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ABSTRACT

The unstable (CTG-CAG)n trinucleotide repeat in the myotonic dystrophy type 1 (DM1) locus is
bidirectionally transcribed from genes with terminal overlap. By transcription in the sense direction, the
DMPK gene produces various alternatively spliced mRNAs with a (CUG)n repeat in their 3’ UTR. Expression
in opposite orientation reportedly yields (CAG)n-repeat containing RNA, but both structure and biologic
significance of this antisense gene (DM1-AS) are largely unknown. Via a combinatorial approach of
computational and experimental analyses of RNA from unaffected individuals and DM1 patients we
discovered that DM1-AS spans >6 kb, contains alternative transcription start sites and uses alternative
polyadenylation sites up- and downstream of the (CAG)n repeat. Moreover, its primary transcripts undergo
alternative splicing, whereby the (CAG)n segment is removed as part of an intron. Thus, in patients a
mixture of DM1-AS RNAs with and without expanded (CAG)n repeat are produced. DMT-AS expression
appears upregulated in patients, but transcript abundance remains very low in all tissues analyzed. Our
data suggest that DM1-AS transcripts belong to the class of long non-coding RNAs. These and other
biologically relevant implications for how (CAG)n-expanded transcripts may contribute to DM1 pathology

ARTICLE HISTORY
Received 10 November 2016
Revised 21 December 2016
Accepted 30 December 2016

KEYWORDS

Antisense RNA; bidirectional
transcription; long
noncoding RNA; low-
abundant RNA; microsatellite
instability; myotonic
dystrophy; RAN translation;
triplet repeat expansion

can now be explored experimentally.

Introduction

During the last decade it has become clear that the eukaryotic
genome is transcribed in a pervasive manner, whereby RNA syn-
thesis occurs from both strands of the DNA for a significant num-
ber of loci." Production of sense and antisense transcript pairs
from a particular locus is thus a relatively frequent event. The
actual expression and structure of the RNAs formed may depend
on convergent or divergent orientation of the transcribed DNA
segments, chromatin embedding of the locus, complementary
overlap between RNA products and ultimately the mode of RNA
processing.

As only a minority of all transcripts contain evolutionary con-
served open reading frames or represent well-characterized struc-
tural or catalytic RNAs, most transcripts have a still unknown
function. Collectively, these RNAs make up what is referred to as
pools of stable unannotated transcripts (SUTSs) or cryptic unstable
transcripts (CUTs), for which intergenic, intronic and cis-anti-
sense long noncoding RNAs (IncRNAs) are main representa-
tives.” Based on recent evidence that IncRNAs and other types of
non-coding RNAs are not merely genomic by-products, but could
be key elements of cellular homeostasis,” attention is now increas-
ingly focused on the understanding of how structural alteration

and dysregulation of production of non-coding RNAs is inherent
in development and progression of human diseases.
Neurodegenerative diseases that have been associated with
transcription across loci that contain unstable repeat sequences
(usually trinucleotide motifs of variable length®®) form particu-
larly interesting cases for non-coding and antisense RNA
research. Currently, microsatellite instability has been identified
as the cause of disease for >30 disorders. Well-known examples
are myotonic dystrophy, Huntington’s disease, Fragile X syn-
drome, several spinocerebellar ataxias (SCAs) and C9orf72-
related amyotrophic lateral sclerosis with frontotemporal
dementia (ALS/FTD). Protein-coding transcripts from repeat-
containing loci produced in sense orientation were originally
considered the only molecular actors in disease manifestation.
Nowadays, however, it is becoming clear that the pathogenic
picture is much more complex and involves expression of anti-
sense transcripts from the same locus, usually cis-antisense type
IncRNAs.”"" Specific disease features are usually coupled to
microsatellite sequences in sense transcripts and can be ribosta-
sis- or proteostasis-related, dependent on whether the repeat
sequence is located in the 5 or 3 UTR region of the transcript,
in an intron or in the ORF that encodes the final protein
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product. It cannot be excluded, however, that disease features
are also, or maybe specifically, associated with the complemen-
tary repeat element in antisense RNA products from the same
locus. Besides, pathogenicity may be coupled to the actual bidi-
rectional transcription process through the microsatellite tract
itself, as transcription is known to enhance repeat instability
and thus may modulate disease progression.'*"*

Myotonic dystrophy type 1 (DM1), an autosomal-dominant
multisystemic disorder caused by expansion of a (CTG-CAG)n
repeat in the DMPK gene is the archetypal example of a repeat
disease with complex RNA-related etiology. In the healthy popu-
lation, the (CTG-CAG)n repeat is polymorphic in length and
consists of 5-37 triplets, whereas DM1 patients carry a DMPK
allele with 50 to up to several thousands of triplets. When tran-
scribed in the sense direction from the mutant allele, an abnormal
DMPK mRNA is produced with a long hairpin-forming (CUG)n
repeat sequence in its 3’ UTR.">"” In the DM field there is strong
support for this RNA being the primary and dominant cause of
toxic gain-of-function effects that give the disease its complex and
unpredictable character.'®'® Expanded DMPK transcripts are
largely retained in the nucleus and form abnormal RNP aggre-
gates by sequestration of transcription factors and RNA-binding
proteins.”**' This leads to RNP-related stress that can deregulate
transcription and have effects on processing of other mRNAs and
miRNAs.*">* A new potentially toxic mechanism has been
recently described, by which homopolymeric proteins are formed
by repeat-associated non-ATG (RAN) translation across the trip-
let repeat segment in the RNA.>>**

The picture that posits abnormal, sense DMPK (CUG)n
mRNA as the root cause of problems in DM1 may not be
complete, as also antisense transcription through the repeat
region in the DMI locus has been observed.”” Antisense
transcription across the (CTG-CAG)n repeat was reported
to emanate from the adjacent SIX5 regulatory region.”> The
actual unit that is transcribed in antisense direction may
thereby extend into a chromatin insulator element formed
by 2 CTCF-binding sites that flank the (CTG-CAG)n
repeat.’® Based on these findings a role for gene products
from the region in regulating the surrounding chromatin
structure has been proposed.”> Thus far, however, few dedi-
cated analyses were conducted of expression of (CAG)n-
repeat segments or flanking regions in antisense RNA tran-
scripts.”>?”*° As a consequence, while detailed knowledge is
available on sense genes DMWD, DMPK and SIX5 in the
DM1 locus, information on the antisense gene, here coined
DMI-AS, and its products is still scarce.

We investigated DMI1-AS transcripts in silico and in vitro
using a combinatorial approach of bioinformatics analyses of
transcriptome-wide data and wet-laboratory experiments based
on healthy and DM1 samples. Our data point to the existence
of a DMI-AS transcription unit that is much larger than origi-
nally assumed. Primary DMI-AS transcripts occur as very low
abundant RNAs of different lengths - with and without the
(CAG)n repeat - due to alternative polyadenylation. Alternative
splicing may remove the (CAG)n repeat from the longer DM1I-
AS RNAs as part of an intron, similar to what happens with
the (CCUG)n repeat in DM type 2. Thus, DMI1 tissues contain
a heterogeneous population of DMI-AS transcripts with and
without expanded (CAG)n repeat. We discuss how our findings
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may help to experimentally explore the normal and pathobio-
logical role of DMI-AS RNA further.

Results

Antisense transcription in the DM1 locus occurs specifically
in the SIX5-DMPK region

The Encyclopedia of DNA Elements (ENCODE) project has sys-
tematically mapped regions of transcription in a large collection
of >35 cell lines, including HeLa-S3, K562, HSMM and many
others (see Materials and Methods).>® We used this data, specifi-
cally the cumulative scores for RNA-seq signals per strand, to
visualize regions in the DM1 locus that are transcribed. As
expected, RNA-seq signal distribution on one strand (the nega-
tive strand) was fully in agreement with previously annotated
gene structures of DMWD, DMPK and SIX5, as indicated by the
high signal from known exons (Fig. 1A and B). On the positive
strand, i.e. the orientation antisense with respect to DMPK and
SIX5, RNA-seq signal was relatively low but persistent through-
out the region complementary to SIX5 intron 1 to DMPK intron
9. This signal, which we termed DM1-AS (for DM1 antisense)
RNA, was unlikely to be noise-related, since similar RNA-seq
signals were not observed elsewhere in the DM1 locus. Even
though no absolute exon-intron boundaries could be discerned
in the DM1-AS RNA-seq signal, the intensity in the mid-region
of the presumed transcription unit, where the (CAG)n repeat is
located, clearly appeared lower.

Since the DM1 locus, comprising DMWD, DMPK and SIX5, is
located in a syntenic chromosome region well conserved between
human and mouse,”" we wanted to learn about the degree of evolu-
tionary conservation of DM1-AS, as this is often used as a measure
for the biologic significance of genome elements. Unfortunately,
high gene density in this chromosome region and inability to sepa-
rate evolutionary pressure between the 2 DNA strands obscured
analysis and made it difficult to come to predictive conclusions
(Fig. S1). ENCODE RNA-seq data from mouse tissues learned
that, as expected, RNA-seq signal of the sense genes was in agree-
ment with previously annotated gene structures (Fig. S2). In the
antisense direction, the signal was low, but started in the same
region as in humans, complementary to Six5 intron 1. Unlike in
human cells, a defined 3’ end of the transcription unit could not
easily be identified in these mouse samples.

DM1-AS transcription starts in the region complementary
to intron 1-exon 1 of SIX5

To identify potential transcription start sites (TSSs) in DMI-AS,
we used data from the functional annotation of the mammalian
genome 5 (FANTOMS5) project.”> We identified multiple TSSs
for both the sense genes (DMWD, DMPK, SIX5) and the anti-
sense gene (DM1-AS) (Fig. 1C; Fig. S3). TSSs for DM1-AS were
located in the region complementary to SIX5 intron 1 and exon
1, which matches the edge of the previously observed RNA-seq
signal (Fig. 1B).

To try to clarify TSS usage further, we analyzed ENCODE
data regarding positioning of histone modification H3K4me3, a
regional mark of regulatory elements primarily associated with
promoters and TSSs.”® H3K4me3 signal extended into the pre-
sumed DM]I-AS promoter, but appeared difficult to interpret
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Figure 1. DM1-AS overlaps with SIX5 and DMPK. UCSC genome browser view of the human DM1 locus. (A) Annotated protein-coding and non-coding genes taken from
the NCBI Reference Sequences Database (RefSeq). Sense genes DMWD, DMPK and SIX5 are depicted. The position of the (CAG-CTG)n repeat is indicated with a vertical
light blue line. (B) Long RNA-seq reads from a variety of cell types and tissues shown as cumulative signal per strand (ENCODE). RNA-seq signals from sense transcripts
(blue) correspond with known exons in DMWD, DMPK and SIX5. Signals originating from the complementary strand (red) are low, but well above background, clearly indi-
cating the occurrence of an antisense gene which we coined DM1-AS (large arrow pointing to the right). (C) Multiple transcription start sites (TSSs) related to DM71-AS
expression (red) as well as for sense genes DMWD, DMPK and SIX5 (blue) (FANTOMS). (D) Poly(A) transcript annotation by GENCODE version 19. Poly(A) sites for antisense
transcripts are shown in red; those for sense transcripts in blue. (E) Poly(A)-seq signals from Merck Research Laboratories. Multiple poly(A) sites were described for DM1-
AS (red, numbered 1 to 10) as well as for DMWD, DMPK and SIX5 (blue). See Fig. S3 for more details on TSS and poly(A) sites.

due to overlap with the SIX5 promoter in the same area
(Fig. S4).

For an interspecies comparison, we analyzed FANTOM5
data on TSSs and their usage in mouse primary cells, cell lines
and tissues. Multiple TSSs were again identified for the sense
genes. For the opposite strand, only one TSS was described in
the region complementary to Six5 intron 1, matching the start
of the observed RNA-seq signal for DmI-as (Fig. S2) and the
location of the human gene. The relevance of this DM1-AS TSS
is further supported by the evolutionary conservation of a cor-
responding segment in the center of intron 1 of SIX5 (Fig. S1).

Multiple poly(A) sites for DM1-AS transcription exist 5 and
3’ from the (CAG)n repeat

To examine 3’ end formation of DM1-AS transcripts, we focused
on polyadenylation and potential poly(A) sites. ENCODE RNA-
seq data include findings with both poly(A)-depleted and poly(A)-
selected RNA, which allowed us to determine a signal ratio of poly
(A)-depleted versus poly(A)-selected RNA for transcripts from the
DMI1 locus (Fig. 2A). The poly(A)-depleted: poly(A)-selected ratio
in DM1-AS did not significantly differ from those of the 3 sense
transcripts from the DM1 locus, suggesting equal presence of poly
(A) tails on DM1-AS, DMWD, DMPK and SIX5 transcripts.

By using amplicons corresponding to different parts of the pre-
sumed DMI-AS gene in RT-PCR, we verified polyadenylation of
DMI-AS transcripts in healthy human myoblasts carrying 2
(CTG-CAG)5 alleles (5/5) and in muscle tissue from a DM1 patient
(12/1300) (Fig. S5). Two RNA fractions were compared: (i) poly
(A)-selected RNA, isolated through binding to oligo(dT) beads and
(i) poly(A)-depleted RNA representing unbound RNA. Most
DM1I-AS amplicons were detected in both fractions, confirming
that a significant fraction (30-45%) of DMI-AS transcripts con-
tains a poly(A) tail. Besides, using this assay, no obvious differences
in polyadenylation status of DMI1-AS RNA between unaffected
and patient samples were detected.

A subsequent search predicted multiple poly(A) sites in the
DMI-AS region, according to GENCODE poly(A) transcript
annotation” and poly(A)-seq results by Merck Research Labo-
ratories®® (Fig. 1D and E; Fig. S3). Sequences flanking these
poly(A) sites were analyzed for the presence of a poly(A) sig-
nal, generally located 10-30 nucleotides upstream of the actual
poly(A) addition site, which constitutes a CPSF binding
site®>3® (Table S1). Presence of a GU-rich region downstream
of the cleavage site essential for binding of CSTF*>™” was also
monitored (Table S1). Interestingly, we found a few poly(A)
sites upstream from the (CAG)n repeat, which indicates that
short primary DMI-AS transcripts are formed that do not
contain a (CAG)n repeat (~10% of molecules in the total
DM1I-AS population; Fig. 2B). Poly(A) sites in the region com-
plementary to DMPK intron 10 and 9 were most frequently
used (85%) in the samples analyzed by Merck Research
Laboratories.

Parallel study of poly(A)-seq data from Merck Research
Laboratories for mouse tissues suggest that the most frequently
used poly(A) site for the DmI-as gene in this species is located
in the region complementary to Dmpk intron 2 (Fig. S2). Thus,
although the 5" end of DmI-as matched with that of DMI-AS
in humans, its 3’ end probably extends much further
downstream.

Poly(A) site usage in human myoblasts was assessed by RT-
PCR, where we focused on preferred sites, located both 5 and
3’ of the (CAG)n repeat (Fig. 2B). Total RNA was reverse tran-
scribed using an adaptor-(dT)10 primer,*® which only allowed
cDNA synthesis of poly(A)-containing transcripts, followed by
a PCR with a DM1-AS specific forward primer (see protocol in
Fig. 2C). For a sensitive detection, PCR products were trans-
ferred to a membrane and hybridized with a select set of **P-
labeled oligo probes. In RNA isolated from healthy human (5/
5) myoblasts, use of poly(A) sites both 5 and 3’ from the
(CAG)n repeat was observed (Fig. 2D). In the same analysis,
we also used RNA from human DM1 myoblasts (13/800),
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Figure 2. DM1-AS transcripts may be polyadenylated via poly(A) sites 5" or 3’ of the (CAG)n repeat. (A) Box plot of ENCODE RNA-seq signal ratio between poly(A)-depleted

(poly(A)-) and poly(A)-selected (poly(A)™) RNA samples for each of the 4 genes from

the DM1 locus. (B) Poly(A)-site usage based on data from Merck Research Laborato-

ries from UHR (universal human reference), brain, kidney, liver, muscle and testis. Numbering of poly(A) sites refers to Fig. 1E. Note that sites 1-3 are located 5’ of the
(CAG)n repeat, whereas sites 4-10 are located 3’ of the repeat. Bars represent mean + SEM. (C) RT-PCR approach to examine DM1-AS poly(A)-site usage. RT reaction was

performed with an adaptor-(dT)10 primer to start reverse transcription specifically at

a poly(A) stretch. PCR was subsequently performed using specific forward primers E,

|, or J, each located upstream of the putative poly(A) addition sites. Successful DNA production from amplicons was analyzed on blot using 32p_|abeled oligo probes X, Y,
and Z. Predicted amplicon lengths, based on adaptor-(dT)10 primer annealing immediately at the 5" end of the poly(A) tail, are given (annealing more downstream in the
poly(A) tail may occur and would result in a slightly larger fragment). (D) The protocol illustrated in (C) was applied to 5 samples: I: healthy human myoblasts (5/5); II:
DM1 myoblasts (13/800); Ill: CDM psoas muscle (12/1300); IV: DM500 myoblasts (DM500); V: RT-minus control. Interpretation of the signals, taking predicted amplicon
lengths (C) into account, is indicated on the right. ' The 410 bp amplicon may arise from an A-stretch in the genome. Z Signals that cannot be explained with current

knowledge.

CDM psoas muscle (12/1300) and from mouse DM500 myo-
blasts which carry the complete human DMI1 locus with a
(CTG-CAG)500 repeat.” The latter sample was included to
assess the effect of (CAG)n repeat expansion on DMI-AS poly
(A)-site usage without confounding products from a healthy
human locus. In all these DM1 samples DMI-AS poly(A) sites
5" as well as 3’ of the (CAG)n repeat were used (Fig. 2D). Tak-
ing the weight of our bioinformatics data and RT-PCR findings
combined, we conclude that transcripts from the DMI-AS gene
form a mixture of RNAs with and without a (CAG)n repeat.

The (CAG)n repeat is located in an alternatively spliced
DM1-AS intron

As judged from differential TSS and poly(A) site usage, pri-
mary DMI-AS transcripts vary between 1.2 and 6 kb in
length (Fig. 1). We next wondered whether these primary
gene products would be subject to splicing and looked for
splice junctions in ENCODE RNA-seq data. At least 16
splice donor sites and 15 splice acceptor sites were identi-
fied (Fig. 3A; Tables S2 and S3, and Fig. S6). Frequency of
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splice site usage calculated based on the number of reads
over a splice junction (exon into exon) and the number of
reads over an unused splice site (exon into retained intron)
was 2-50% (Fig. 3C). A number of these DMI-AS splice
sites and combinations of splice modes were confirmed by
RT-PCR using RNA from healthy human and DM500 myo-
blasts (Fig. S6). Identified splice sites conformed to consen-
sus sequences MAG]|gtragt and yag|RNN at the 5 and 3’
end of the intron respectively (Fig. 3B; Tables S2 and S3).
Notably, we identified several splice modes where the
(CAG)n repeat was located in a large intron, indicative of a
novel pathological cascade in DM1 by which an expanded
(CAG)n repeat may end up in a lariat structure (Fig. 3A
and Fig. S6).

To gain insight in the actual size of primary and processed
transcripts in the steady-state pool of DMI-AS RNAs, we size
fractionated RNA from healthy myoblasts and DMI gastrocne-
mius muscle and analyzed each fraction for DMI-AS RNA
abundance. We first confirmed that the fractionation was suc-
cessful via RT-PCR using known reference transcripts of differ-
ent size (MAP3K4, DMPK and GAPDH) (Fig. S7). As
anticipated, the influence of an expanded (CUG)n repeat on

DMPK transcript migration was readily visible when compar-
ing healthy and CDM material. Size-fractionated RNA was ana-
lyzed for relative expression of multiple regions covering the
entire DM1-AS gene (Fig. 3D). Healthy myoblast RNA showed
prominent signals in essentially all fractions between 0.4 and
7 kb, corroborating our other findings and suggesting that
DM1I-AS RNAs exist as a heterogeneous population. CDM gas-
trocnemius RNA in addition showed more prominent signal
strength in fractions with RNA of >7 kb in length. We take
this as evidence for presence of DMI-AS transcripts containing
a (CAG)1300 repeat originating from the expanded allele,
which renders these RNAs ~4 kb longer than normal-sized
transcripts. Broadening of the size distribution is similar to that
occurring with the population of DMPK transcripts, when
comparing RNA isolates from unaffected 5/5 and affected
5/1300 muscle (Fig. S7).

DM1-AS transcripts are present in the nucleus and in the
cytoplasm

ENCODE RNA-seq data was also used to obtain clues about the
cellular localization of DM1-AS transcripts. Earlier observations
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Figure 3. The (CAG)n repeat is occasionally spliced out as part of a large intron. (A) Splice donor and acceptor sites in DM1-AS were identified in ENCODE RNA-seq data.
Multiple alternative splice modes are used, the most frequent of which are shown here. Some splice modes include the removal of the (CAG)n repeat (vertical blue bar)
as part of a large alternatively spliced intron. Gray shading indicates frequently used exons (dark) and introns (light). Donor and acceptor splice sites are indicated as 5
and 3’ and numbered with capital and small Roman numerals, respectively (5's indicates 2 donor sites in close proximity). Fig. S6 shows all identified splice modes in our
study. (B) Nucleotide frequency plot summarizing all identified splice site sequences (listed in Tables S2 and S3). The GT/AG conservation at donor/acceptor sites of introns
is observed for most predicted sites. (C) Frequency of splice site usage based on individual DM1-AS reads in ENCODE RNA-seq data. (D) To examine the composition and
length of the DM1-AS transcript population, size-fractionated RNAs from healthy (5/5) myoblasts and CDM (5/1300) gastrocnemius muscle were used as input (size in kb
indicated on top) in a series of RT-PCR reactions covering DM1-AS (8 amplicons, locations in (A); for approach see Fig. S5 and Materials and Methods).



made in our laboratory® and by others*" already found a rather
high nucleus: cytoplasm distribution ratio for DMPK mRNA.
Comparison of signal ratio from nuclear and cytoplasmic fractions
of transcripts from the DM1 locus demonstrated that also a rela-
tively high proportion of DMI-AS transcripts — higher than for
DMWD and SIX5 RNAs - resided in the nucleus (Fig. 4A). Some
care should be taken in interpreting these data, however, since the
calculation for DMI-AS was based on transcripts from the whole
transcription unit, because precise sequence information regarding
mature, processed DM1-AS RNAs is still unknown. Discrimination
between sequences specific for primary and processed DMI-AS
RNA, as was done for sense transcripts from DMWD, SIX5 and
DMPK, was therefore not possible.

To experimentally validate these bioinformatics data, we
analyzed how frequent sequences from different regions from
the putative DMI-AS gene (for approach see Fig. S5) were rep-
resented in nuclear and cytoplasmic RNA fractions from differ-
ent types of myoblasts. First, efficiency of nuclear-cytoplasmic
RNA fractionation was verified by monitoring distribution of
pre-mRNA DMPK and mature ACTB transcripts, used as refer-
ence (Fig. S8). We observed expression of essentially all DM1-
AS regions in healthy (5/5) myoblast RNA, with stronger sig-
nals for the nuclear samples (Fig. 4B). As anticipated, 2 control
regions upstream from DMI-AS (regions A and B) showed no
signal. To analyze whether nuclear retention of DMI-AS tran-
scripts would be more pronounced for RNAs carrying an
expanded (CAG)n repeat, we analyzed human DM1 (13/800)
and DM1 mouse model (DM500) myoblast RNAs (Fig. 4B).
Again, we observed signal from all segments of DMI-AS, with
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strongest intensities in the nuclear fraction. No stronger
nuclear retention than for normal-sized DMI1-AS transcripts
was observed (Fig. 4C), which suggests that nuclear retention
may be an intrinsic property that is not dominated by presence
of an expanded (CAG)n repeat. In fact, a fair proportion of
DMI-AS transcripts may have lost their (CAG)n repeat during
splicing, as part of an intron.

Multiple short ORFs are encoded by DM1-AS transcripts

To elaborate on a potential function for DMI-AS transcripts,
we analyzed its encoded open reading frames (ORFs). In our
prediction from sequence analysis, we included regular AUG-
initiated and RAN-initiated ORFs, which can run across the
long (CAG)n repeat (Fig. S9). Among many ORFs identified,
the longest one specified a >200 amino acid-long protein, while
the second longest consisted of 171 amino acids and continued
over a splice site. These ORFs both used the first AUG codon
present in DMI-AS. Only one OREF, starting with an AUG
codon much more downstream, encompassed the (CAG)n
repeat and would encode a polypeptide of 78 amino-acids +
polySer-stretch (Fig. S9).

Each of the hypothetical peptides longer than 7 amino acids
was analyzed with Globplot2, an algorithm for predicting
intrinsic protein disorder, domains and globularity.** None
showed SMART/Pfam domains and only 2 showed globular
domains (data not shown). Furthermore, no region of signifi-
cant sequence similarity was found for any of these hypotheti-
cal peptides in the Conserved Domain Database.*’
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Figure 4. DM1-AS transcripts are present in the nucleus as well as the cytoplasm. (A) Box plots of ENCODE RNA-seq signal ratio between nuclear and cytoplasmic RNA for
each of the 4 transcripts from the DM1 locus. The ratio for DM1-AS differs significantly from the ratio for DMWD and SIX5, indicating that DM1-AS transcripts reside more
in the nucleus. (B) RT-PCR expression analysis of various regions of DM1-AS (A-J; see Fig. 3 and Fig. S5 for location of these amplicons). Nuclear RNA (Nu), cytoplasmic
RNA (Cy) and RT-minus control (R-) from healthy (5/5), DM1 (13/800) and DM1 mouse model (DM500) myoblasts were used as input. Regions A and B, located upstream
from DM1-AS, were included as negative controls. Quantification of DM1-AS signals in regions C-J is shown in (C). Bars represent mean + SEM. Black, nuclear RNA; white,

cytoplasmic RNA.
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Finally, we analyzed ribosome profiling (ribo-seq) data pro-
vided by genome-wide information on protein synthesis
(GWIPS), available via a dedicated ribo-seq genome browser.**
Unfortunately, data was not strand-specific and DM1-AS infor-
mation overlapped with those of SIX5 and DMPK (Fig. S9).
With the information retrieved from these data, we can thus
neither confirm nor exclude protein-coding potential of DM1-
AS.

DM1-AS expression level is very low, but increases with
disease severity

Finally, we quantified DM1-AS expression level in more detail.
Our analyses were hindered by extremely low signal frequen-
cies and by uncertainties regarding splice site choices, coupled
to the apparent lack of signal variation across putative exon
and intron areas (Fig. 1B) and the possibility of alternative
RNA processing (Figs. 2 and 3). We therefore used the com-
plete DM1-AS gene for the FPKM (Fragments Per Kilobase Of
Exon Per Million Reads Mapped) calculation in ENCODE
RNA-seq data from 16 cell lines, including SkMC (Fig. 5A).
The choice for the complete DM1-AS gene may have led to an

underestimation of DM1-AS expression in comparison to other
transcripts. DM1-AS expression varied between cell lines and
was 4-40-fold lower than that of DMPK (Fig. 5A). Parallel
assessment of expression levels using poly(A)-seq data (Merck
Research Laboratories) of various tissues revealed that DM1-AS
expression was lowest in brain and highest in kidney, testis and
muscle (Fig. 5B). Since expression levels were 10-80-fold lower
than that of DMPK, this analysis confirmed RNA-seq data.
Knowing that DMPK is a low abundant transcript,”> DMI-AS
transcripts must be very rare. Based on these comparisons, we
predict that only one or 2 molecules per cell or even less - one
RNA molecule per 5-10 cells - is present in most tissues.

We also examined a coupling between DM1-AS expression and
expression of other genes in the DMI1 locus. One possibility is that
DM1-AS is indeed co-regulated and co-expressed with DM WD,
DMPK and/or SIX5. Another possibility is that their expression is
mutually exclusive, because bidirectional convergent transcription
is avoided to prevent collision of RNA polymerase IT molecules.*
ENCODE RNA-seq data from various cell lines were used, with
FPKM values calculated against chromosome 19 only. Weak but
significant positive correlations for DMI-AS expression were
found, the highest with expression of DMPK and SIX5 (Fig. 5C).
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Since the (CTG-CAG)n repeat in DMPK and DMI-AS is
expanded in DM1 and might influence RNA expression from
these genes positively or negatively, we used RNA-seq data
from patients with DM1 (n = 45) — classified as either mild,
moderate or severe’’ — and controls (n = 11) to quantify
expression in tibialis anterior muscle biopsies. Corroborating
the results from the ENCODE and Merck data sets, DM1-AS
expression was clearly detectable in control muscle as well as
DM1 samples, but on average 56-fold lower than DMPK
expression in the same sample (Fig. S10; Fig. 5D). Interestingly,
no obvious differences in DMI-AS read density were observed
between DM1 and control samples (Fig. S10; data not shown).
This also holds true for patterns of SIX5, DMPK and DMWD
from the opposite strand. We observed a weak but significant
expression correlation between DMI-AS and DMPK (Fig. 5E).
Unexpectedly, a much stronger correlation between DMI-AS
expression and DM1 disease severity was identified (Fig. 5D).
DMI-AS expression increased significantly up to 3-fold in
severely affected DM1 patients (Fig. 5D).

Discussion

Advances in RNA sequencing technologies have given new insight
in the enormous complexity of the RNA population that makes up
the transcriptome, of which it is now known that only ~2% is rep-
resented by protein-encoding RNAs and 98% by non-coding
RNAs. Among the latter RNAs, several classes of regulatory RNAs
with important tasks in biologic networks that orchestrate cell
growth, homeostasis and communication within tissues are being
discovered.*® Tt is now well established that these tasks go far
beyond the classical protein-coding role of mRNA or the enzy-
matic-structural role of rRNAs in ribosomes or snRNAs in spliceo-
somes. For some newer classes of non-coding transcripts, like
miRNAs, the functional relevance is already quite well established.
For many others, in particular members of the heterogeneous
group of IncRNASs, relevance is still poorly understood.****° This
situation may rapidly change, as the emerging idea that the many
thousands of newly discovered RNAs are biologically important
for regulation of the genome has led to a surge of studies aimed at
characterizing the role of abnormal RNA expression in disease.
Here, we report on characteristics and expression of one
specific elusive RNA, the DMI-AS transcript, which is being
produced from the DM1 locus in antisense orientation across
the (CAG-CTG)n repeat. We anticipated that with improved
knowledge on this RNA, we would contribute to a better under-
standing of how bidirectional expression of the unstable trinu-
cleotide repeat in the DM1 locus could potentially contribute
to the highly variable and complex phenotypic manifestation of
disease. For many trinucleotide disorders it has now been well
established that when expanded repeats in RNAs are tran-
scribed in the sense orientation they generally cause coding or
topological abnormalities (i.e., hairpins, G-quadruplexes),
which contribute to pathogenesis via in trans effects on cellular
ribostasis or proteostasis.>*” The type of problems depends on
whether the repeat tract is in the protein-coding or non-coding
portion of the RNA. A new phenomenon, called RAN (repeat-
associated non-ATG) translation, whereby homopolymeric or
dipeptide proteins are produced, using the repeat as template,
may contribute to the complexity.”’ Whether the same
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pathobiological mechanisms apply to antisense transcripts is
still an open question for a whole series of repeat disorders for
which bidirectional transcription has been reported, e.g. ALS,
DM1, HDL2, FXTAS, FXS, and SCA8.” "

Study of this issue is often hindered by low abundance of
antisense transcripts and the fact that the regulation of tran-
scription and processing of antisense RNAs often does not
obey rules that apply for production of mRNAs.” There is hope
that clues may come from structural and functional differences
between expanded antisense RNA in patient cells and normal-
sized antisense RNA in cells from healthy individuals. Concur-
rent sense transcription may blur the picture however, as effects
of repeat expansion in antisense RNA can then not be easily
studied in isolation.

Tapscott and coworkers were the first to describe antisense
RNA from the DMI locus about 10 y ago.” In the present study
we have been able, using computational and experimental methods
not available at that time, to considerably refine the structural orga-
nization of the DM1-AS gene and its RNA products. Bidirectional
transcription across the (CTG-CAG)n repeat was thought to be
locally confined by CTCF binding and antisense transcripts were
proposed to regulate local chromatin configuration, possibly after
being converted to 21-nt fragments™ (see literature summary
depicted in Fig. S11). We provide now data indicating that long
DM1-AS RNAs are produced that extent downstream from the
insulator element formed by the CTCF-binding sites. Another dis-
crepancy with previous findings appears in promoter mapping,
since the DMI-AS promoter was originally mapped to a region
upstream from and overlapping with the hypersensitive-site
enhancer, a regulatory region located between DMPK and
SIX5.2>>* This region contains conserved E-boxes and it was there-
fore proposed that DMI-AS expression may be regulated by MyoD
during cell differentiation.”® Our analysis of FANTOMS5 data iden-
tified multiple TSSs for DMI-AS in the region complementary to
SIX5 intron 1-exon 1, all upstream of the E-box area. To explain
the differences in findings, we have to keep in mind that entirely
different methods of TSS analysis (e.g., CAGE and RT-PCR) were
used in both studies. In addition, we cannot exclude that TSS usage
is cell-type specific: while the FANTOMS promoter atlas is based
on a variety of primary cells, cell lines and tissues,>? the initial
report on DM1-AS was primarily based on data from fibroblasts.”
Recent, detailed epigenome data for the DM1 locus™ also give indi-
cation for regulatory histone marks around the newly assigned TSS
sites proposed here and lend support to our map positions for start
of the DM1-AS transcript (Fig. $4).

Until we started our bioinformatics and experimental analyses
only limited data was available on the structural organization of
the DM1I-AS gene, based on use of RT-qPCR and primers posi-
tioned around the (CAG)n repeat™*’ > (Fig. S11). Using RNA-
seq information, size-fractionated RNA and tools that covered
more extensive regions of the putative DMI-AS gene, we found
that primary DMI-AS transcripts are subjected to alternative pol-
yadenylation, can either be small or conspicuously long, and are
likely to undergo alternative splicing (graphical summary pre-
sented in Fig. 6). Alternative transcription and RNA processing
thus render a large variety of mature DMI-AS transcripts, with
some variants being more abundant than others.

Importantly, the (CAG)n repeat is not always present in the
primary transcript, through use of a poly(A) signal upstream of
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Figure 6. Model for production of DM1-AS transcripts with and without a (CAG)n repeat. In the model the main data presented in this paper are included. The DMT1-AS
gene is subject to alternative transcription initiation (multiple TSSs) and 3’ end formation (multiple poly(A) sites, pA). These events lead to the production of short and
long primary DM1-AS transcripts, with or without a (CAG)n repeat, presumably carrying a poly(A) tail. During further RNA processing, alternative splicing may occur and
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the (CAG)n repeat may also be present in the lariat structure of an excised intron.

the (CAG-CTG)n repeat. When transcribed, the repeat is
removed in approximately 20% of the transcripts, as part of
alternative intron during splicing. Such a location in a region
that can be removed during RNA processing creates a situation
similar to that for the expanded (CCUG)n repeat in CNBP pre-
mRNA causing DM2.>* Clearly, any DMI-AS RNA gain-of-
function toxicity may be triggered at all phases in the lifetime
of an abnormal DMI-AS RNA and might be caused by process-
ing intermediates or by primary or mature transcripts
themselves.”>>°

What can be concluded with regard to the quantity and tis-
sue-specificity of DM1-AS expression? We did find significant
correlations between DMI-AS expression and that of other
DMI locus genes, but these correlations were rather weak, indi-
cating that regulation of DMI-AS expression occurs largely
independently from that of SIX5 and DMPK, like was observed
for transcripts from other bidirectionally transcribed genome
regions.”®” Our bioinformatics analysis and RT-qPCR
approaches have shown that DM1-AS transcripts are produced
in essentially all cell types and tissues, always in very low abun-
dance. Despite a mild increase in DMI-AS expression in
patients, our findings indicate that DMI1-AS transcripts occur
roughly 5-50-fold less frequent than DMPK mRNA molecules,
with variation in this ratio dependent on cell or tissue type (see
also refs.””*%). Since we recently determined that the absolute
number of DMPK transcripts amounts to 1-50 molecules per
cell,* we conclude that some cells may contain up to a dozen
DM1I-AS transcripts, whereas many others may completely lack
DM]1-AS transcripts or contain only one or 2 copies. Only
highly sophisticated single-molecule single-cell in situ
approaches®”*® can determine whether different alternatively
processed DM1-AS RNA variants occur as a mixture in one cell
(with many other cells in the same tissue having no products at
all) or whether each cell at a given moment contains one
unique DM1-AS transcript variant.

The extremely low expression has important implications
for the function of DM1-AS RNA and for its potential contribu-
tion to DM1 pathology. Presence of expanded DMI-AS RNA in
the nucleus and in the cytoplasm (in a ratio that is atypical for

housekeeping mRNAs) would allow involvement in the forma-
tion of toxic nuclear RNP aggregates and in the generation of
RAN translation products in the cytoplasm. RNP foci contain-
ing expanded (CAG)n RNA have indeed been reported for
DMI1 cells.””** Homopolymeric RAN peptides, which could be
formed from DMI1-AS RNA with expanded (CAG)n tracts,
may exert proteotoxicity at very low concentration, alike for-
mation of abnormally aggregated protein complexes around
prion-protein cores in only some cells in a tissue
population.””®" DM1-AS RNAs could, however, also engage in
formation of dsRNA molecules by hybridization to comple-
mentary sequences in DMPK transcripts. Such an event might
trigger toxic dsRNA-responsive kinase signaling with possible
immune effects or abnormal effects of aberrant repeat-contain-
ing siRNA, formed after DICER processing of the dsRNA.®>
More speculative, DM1-AS transcripts may play a structural
role in local chromatin organization in the DM1 locus in the
nucleus. Potentially related to that, we identified several possi-
ble G-quadruplex structures in DMI-AS RNA (Fig. S12), which
could form a platform for protein complex formation and
RNA-based guidance to the SIX5-DMPK area, similar to what
has been described for intronic switch RNAs in immunoglobu-
lin class switch recombination.®* Whatever the (patho)biologic
function of DMI-AS RNA may be, it is intriguing that its abun-
dance positively correlates with disease severity as assessed
using functional MBNL concentrations.”” Whether this correla-
tion occurs due to repeat-dependent chromatin changes,
increased stability of repeat-containing RNA or other mecha-
nisms will be important to elucidate.

Purely based on the expression data for DMI-AS in normal
cells and tissues it is rather challenging - if not impossible - to
properly classify the role of DMI1-AS RNA. When taking all evi-
dence combined, we tend to conclude that primary and proc-
essed DM1-AS transcripts belong to the heterogeneous class of
IncRNAs,**** because they share many signatures with this
type of RNA. LncRNAs, like mRNAs, may be subject to post-
transcriptional processing, including 5" capping, 3’ polyadeny-
lation and splicing. Despite their name-giving, it has now
become clear that at least some IncRNAs still do encompass an



ORF and can undergo translation.® We identified multiple
AUG-initiated ORFs in DMI-AS, with the longest encoding a
hypothetical 205-amino acid protein. By a quick search in short
ORF (sORF) finder, we identified 2 other potential coding
regions, but none had predicted functionality.®® Recent studies
have demonstrated that any such sORF, which is generally
smaller than 150 codons, may encode functional peptides.®””°
Gathering evidence for functional sORFs in IncRNAs has so far
relied mostly on combining computational approaches (for
identification of conserved sequences, examination of codon
content and coding features) with experimental approaches for
analyzing transcriptional and translational events. Develop-
ment of specific antibodies and special proteomics tools”"
should now be considered as next steps for detection of poten-
tial DM1-AS protein products, but we consider this work that
goes beyond the scope of our present study.

In summary, we provide evidence that DMI-AS transcripts are
widely expressed as low abundant RNAs and propose that they
belong to the functional and structural heterogeneous class of
IncRNAs. DM1-AS transcripts are formed with different 5 ends
from alternative TSSs and different 3’ ends as a result of alternative
polyadenylation. RNA processing of DMI-AS transcripts involves
alternative splicing, whereby the (CAG)n repeat, when included in
the primary transcript, can be removed in the context of an alterna-
tive intron, similar to what happens with the (CCUG)n repeat in
CNBP intron 1 in DM2. Healthy and DM1 tissues thus contain a
heterogeneous set of DM1-AS transcripts with and without (CAG)
n repeat, which not necessarily are co-expressed with DMPK
mRNAs in the same cell. These new findings about DMI-AS
expression enable us to formulate new hypotheses about its possi-
ble association with disease and help to refine theories on the etiol-
ogy of DM1, improve prognosis, and facilitate the search for
therapeutic targets for disease amelioration.

Materials and methods
Human material

Skeletal muscle samples were collected from pre-consented
post-mortem donors. A 14-day-old male twin had a confirmed
clinical and DNA diagnosis of congenital DM1 (CDM) and car-
ried a normal-sized repeat of 5 (patient A) and 12 (patient B)
triplets, next to expanded repeats of around 1300 triplets (5/
1300 and 12/1300 in short). Gastrocnemius muscle tissue from
patient A and psoas muscle tissue from patient B were snap fro-
zen immediately after collection and stored at —135 to —80°C.

Cell culture

LHCN-M2 immortalized human satellite cells,”” carrying 2
(CTG-CAG)5 alleles (5/5 in short), were grown on 0.1% (w/v)
gelatin-coated plastic surfaces in skeletal muscle cell basal
medium (PromoCell) with Supplement Mix (0.05 mL/mL fetal
calf serum, 50 pug/mL fetuin (bovine), 10 ng/mL epidermal
growth factor (recombinant human), 1 ng/mL basic fibroblast
growth factor (recombinant human), 10 pug/mL insulin
(recombinant human), 0.4 pug/mL dexamethasone), supple-
mented with 1% (v/v) GlutaMAX and 15% (v/v) bovine growth
serum (Thermo Scientific) at 7.5% CO, and 37°C.
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Primary DM1 myoblasts (13/800),”> were grown on 0.1%
(w/v) gelatin-coated plastic surfaces in Ham’s F10 medium
(Gibco) supplemented with GlutaMAX and 20% (v/v) bovine
growth serum (Thermo Scientific) at 7.5% CO, and 37°C.

Immortalized DM500 mouse myoblasts expressing a human
DMI1 genomic fragment carrying a (CTG-CAG)n repeat of
approximately 500 triplets’* were grown on 0.1% (w/v) gelatin-
coated plastic surfaces in proliferation medium containing DMEM
(Gibco) supplemented with 20% (v/v) fetal bovine serum (PAA,
Pasching, Austria), 4 mM L-glutamine (Gibco), 1 mM pyruvate
(Sigma), 50 pg/mL gentamicin (Gibco), 20 units/mL y-interferon
(BD Biosciences) and 2% (v/v) chicken embryo extract (Sera Labo-
ratories International) at 7.5% CO, and 33°C.

RNA isolation and fractionation

Total RNA from muscle tissue and cultured cells was isolated using
TRIzol reagent (Invitrogen) and Aurum Total RNA Mini Kit (Bio-
Rad), respectively, according to manufacturer’s instructions.

For RNA isolation from subcellular fractions, myoblasts
were grown to 80% confluence, collected via trypsinization and
pelleting by centrifugation at 1,000 x g for 5 min at 4°C. Cell
pellets were washed twice with ice-cold PBS. Pellets were resus-
pended in ice-cold cell disruption buffer (10 mM KCI, 1.5 mM
MgCl,, 20 mM Tris-Cl (pH 7.5), 1 mM DTT) and incubated
on ice for 10 min.”> Samples were homogenized in a chilled
Dounce homogenizer (Wheaton) for 15 strokes and then Tri-
ton X-100 was added to a final concentration of 0.1%. The
lysate was spun at 1,500 x g for 5 min at 4°C. The supernatant
(cytoplasmic fraction) and the pellet (nuclear fraction) were
mixed with lysis buffer according to instructions of the Aurum
Total RNA Mini Kit (Bio-Rad) and RNA was isolated.

Poly(A)-selected RNA was isolated from total RNA using
the NucleoTrap® mRNA kit (Macherey-Nagel). Total RNA
was mixed with oligo(dT) latex beads, allowing binding of poly
(A) tails of transcripts to the beads, followed by several washing
steps using a microfilter and ultimately elution of poly(A)-
selected RNA. The poly(A)-depleted fraction was obtained by
isolating RNA from unbound and wash fractions.

For size-based RNA fractionation, total RNA, denatured in
50% formamide at 70°C for 10 min, was electrophoresed in a
1.2% (w/v) MOPS-buffered agarose gel stained with ethidium
bromide. Gel lanes were sliced in multiple fragments, guided by
a ssRNA ladder (NEB). RNA was extracted from the gel slices
using the Zymoclean™ Gel RNA Recovery Kit (Zymo
Research), resulting in multiple RNA fractions, each corre-
sponding to a defined range of transcript sizes.

RT-PCR analysis

For analysis of expression of specific regions of DM1-AS, an
equivalent of 1 ug total RNA was subjected to cDNA synthesis
using SuperScript III Reverse Transcriptase (Life Technologies)
and strand-specific primers with a 5’ linker (Table 1).>>*” In a
subsequent PCR, DMI-AS regions were amplified from these
cDNA samples using Q5® High-Fidelity Polymerase (NEB),
DM1I-AS-specific forward primers (Table 1) and either the RT
primer or a reverse primer matching the linker attached to
each RT primer (5-GGAGCACGAGGACACTGA-3'). PCR
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Table 1. List of primers used to analyze expression of DM1-AS regions by RT-PCR.

Primer for RT Forward primer

Region* reaction’ (5" -> 3') in PCR (5" -> 3/)

A AGGCCCTGCCAATGTGCACCTC TCCGAGATGACTGCACCCCT
ATCAACTC

B CAGCCGAAGTCCTGAGGACCTG GCTCCCGTTCACCAGGATGG
GAGAGAGG

C GGGACCAGCTCACAATCTCAGG TGGAGCCGCTGGAAGAGG
CGCCCGCG

D TCTTGCAGACTTTGCAGGCGGC CTCGGGCGAGAAGCGGAG
CGAGGGTG

E ACCTAGGACCCCCACCCCCGAC CTCCACACGCCTCCGGATT
CCTCGCGA

F GACCATTTCTTTCTTTCGGCCAG TGCGAACCAACGATAG
GCTGAGGC

G CGCCTGCCAGTTCACAACCGCT CCTTCGAGCCCCGTTCGC
CCGAGCGT

H CCACAGTCAACTACGCGAGGCA ACTCCATCCGCTCCTGCAAC
GAGGCTCG

I AGTGGGGCATTAAGTAAGGGTG CTTTGCCCTGGAGGCTCTC
TGTGTGTT

J GGGTTGGAGGGGACAGCCACTT CCTGATGGGGAGACTGCTTG
CATACCCC

fRegions refer to Fig. 3 and Fig. S5.
#In addition to the sequence listed, each RT primer contained linker sequence 5'-
CGACTGGAGCACGAGGACACTGA-3’ attached to its 5’ end.

conditions were optimized for each reaction and amplicon
identity was confirmed by sequencing. Amplified products
were analyzed via agarose gel electrophoresis followed by ethi-
dium bromide staining. A no-reverse transcriptase reaction
(RT-) was included as negative control. Signals were quantified
using FIJT software.”®

To determine poly(A)-site usage, 500 ng total RNA was sub-
jected to ¢cDNA synthesis. To this end 50 pmol of 5'-
GGGGATCCGCGGTTTTTTTTTT-3' adaptor’® was annealed
to poly(A) containing mRNAs in the mixture, before serving as
primer for cDNA synthesis by SuperScript III Reverse Tran-
scriptase. Next, the cDNA was used as template for amplifica-
tion by PCR using Q5 polymerase and a DMI-AS-specific
forward primer close to predicted poly(A) sites (primers in
region E, I and J; Table 1). No additional reverse primer was
added and the 5-GGGGATCCGCGGTTTTTTTTTT-3" adap-
tor from the RT reaction would function as reverse primer. A
no reverse transcriptase reaction (RT-) was included as nega-
tive control. PCR fragments were separated on agarose gel and
transferred to Hybond-XL nylon membrane (Amersham Phar-
macia Biotech). Membranes were incubated with *?P-end-
labeled oligonucleotides (X: 5'-ACTGTGGAGTCCAGAGCT-
33 Y: 5-GACCACTTGGCACCTTTCCT-3'; Z: 5'-GGGGTAT-
GAAGTGGCTGTCC-3') using conventional methods and sig-
nals were quantified using a phosphor imager (Molecular
Imager FX, Bio-Rad).

To examine splicing of primary DMI-AS transcripts,
500 ng total RNA was reverse transcribed using SuperScript
III Reverse Transcriptase with (dT),s primer. The ¢cDNA
preparation was used as template in a PCR, with combina-
tions of forward and reverse primers, close to transcription
start- and polyadenylation sites respectively, using Q5 poly-
merase. Forward primers were 5-CAGAAGACGGAC-
CACGCC-3’ and forward primers of region C and D
(Table 1); reverse primers were 5-AGCTCTGGACTCCA

CAGT-3, 5-AGGAAAGGTGCCAAGTGGTC-3 and 5'-
CCAGCTTGATTCTGAACCGC-3'. PCR amplicons were
visualized on agarose gel, isolated and Sanger sequenced to
determine splice modes.

RT-qPCR was used to analyze size-fractionated RNA (using
1 g RNA as input for the RT reaction) and to analyze nuclear and
cytoplasmic RNA fractions (500 ng cytoplasmic RNA and an
equivalent of nuclear RNA for the RT reaction). RNA was reverse
transcribed using the iScript™ cDNA Synthesis Kit (Bio-Rad). For
qPCR, 3 L tenfold diluted cDNA preparation was mixed in a final
volume of 10 uL containing 5 uL iQ™ SYBR® Green Supermix
(Bio-Rad) and 4 pmol of each primer (MAP3K4 ex3-ex4: 5'-
TGCAAAGGGCACGTATAGCATTGG-3 and 5-GCTCCT
CCCACGACACAGCA-3'; DMPK exl-ex2: 5'-ACTGGCCCAG-
GACAAGTACG-3' and 5-CCTCCTTAAGCCTCACCACG-3';
GAPDH exl-ex2: 5'-CCCGCTTCGCTCTCTGCTCC-3" and 5'-
CCTTCCCCATGGTGTCTGAGCG-3'; DMPK ex2-in2: 5-GAGG
GACGACTTCGAGATTCTGAA-3 and 5-CACCACGAGTCAA
GTCAGGC-3; ACTB ex2-ex3: 5-CGGGCCGTCTTCCCCTC
CAT-3 and 5-TGGGCCTCGTCGCCCACATA-3; Actb ex5-ex6:
5'-GCTCTGGCTCCTAGCACCAT-3" and 5'-GCCACCGATC-
CACACAGAGT-3'). Samples were analyzed using the CFX96
Real-time System (Bio-Rad). A melting curve was obtained for
each sample to confirm single product amplification. Samples from
no template (NTC) and no reverse transcriptase reactions (RT-)
were included as negative controls.

ENCODE RNA-seq

Processed RNA sequencing data in BAM format was down-
loaded from ENCODE at ftp://hgdownload.cse.ucsc.edu/golden
Path/hg19/encodeDCC/wgEncodeCshlLongRnaSeq.30  Long
RNA-seq reads (101 nt) from Cold Spring Harbor Laboratory
(CSHL) were visualized in the University of California at Santa
Cruz (UCSC) Genome Browser, human genome build
GRCh37/hg19, as the sum of signals per strand. In total 190
files were used from various cell lines, including HeLa-S3,
K562, HSMM, and many others. These reads were also used to
identify splice sites.

To obtain information on polyadenylation status, ENCODE
RNA-seq data by CSHL (GSE30567) on poly(A)-selected and
poly(A)-depleted RNA from whole cell was included from 14
cell lines (A549, AG04450, BJ, GM12878, H1-hESC, HeLa-S3,
HepG2, HSMM, HUVEC, K562, MCF-7, NHEK, NHLF, and
SK-N-SH RA). For analysis on cellular localization of tran-
scripts, ENCODE RNA-seq data by CSHL (GSE30567) on
nuclear and cytoplasmic-selected RNA from whole cell poly
(A)-selected material was included from 10 cell lines (A549,
GM12878, HI1-hESC, HeLa-S3, HepG2, HUVEC, IMR90,
K562, MCF-7, and NHEK).

Fragments Per Kilobase Of Exon Per Million Fragments
Mapped (FPKM) values were calculated in Cufflinks (version
2.0.0), using the ENSEMBL GTF file (Homo_sapiens.
GRCh37.75.gtf.gz, accessed on April 2nd, 2014) with the posi-
tion of the antisense transcript (GRCh37/hgl9, chrl9:
46,270,855-46,276,570) manually included. FPKM values per
transcript per cell line were calculated for chromosome 19.

Also for mouse, processed RNA sequencing data from
ENCODE by CSHL (GSE36025) was available and visualized in
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the UCSC Genome Browser (mouse genome build NCBI37/
mm9). Data from the following adult tissues was included:
adrenal gland, bladder, cerebellum, colon, cortex, duodenum,
frontal lobe, genital fat pad, heart, kidney, large intestine, liver,
lung, mammary gland, ovary, placenta, small intestine, spleen,
stomach, subcutaneous fat pad, testis, and thymus.

Myotonic dystrophy deep sequencing data repository

RNA-seq data from DMI1 patients were taken from the Myo-
tonic Dystrophy Deep Sequencing Data Repository (www.
dmseq.org). RNA originated from biopsies from tibialis muscle,
provided by Drs Katy Eichinger and Charles Thornton. RNA-
seq data from 11 controls and 45 DM1 patients were included
in our study. Samples were aligned to the hgl9 reference
genome using the RNA-seq aligner HISAT2. MISO (version
0.4.8)”7 was used to estimate isoform frequencies for splicing
events using a minimum of 20 reads per event and the parame-
ters of burn_in = 500, lag = 10, num_iters = 5000, and num_-
chains = 6. DM1 patients were classified as mild, moderate or
severe by their inferred MBNL concentration, described in.*’
DM1 samples were binned as follows: mild, n = 19, [MBNL]
inferred [0.40-0.80]; moderate, n = 13, [MBNL]inferred [0.21-
0.39]; severe, n = 13, [MBNL]inferred [0.0-0.20]. Fragments
Per Kilobase Of Exon Per Million Fragments Mapped (FPKM)
values were calculated in Cufflinks (version 2.0.0), using the
ENSEMBL GTF file (Homo_sapiens.GRCh37.75.gtf.gz,
accessed on April 2™, 2014) with the position of the antisense
transcript (GRCh37/hgl9, chr19: 46268039-46285965) manu-
ally included. FPKM values per transcript per biopsy sample
were calculated for chromosome 19. The sample’s DMPK and
DMI1-AS FPKM values were binned according to the above
(mpm) metric (Fig. 5D and E).

The strand-specific RNA-seq protocols used enable includ-
ing only reads belonging to the original orientation of tran-
scription for the calculation of exon counts. Exon RPKM
(Reads Per Kilobase of exon model per Million mapped reads)
values were calculated according to exon hits and normalized
against the library size (total MAPQ > 1 reads) and to the
merged length of the coding sequence of each gene.”®

Transcription start sites

FANTOMS5 mapped transcription start sites (TSSs) and their usage
in human and mouse primary cells, cell lines and tissues.>? The
TSS profile is based on evidence of read counts using cap analysis
of gene expression (CAGE) reads. Data was accessed via the FAN-
TOMS5 datahub in the UCSC Genome Browser.

Poly(A) sites

Merck Research Laboratories developed Poly(A)-seq, a strand-spe-
cific and quantitative method for high-throughput sequencing of 3’
end of polyadenylated transcripts, and globally mapped polyadeny-
lation sites in human and mouse tissues (GSE30198).>* Data is
available via the Poly(A)-seq track in the UCSC Genome Browser.
The Poly(A) transcript annotation set from GENCODE ver-
sion 19 was also accessed via the UCSC Genome browser.>
This set contained poly(A) signals and sites manually
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annotated on the genome, based on transcribed evidence (EST's
and cDNAs) of 3’ end of transcripts containing at least 3 As
not matching the genome.

Histone modification and evolutionary conservation

A comprehensive set of human histone modifications based on
ChIP-seq experiments was available from ENCODE by the
Broad Institute (GSE29611) and the University Washington
(GSE35583).>%” Occurrence of H3K4me3, a mark of regula-
tory elements primarily associated with promoters and tran-
scription starts, was analyzed.

Multiple alignments of 100 vertebrate species and measure-
ments of evolutionary conservation using phastCons® and
phyloP®! were visualized in the conservation track (‘Vertebrate
Multiz Alignment & Conservation (100 Species)’) in the UCSC
Genome Browser.

Exploring protein-coding potential of DM1-AS transcripts

Open reading frames were analyzed via web.expasy.org/trans-
late. Ribo-seq data obtained with the ribosome profiling tech-
nique was visualized in GWIPS-viz (genome wide information
on protein synthesis) genome browser.*** Globplot2 (via glob-
plot.embl.de) was used to identify potential domains in DMI-
AS ORFs.*

Statistical analysis

FPKM ratios of poly(A)-depleted: poly(A)-selected RNA and of
nucleus: cytoplasm RNA were compared between transcripts
using multiple Wilcoxon signed rank tests followed by a Bon-
ferroni correction. Correlation between expression of DMI-AS,
DMWD, DMPK and SIX5 (log2 transformed FPKM values)
were analyzed using Pearson’s test. Statistical analyses were
performed in GraphPad Prism version 5.01 for Windows. *, p
< 0.05.
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