to
386.23 t C ha−1. The O horizon was highly variable with mean 5.31 cm in the forest soils,
much lower in the high-altitude grassland with mean value less than 2 cm and almost
non-existent in the arable soil.

The total SOC stock of NPLM was 2.44 Tg C. The forest had a SOC stock of 2.09 Tg C
(85.31% of the total) with 1.26 Tg C in the A horizon and 0.83 Tg C in the O horizon.
The total SOC in the arable soil was 0.28 Tg C (11.40%) with 0.23 Tg in the A horizon and
only 0.05 Tg C in the O horizon. The contribution of the high moor areas to the SOC stock
was small and only 0.07 Tg C or 3.31% of the total SOC in NPLM.

The estimated total SOC stock in a preserved part of the forest in NPLM was
4.98 Tg C in 1938 and has nearly halved since then. If this trend continues and all the

Figure 3 Correlation between soil organic carbon content (SOCs) in the A horizon and normalized
difference vegetation index (NDVI) for the national park La Malinche (NPLM). (A) Map of NDVI at
the NPLM and (B) scatter plot with SOCs versus NDVI. The sampling points (yellow dots).

Full-size DOI: 10.7717/peerj.7897/fig-3

Table 3 Soil organic carbon (SOC) stock in the soil of the different ecosystems in the national park La Malinche (NPLM).

SOC stock (t C ha−1)

Na Minb Maxc Range Mean Median SDd CV (%)e 1� Quartile 3� Quartile IQRf

Ecosystem 440 3.81 196.33 192.52 44.12 38.96 38.52 87.30 9.42 70.74 61.32

Forest 253 13.72 196.33 182.61 68.94 64.65 31.72 48.91 44.17 86.15 41.98

Grassland 24 10.64 45.70 35.06 21.81 19.92 9.13 41.74 14.92 25.73 10.81

Seasonal agriculture 163 3.81 24.43 20.62 8.82 8.42 3.67 40.90 6.56 10.21 3.65

Notes:
Statistic parameters soil organic carbon (SOC) stock of soil of the national park La Malinche (NPLM) linked with land use.
a N, number of samples.
b Min, minimum.
c Max, maximum.
d SD, standard deviation.
e CV, coefficient of variation.
f IQR, interquartile range.
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remaining forest is converted to arable land, then the total SOC stock would drop to
0.52 Tg C.

Interpolation methods results
All interpolation methods described the spatial distribution of SOC stocks in the NPLM
satisfactorily (Figs. 4 and 5). The summary statistics of the six interpolation methods
showed that the CK method was more accurate than the other interpolation methods with
a coefficient of efficiency (R2 values) of 0.87. The deterministic LPI method gave the lowest
R2 of 0.82 (Table 4).

The RMSE varied from 14.157 of the IDW model to 15.288 of the LPI model.
The variation in ME was low and varied from −4.282 of the OKmodel to −6.283 of the LPI
model. The LPI technique resulted in the lowest MRE (0.095) while the CK the highest
(0.103). The cross validation analysis showed that IDW, RBF, CK, OK and EBK models
were better than the LPI model to predict SOC stock distribution in the NPLM.

Figure 4 Spatial distribution of the soil organic carbon content (SOC) in the O and A horizon in the
national park La Malinche (NPLM). Maps were generated by three geostatistics methods, that is, (A)
ordinary kriging, (B) cokriging and (C) empirical Bayesian kriging.

Full-size DOI: 10.7717/peerj.7897/fig-4
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Figure 5 Spatial distribution of soil organic carbon content (SOC) in the O and A horizon of the
national park La Malinche (NPLM). Maps were generated by three deterministic methods, that is,
(A) inverse distance weighting, (B) local polynomial interpolation and (C) radial basis function.

Full-size DOI: 10.7717/peerj.7897/fig-5

Table 4 Cross validation of the interpolation methods.

Interpolation method Efficiency Error

R2a RMSEb MEc MREd

Cokriging (CK) 0.875 14.534 −4.370 0.103

Ordinary kriging (OK) 0.869 14.259 −4.282 0.101

Empirical Bayes kriging (EBK) 0.844 15.021 −4.847 0.096

Inverse distance weighting (IDW) 0.852 14.157 −4.367 0.108

Local polynomial interpolation (LPI) 0.827 15.288 −6.283 0.095

Radial basis function (RBF) 0.834 15.117 −4.666 0.112

Notes:
Cross validation parameters and efficiency of GIS based method for a spatial distribution of soil organic carbon (SOC) in
the national park La Malinche (NPLM).
a R2, coefficient of determination.
b RMSE, root mean square error.
c ME, mean error.
d MRE, mean relative error.
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The semivariogram analysis with OK indicated that the SOC stock data (log
transformed) were best fitted with an exponential model with nugget 0.529, sill 2.226 and a
nugget—sill ratio of 0.23. No significant differences were found in cross validation indices
and R2 between the OK and CK methods. Consequently, the spatial autocorrelation,
density and number of samples (distance between sampling points) were sufficient for a
high quality and precision SOC map. In this ecosystem, other parameters, such as
NDVI, altitude and terrain slope, played a secondary role in the SOC stocks spatial
distribution.

DISCUSSION
The effect of land use on SOC and SOC stocks
The SOC accumulation depends largely on vegetation and the quantity and quality of
organic material input (Signor et al., 2018). The SOC drops quickly when land use changes
but even more so when natural ecosystems are converted to arable land (Guo & Gifford,
2002; Wilson, Growns & Lemon, 2008).

In this study, the SOC stocks in the arable soil were low compared to other values
reported for arable soils (Wang et al., 2004; Pan, Zhang & Zhao, 2005; Liu, Shao & Wang,
2011; Zhao et al., 2017). For instance, Campos, Aguilar & Landgrave (2014) reported a
mean SOC stock of 151.10 t C ha−1 for the top 1 m layer of an arable soil from Veracruz
(Gulf of Mexico, Mexico) with 36% of the C stock in the first 20 cm. The conventional
agricultural practices in NPLM consist of maize monoculture, tillage, and removal of crop
residue for fodder or fuel, or burning it (Arriaga-Cabrera et al., 2009). These practices
reduced strongly the soil organic matter content (Bellamy et al., 2005; Du, Ren & Hu, 2010;
Moussadek et al., 2014). Additionally, heavy intense rainfall favors water erosion on the
steep slopes, while the bare soil promotes wind erosion during the dry season eliminating
the top soil layer with its higher organic matter content. Conservation agricultural
practices with reduced tillage, crop rotation and retention of the crop residues in the field
have been shown to reduce soil erosion, while increasing the SOC (West & Post, 2002;
Dabney et al., 2004). These conservation agriculture practices are not widespread in NPLM
although more common in the state of Tlaxcala than in the state of Puebla and
conventional practices, that is, tillage, crop residue removal and maize monoculture,
prevail. The more traditional milpa system, that is, a legume based rotation system, which
would increase soil organic matter content has been largely abandoned in this area as it is
labor intensive. Some farmers apply farmyard manure to some of their fields although
the lack of farm animals limits this practice (Wang et al., 2004). All these different
agricultural management practices explain why the soil organic matter content is generally
low and so variable in the arable soils of NPLM (Gregorich, Drury & Baldock, 2001).

The SOC stocks of the forest soils were highly variable, but the mean of 68.90 t C ha−1

was similar to those reported by Domke et al. (2017) for forests in the USA and for high
mountain ecosystems of the Peruvian Andes (Zimmermann et al., 2010). Liu, Shao &
Wang (2011) reported SOC stocks between 72.00 and 145.00 t C ha−1 for forested areas in
the loess plateau region of China. Different factors explain the large variations in SOC
stocks found in this study. First, the forest vegetation varied with altitude, that is, mixed
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forest of oak and pine on the lower slopes and pine on the higher slopes. The type and
density of vegetation are known to affect the SOC and SOC stocks (Guo & Gifford, 2002)
and is regarded as one of its principal determinants (Vargas, Allen & Allen, 2008; Chuai
et al., 2014; Mondal et al., 2017). The SOC in a mixed pine-oak forest soil is higher
generally than in a pine forest and converting a natural forest to a coniferous plantation or
selectively logging the oak trees is found to reduce the SOC stock (Guo & Gifford, 2002).
Second, logging for wood to produce charcoal or for Christmas trees is absent in some
parts of the forest, but more intensive in others, for example, in the state of Puebla
(Arriaga-Cabrera et al., 2009). Logging reduces the vegetation so that fewer leaves
replenish the soil organic matter (Garcia-Pausas et al., 2007; Dorji, Odeh & Field, 2014;
Zhang et al., 2015; Mondal et al., 2017). Additionally, logging trees reduces soil cover,
making the soil more prone to water and wind erosion (Zhou et al., 2008). Contrastingly, a
reduction of the tree canopy stimulates the growth of shrubs and smaller plants that might
reduce erosion and increase the soil organic matter content (Van Kuijk et al., 2014).
Third, burning the unwanted vegetation on the arable land spreads often to the
surrounding forests reducing strongly the organic layer there. Fourth, mixed forest
(principally pine and oak) and coniferous forests are found at between 2,000 and
3,400 masl in Mexico (Carabias et al., 2010). Altitude is known to affect vegetation that
ultimately will affect the soil organic matter content (Körner, 2003; Djukic et al., 2010).
Several studies have shown that SOC stocks increased generally up to a certain altitude and
decreases at even higher altitudes as plant growth decreases (Segnini et al., 2011;
Oueslati et al., 2013). Fifth, soils of NPLM are mostly sandy loam. Organic material is less
physically protected in sandy loam soils than in clayey soil so mineralization is higher in
the first than in the latter. Consequently, the SOC is larger generally in clay soils than
in sandy loam soils (Lefèvre et al., 2017). Sixth, the orientation of the slopes in the NPLM
determines sunshine, temperature, rainfall and indirectly the structure of the forests, which
will ultimately affect the SOC stock and distribution.

The top of the mountain was covered exclusively with grasses and the SOC stocks
were similar to those reported by Kopáček, Kaňa & Šantrůčková (2006) for alpine meadows
of the Tatra Mountains, but lower than those reported in other studies (Garcia-Pausas
et al., 2007;Montané, Rovira & Casals, 2007; Djukic et al., 2010). Differences in SOC stocks
between grasslands ecosystems are due to environmental, climatic, geological origin
and geographical conditions. The shallow soil on the mountain top, the steep slopes, the
wind and water erosion, and the harsh climate strongly reduced vegetation growth and
the SOC stocks in the grassland soil of NPLM.

The SOC in the A horizon decreased in the order: forest soil > natural grassland soil
> arable soil at NPLM, as reported in other studies. Gurumurthy, Kumar & Prakasha
(2009) and Saha, Chaudhary & Somasundaram (2012) reported that SOC and SOC stocks
were significantly higher in the top layer of forest soil than in the adjacent arable land
and natural grassland. Kocyigit & Demirci (2012) reported a mean SOC content of
44.70 g C kg−1 in the top 0–15 cm forest soil layer, 25.10 g C kg−1 in grassland and
14.70 g C kg−1 in the arable soil, similar to those of NPLM. Generally, the loss of organic
material and litter from cultivated or perturbed forest soils is higher than the amount that
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enters in undisturbed soils. Consequently, the amount of SOC retained in cultivated or
perturbed forest soils reduces and this explains the differences in SOCs in the different
landscapes of the NPLM (Reicosky, 2016). These results can be compared with values
reported by Stumpf et al. (2018). They reported SOC of 30 g C kg−1 for areas dominated by
grassland and 17 g C kg−1 for agricultural soils in Switzerland. Campos, Aguilar &
Landgrave (2014) reported that the SOC was higher in a forest soil than in a natural
grassland and arable soil in the state of Veracruz (Mexico).

Approximately 50% of the forest C stocks are found in the soil (Pan et al., 2011;
Valtera & Šamonil, 2018) and the remaining part in the living and dead forest biomass.
As such, the effect of deforestation on the C stocks in the forest vegetation is of the same
magnitude as that on the C stocks in the forest soil.

Griffiths, Madritch & Swanson (2009) stated that SOC stocks in mountain ecosystems
are controlled by temperature and soil moisture at different elevations. Altitude had an
effect on vegetation, soil type and consequently SOC stock (Bangroo, Najar &
Rasool, 2017). In this study, the maximum SOC stock was found in the pine forest at
approximately 3,750 masl. Above 4,000 m, the decline in total tree density, reduction in the
basal area and species richness decreased significantly the SOC stocks as reported by
Körner (1998).

Comparison of interpolation methods
Each of the GIS based interpolation methods used in this study described the spatial
distribution of SOC in the O and A horizon in the NPLM satisfactorily. Consequently, the
density and geographical distribution of the samples were sufficient for thematic maps of
high quality.

The geostatistic OK technique was the best of the five mono parametric methods.
It included spatial autocorrelation, which optimized statistically the weights of all sample
sites. Zhang et al. (2011), Mousavifard et al. (2012) and Bhunia, Shit & Maiti (2018)
stated that the OK method was better to map soil patterns than other GIS based methods.
In this study, the semivariogram analysis indicated that SOC was best fitted with an
exponential model as the nugget—sill ratio was 0.23 and <25%, which indicated strong
spatial dependency (Cambardella et al., 1994).

Although the results of the CK and OK techniques were comparable, the CK method
was better as additional secondary variables were used. Zare-mehrjardi,
Taghizadeh-Mehrjardi & Akbarzadeh (2010) reported that the OK and CK methods were
better than other determination interpolation techniques, such as IDW, to predict spatial
distribution of soil characteristics. In this study, the OK and CK methods gave better
results than the EBK method.

In this study, the deterministic methods were less good than the geostatistic
interpolation techniques as reported by Bhunia, Shit & Maiti (2018). Of the three
deterministic methods used in this study, the best results were obtained with the IDW
method as reported by Tang et al. (2017). Sarmadian et al. (2014) stated that the RBF
interpolation method gave satisfactory results for a SOC map, but not in this study.
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Hypothetical scenarios
The area around the Malinche volcano was declared a protected national park by
Presidential Decree in 1938 (Official Gazette on October 6, 1938). The majority of the
mountain was covered with forest except for the higher altitudes. The lack of roads did not
allow intensive culling of trees and the extraction of wood was limited. Since then, roads
have been built, and although most remain unpaved, some connections have been
asphalted. This facilitated access to the forest and increased culling of the trees. It aided
also to convert more forest to arable land, which nowadays covers 50% of the NPLM
(SEMARNAT, 2013). The forest in Tlaxcala retains most of its primary vegetation (pines
and oaks) and the shrubby vegetation of the flowering underbrush is dense, as was
confirmed by NDVI values of 0.40. This area was also characterized by the highest SOC
contents (67.32 to 100.81 g kg−1). It can be assumed based on these values that the
total SOC stock in the NPLM was approximately 4.98 Tg C in 1938, but it is only 2.45 Tg C
now. If this trend goes on unabated and all forest is converted to arable land then the SOC
stock would drop to only 0.52 Tg C.

Recently, national authorities have promoted a program for the sustainable exploitation
of the NPLM to safeguard it (SEMARNAT, 2013). The aim of this program is to
restore as much as possible of the ecosystem as it was prior to 1938, that is, to stop the
conversion of forest to arable land, illegal logging and forest fires. As such, the program
aims to stop the decline in SOC stock and ideally increase it.

Temperate forests in Mexico are the second largest biome in the country (21% of
national territory) (https://www.biodiversidad.gob.mx; Guzmán-Mendoza et al.,
2014). Most of these forests (pine and oak forests) are found on the mountains of the
Trans-Mexican Volcanic Belt. Apart from the NPLM, other national parks, and protected
areas for flora and fauna can be found on the Trans-Mexican Volcanic Belt, that is,
Iztaccíhuatl—Popocatépetl park covering 398 km2, Pico de Orizaba 197 km2, Cofre de
Perote 117 km2, and Nevado de Toluca 467 km2 (http://sig.conanp.gob.mx). Deforestation
and land use change are the main reasons for the degradation of these ecosystems. They
are the result of technological, economic, political, social and cultural factors and/or a
combination of them (Fuentes & Ramírez, 2016). As such, any program that tries to create
sustainable forest ecosystems should try to address these factors also. Considering the large
areas these forests cover, large amounts of C could be sequestered if the promoted
sustainable programs are successful.

The results of this study can be used for reforestation strategies of the most deteriorated
areas of NPLM so as to increase ultimately the total SOC stock under the program
“Sembrando Vida” (Gobierno de México, 2019) of the Mexican government (https://www.
gob.mx). The program has the objective to contribute to the social well-being of people in
rural areas, increase their effective participation in integrated rural development projects
and increase the SOC stocks to mitigate global change. Although cross-validation
confirmed the high efficiency of the SOC spatial distribution maps in NPLM, the next step
will be to develop an algorithm based on Landsat 8 imagery OLI and remote perception
indices to further improve map details.
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CONCLUSION
The SOC content is controlled by different factors, but deforestation and agriculture are
the ones that affect it most. The decrease in SOC stocks is driven mostly by cultivating land
that was previously forest or grassland. The total SOC stock in the NPLM was
approximately 4.98 Tg C in 1938, but it is only 2.45 Tg C now, mainly due to the land
use change and clandestine logging. The SOC and NDVI (indicator of biomass) were
positively correlated, so a decrease in the biomass C stocks might be of the same magnitude
as in the soil. If this trend goes on unabated and all forest is converted to arable land then
the total SOC stock would drop to only 0.52 Tg C. Accurate mapping of land-use in
the NPLM, limiting agriculture and sustainable logging could help regional and state
authorities to take measures to promote ecological conservation and restoration of this
area, thereby increasing SOC stocks substantially.
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