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Peripheral nerve injuries may lead to profound motor and
sensory deficits, and even with surgical intervention, functional
outcomes are often suboptimal. The mechanisms underlying
limited recovery are multifactorial, including (1) impaired axonal
growth across surgical coaptation sites as well as nerve gaps and
grafts, (2) inadequate neurotrophic factors and supportive cell
types such as Schwann cells in the microenvironment to promote
axonal regeneration, (3) decreased regenerative potential of nerves
following chronic axonotomy, and (4) irreversible motor end plate
degeneration and atrophy of the target muscles. Over the past few
decades, many research efforts have attempted to accelerate the
rate of axonal regeneration. One such technique that has gained
traction in recent years is direct electrical stimulation of peripheral
nerves.
Brief History and Potential Mechanism of Action of Nerve
Stimulation

Peripheral nerves communicate sensory and motor information
bidirectionally between the spinal cord and the skin andmuscles of
the extremity. When a peripheral nerve injury occurs, the first sign
of injury transmitted to the neuronal cell body is via the immediate
influx of intra-axonal calcium that propagates proximally.1
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Subsequent signaling is mediated by the retrograde transport of
various proteins, particularly neurotrophins and cytokines, from
the site of axonal injury back to the cell body.2 Together, these
signals trigger neurons to switch to a regenerative phenotype, with
notable changes in gene expression inducing a cascade ofmolecular
changes that stimulate neurite outgrowth.

Early studies of direct electrical stimulation of nerves demon-
strated an overall positive effect, with greater axon sprouting, more
rapid muscle reinnervation, and faster functional recovery.3,4 The
underlying mechanisms have been attributed to the following: (1)
enhanced specificity of axon guidance and accurate reinnervation
of motor versus sensory targets, (2) axons crossing the surgical
coaptation site more rapidly, with no change in speed of regener-
ating axon elongation, and (3) upregulation of key neurotrophic
factors.5e11 Of note, electrical stimulation seems to only jump-start
axonal regeneration, as increasing the period of stimulation from a
single hour to 2 weeks did not further improve outcomes; in fact, a
longer duration of stimulation was detrimental for sensory neuron
regeneration.5,8 Furthermore, the benefits of electrical stimulation
were eliminated with the use of sodium channel blockers,
including tetrodotoxin and lidocaine, which may have implications
for the intraoperative use of local anesthetics.5,12

Evidence in Human Studies of Peripheral Nerve Regeneration

To date, four randomized controlled trials have investigated
brief electrical stimulation after surgical interventions in hand and
upper extremity clinical applications (Table 1).13e16 These studies
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Table 1
Randomized Controlled Trials Examining Electrical Stimulation of Peripheral Nerves With Hand and Upper Extremity Surgery

Study Nerve and Clinical
Application

Sample
Size

Surgical
Intervention

Follow-Up
Duration

Electrodes Stimulation
Parameters

Electrodiagnostic
Outcome Measures

Functional Outcome
Measures

Anesthesia

Gordon et al13 Median
nervedcarpal
tunnel syndrome

21
patients
(11 ES,
10
control)

Open carpal
tunnel release

1 y Postoperative ES via
electrodes implanted
intraoperatively

1 h, 20 Hz
continuous train;
stimulation
intensity at
tolerance limit (4-6
V, 0.1e0.8 ms pulse
duration)

Significant increase
in MUNE in ES
patients compared
with control. No
differences in
CMAP amplitude
between groups.

No differences in
Semmes-Weinstein
monofilament test or
subjective sensory
improvement on
Levine’s CTS
Questionnaire
between groups.

Local anesthesia
(1% lidocaine)

Wong et al14 Digital nerve,
with complete
transection

36
patients
(18 ES,
18
control)

Direct nerve
repair within
14 d of injury

6 mo Postoperative ES via
transcutaneous
electrodes implanted
intraoperatively

1 h, 20 Hz train of
balanced biphasic
pulses; stimulation
intensity at
tolerance limit (<30
V, 0.1e0.4 ms pulse
duration)

N/A Significant
improvement in static
2-point discrimination,
Semmes-Weinstein
monofilament
detection threshold,
quantitative cold and
warm detection
threshold in ES patients
compared to control.
Significantly more ES
patients achieving S4
sensation. No
difference in DASH
disability and work
scores.

General
anesthesia
(no local
anesthesia)

Power et al15 Ulnar
nervedcubital
tunnel syndrome
with muscle
denervation

31
patients
(20 ES,
11
control)

In situ ulnar nerve
decompression
(n ¼ 23),
submuscular
transposition for
ulnar nerve
subluxation (n ¼ 8)

3 y Postoperative ES via
transcutaneous
electrodes implanted
intraoperatively

1 h, 20 Hz train of
balanced biphasic
pulses; stimulation
intensity at
tolerance limit (<30
V, 0.1 ms pulse
duration)

Significant increase
in MUNE and
amplitude of
maximum CMAP in
ES patients
compared with
control

Significant
improvement in grip
and key pinch strength,
and McGowan-
Goldberg grade in ES
patients compared to
control

General
anesthesia
(no local
anesthesia)

Zhang et al16 Ulnar
nervedcubital
tunnel syndrome
with muscle
denervation

176
patients
(89 ES,
87
control)

In situ ulnar nerve
decompression

6 mo Intraoperative ES
following
decompression

15 min, alternative
high- and low-
frequency ES (100
mA, 2 Hz/15 Hz)

Significant
improvement in
MCV and CMAP in
ES patients
compared with
control

Significant
improvement in grip
and key pinch strength,
BMRC motor and
sensory function
recovery, and Lovett
muscle strength grade
in ES patients
compared to control

General
anesthesia

BMRC, British Medical Research Council; CMAP, compound muscle action potential; CTS, carpal tunnel syndrome; DASH, Disabilities of the Arm, Shoulder, and Hand; ES, electrical stimulation; MCV, motor conduction velocity;
MUNE, motor unit number estimation.
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examined carpal tunnel syndrome, cubital tunnel syndrome, and
digital nerve transection in a total of 264 patients, with follow-up
periods ranging from 6 months to 3 years. Despite its use across
different clinical diagnoses and variations in electrical stimulation
parameters, these clinical trials demonstrated generally positive
effects on both motor and sensory examination as well as quanti-
tative electrodiagnostic measures in patients receiving brief elec-
trical stimulation compared with control.

The earliest human clinical trial focused on direct bipolar
postoperative electrical stimulation of the median nerve after open
carpal tunnel release.13 Patients receiving electrical stimulation
demonstrated a significant increase in the number of innervated
motor units in the thenar musculature, as quantified by motor unit
number estimation (MUNE), compared with controls. On the other
hand, there was no difference in compound motor action potential
(CMAP) amplitudes between groups, and both groups demon-
strated rapid clinical improvements as measured by Semmes-
Weinstein monofilament testing and Levine’s Carpal Tunnel Syn-
drome questionnaire. These relatively modest effects of electrical
stimulation may be in part due to study design; patients were
recruited with a clinical diagnosis of carpal tunnel syndrome, but
those with electrophysiological evidence of a conduction block
across the carpal tunnel were excluded. Additionally, open carpal
tunnel release was performed under local anesthesia. In animal
studies, propagation of action potentials via sodium channels was
necessary for electrical stimulation to show a benefit; hence,
blockade of this signaling with local anesthetic may have affected
the underlying mechanism of action and, subsequently, the
observed functional outcomes.5

Two clinical trials have examined the ulnar nerve in the context
of cubital tunnel syndrome accompanied bymuscle denervation on
electromyography.15,16 Both studies showed significant improve-
ments in electrodiagnostic measures with electrical stimulation,
including MUNE, CMAP, and motor conduction velocity (MCV).
Moreover, grip and key pinch strength improved significantly in
patients receiving electrical stimulation. Interestingly, significant
differences in these measures between groups were observed as
soon as 1 month after surgery, and improvements continued to be
observed even 3 years after surgery. Of note, the electrical stimu-
lation parameters varied, particularly in a duration of 15 minutes
versus 1 hour, suggesting that a shorter duration of intraoperative
stimulation may be sufficient. Importantly, for both studies, pro-
cedures were performed under general anesthesia to avoid the
potential mechanism limiting the effects of local or regional anes-
thesia on electrical stimulation.

Only one of these studies, focusing on digital nerve injury,
explored complete nerve transection; this most closely resembles
the nerve injury and repair experiments previously carried out in
animal models.14 Paralleling the data from animal studies, patients
receiving electrical stimulation after digital nerve repair showed
not only faster functional recovery over time but also superior
improvement overall at the final follow-up compared with con-
trols, as measured on testing of static two-point discrimination,
Semmes-Weinstein monofilaments, and cold and warm detection
thresholds. Impressively, recovery after electrical stimulation led to
a near-normal sensation by 6 months after surgery.

Evidence in Animal Models of Nerve Gaps

No human studies have been published to date examining the
use of electrical stimulation after reconstruction of a nerve gap. In
rodent studies of nerve gap reconstruction, electrical stimulation
increases the percentage of regenerating axons across the nerve
gap by boosting axonal arborization while having no effect on
regeneration speed or distance.17 Electrical stimulation is
beneficial, regardless of the method for nerve graft reconstruction,
including autografts, isografts, hydrogel-filled silicone conduits,
and chitosan scaffolds, and has been investigated in nerve gaps up
to 20 mm in animals.18e21 Functionally, improvements are
observed after electrical stimulation inwalking as quantified by the
sciatic functional index and in electrodiagnostic measurements
including CMAP and nerve conduction velocity.18e20 Interestingly,
one single session of electrical stimulation intraoperatively is suf-
ficient for these benefits, and a second session added no further
improvements.21

Current State and Future Directions

The therapeutic efficacy of brief electrical stimulation of pe-
ripheral nerves has not yet been definitively demonstrated. A
multicenter, double-blind, randomized controlled trial is currently
ongoing to further investigate the effects of electrical stimulation in
a larger cohort of patients undergoing ulnar nerve release at the
elbow (ClinicalTrials.gov ID NCT04662320) as well as several other
clinical trials that will rapidly change this exciting field. Several
clinical trials to date have yielded promising results, and this is
supported by animal data elucidating potential mechanisms of
action for its observed benefits. As such, many peripheral nerve
surgeons advocate for the use of intraoperative electrical stimula-
tion with a handheld nerve stimulator with alternating current.
Typical stimulation parameters are a duration of 10 minutes, with a
2-mA current and pulse duration of 100 ms, delivered just proximal
to the site of surgical nerve repair or decompression.

Even if clinical efficacy is established, two notable barriers exist
to the widespread adoption of intraoperative electrical stimulation:
cost and type of anesthesia. Increased costs associated with elec-
trical stimulation are associated both with increased surgical time
to deliver the stimulation, as well as with the cost of the handheld
device itself. Fortunately, a number of recent animal studies have
shown that electrical stimulation for 10 minutes is equivalent to
older studies using 1 hour, which is more feasible for clinical
translation.10,11,22 The device itself may be cost-prohibitive if there
is no other indication for its use in a specific clinical context,
particularly in outpatient surgery centers. Of equal importance,
many hand and peripheral nerve surgeries are performed under
local or regional anesthesia. With basic science data suggesting that
sodium channel blockers extinguish any beneficial effects, electrical
stimulation may need to be limited for cases performed under
general anesthesia.5,12 In turn, the risks of general anesthesia must
be carefully weighed against the potential benefits for nerve
recovery.
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