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The quantum-optics Hamiltonian in 
the Multipolar gauge
Emmanuel Rousseau   & Didier Felbacq

This article deals with the fundamental problem of light-matter interaction in the quantum theory. 
Although it is described through the vector potential in quantum electrodynamics, it is believed 
by some that a hamiltonian involving only the electric and the magnetic fields is preferable. In the 
literature this hamiltonian is known as the Power-Zienau-Woolley hamiltonian. We question its validity 
and show that it is not equivalent to the minimal-coupling hamiltonian. In this article, we show that 
these two hamiltonians are not connected through a gauge transformation. We find that the gauge 
is not fixed in the Power-Zienau-Woolley hamiltonian. The interaction term is written in one gauge 
whereas the rest of the hamiltonian is written in another gauge. The Power-Zienau-Woolley hamiltonian 
and the minimal-coupling one are related through a unitary transformation that does not fulfill the 
gauge fixing constraints. Consequently, they predict different physical results. In this letter, we provide 
the correct quantum theory in the multipolar gauge with a hamiltonian involving only the physical 
fields.

The essence of quantum optics is to describe the interaction between light and matter, both treated at the quan-
tum level. The starting point of the quantum optics theory is the minimal-coupling hamiltonian1 that describes 
the coupling between matter and the electromagnetic field through the potentials, 

→ →A x t( , ) and φ →x t( , ), rather 
than through the electric field 

→ →E x t( , ) and the magnetic field 
→ →B x t( , ). The electric and the magnetic fields are 

physically relevant on the contrary to the potentials that depend on a gauge condition. Thus, it has been recog-
nized as useful to find a quantum hamiltonian describing light-matter interactions only through the electric and 
the magnetic fields. Such a hamiltonian, named the Power-Zienau-Woolley hamiltonian, has been exhibited2–4 
long ago. It is recognized to be equivalent to the minimal-coupling hamiltonian since both hamiltonians are 
related through a gauge transformation4–7 or through a unitary transformation1, 2, 4, 8–11. These two starting points 
should give exactly the same results but the Power-Zienau-Woolley hamiltonian might be more convenient since 
it involves only the physical fields. As a consequence, the Power-Zienau-Woolley hamiltonian is widely used in 
many fields of physics where light and matter interact at the quantum level. To quote only a few of them, one can 
cite the propagation of light in cold-atoms gas12, the quantization of light in dielectric media13, the interaction of 
light with electron gas in semiconducting heterostructures14, the description of metamaterials properties15, 16, the 
interaction of light with bulk plasmon17, the interaction of light in the near-field18, the description of non-linear 
optical properties19 and also the phenomenon of resonance energy transfer at the molecular level5, 20, 21. The latter 
can find applications in biological systems such as chromophores subject to photosynthesis22. Recently a letter23 
extended the validity of the Power-Zienau-Woolley hamiltonian to the case of cavity quantum-electrodynamics. 
These authors pointed out that the Power-Zienau-Woolley hamiltonian eliminates the A2 problem that appears in 
the minimal-coupling hamiltonian since that term does not appear explicitly in the Power-Zienau-Woolley ham-
iltonian. As a result, simple hamiltonian models for light-matter interaction in cavities, such as the 
Jaynes-Cumming hamiltonian24 or the Dicke hamiltonian, are valid for a large range of physical parameters23. 
This non-exhaustive list demonstrates that the Power-Zienau-Woolley hamiltonian written in term of physical 
fields is very useful in many domain of physics. As a consequence it is reproduced in many textbooks of quantum 
optics1, 10, 11, 13, 18, 25.

In this article, we revisit the gauge transformation that produces the Power-Zienau-Woolley hamiltonian from 
the minimal-coupling hamiltonian1, 4–7. We fix the gauge to the Poincaré gauge26 (also named the multipolar 
gauge). The multipolar gauge has the important property that the scalar potential and the vector potential can 
be written with the help of the physical fields. As a consequence, the hamiltonian we have derived involves only 
the electric field and the magnetic field. We compute the commutation rules in the Poincaré gauge. This funda-
mental question is evaded in many references and our main conclusion is that the commutators in the multipolar 

Université de Montpellier, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier, France. Correspondence 
and requests for materials should be addressed to E.R. (email: emmanuel.rousseau@umontpellier.fr)

Received: 22 March 2017

Accepted: 31 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-3079-9055
mailto:emmanuel.rousseau@umontpellier.fr


www.nature.com/scientificreports/

2Scientific REPORTs | 7: 11115  | DOI:10.1038/s41598-017-11076-5

gauge differ from the commutation rules in the Coulomb gauge. We demonstrate that if the gauge transformation 
is performed correctly it doesn’t lead to the Power-Zienau-Woolley hamiltonian on the opposite to previous 
authors conclusions4–7 and [ref. 1, p. 333]. Our first conclusion is that the Power-Zienau-Woolley is not related 
to the minimal-coupling hamiltonian through a gauge transformation. Next, we question the derivation of the 
Power-Zienau-Woolley hamiltonian from a unitary transformation applied to the minimal-coupling hamiltonian 
written in the Coulomb gauge (this is the historical derivation of the Power-Zienau-Woolley hamiltonian2). We 
show that cares should be taken when applying a unitary transformation on the minimal-coupling hamiltonian 
because quantum-electrodynamics is a constrained theory (constrained at least by the gauge conditions). We 
show that the unitary transformation used by Power et coworkers2, 4–7, 9, 27, 28 (see also [ref. 1, p. 282]) modifies the 
vector potential and its gauge constraint. As a consequence, the interaction term in the Power-Zienau-Woolley 
hamiltonian is written in the Poincaré gauge whereas the electromagnetic-energy term is written in the Coulomb 
gauge. It results the generation of non-physical photon states with longitudinal polarization. As a consequence, 
we conclude that, because of the constraints, the Power-Zienau-Woolley hamiltonian is not unitarily equivalent 
to the minimal-coupling hamiltonian since these two hamiltonians predict different physical results.

Results
The quantum hamiltonian in the multipolar gauge. We start this paper by deriving the quantum 
hamiltonian and the commutation rules in the multipolar gauge. We start the derivation from a semiclassical 
lagrangian density. The lagrangian density is a gauge invariant quantity. A local phase-transformation of the 
Schrödinger field has to be compensated by a transformation of the potential fields in order to leave invariant the 
equations of motion (see e.g. [ref. 29, p. 44]). The gauge transformation reads26:

ψ ψ→ = →χ →
x t e x t( , ) ( , ) (1)p

i
q

x t
c

( , )

χ
→ → =

→ → + ∇
→


→ 


A x t A x t x t( , ) ( , ) ( , ) (2)p c

φ φ χ→ = → −
∂
∂

→x t x t
t

x t( , ) ( , ) ( , ), (3)p c

where q is the electron charge, → →A x t( , )p  is the vector potential in the final gauge “p” (Poincaré gauge here) and 
→ →A x t( , )c  is the vector potential in the initial gauge “c” (Coulomb gauge here). The scalar potential is φ →x t( , ) and 
χ → →

x A t( , , )c  is the gauge function that transforms one gauge into another. Gauges are characterized by gauge 
conditions that constrain the possible values of the potentials30. Well-known gauge conditions are the Coulomb 
gauge condition ∇

→
.
→

=A 0c  or the Lorentz gauge condition ∇
→

.
→

+ =
φ∂

∂
A 0l c t

1 l . In this work, we use the 
Poincaré-gauge condition that reads →.

→ → =x A x t( , ) 0p . As a consequence of this gauge condition, the scalar poten-
tial and the vector potential can be explicitly written in term of the physical fields26:

∫φ → = −→.
→ →x t x E u x t du( , ) ( , ) (4)p

0

1

∫
→ → = −→ ×

→ →A x t x B u x t udu( , ) ( , ) (5)p
0

1

The lagrangian density that describes a non-relativistic charged particle without spin and with electric charge q, 
evolving in a potential →V x( ), for example created by the nucleus of an atom, reads31:
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The Einstein summation convention is used for the space variables μ = 1, 2, 3, but we discriminate the time vari-
able since we work in a non-relativistic approximation, which is valid for quantum optics.

From the lagrangian density, we can compute the canonical conjugate momenta associated to each dynamical 
variables that are ψ →x t( , ), →

µA x t( , ) and φ →x t( , ). The canonical momentum associated to ψ(x, t) is given by 
π ψ= =ψ ψ

∂
∂∂

i x t*( , )
t

�L  whereas the canonical momentum associated to Aμ is:

π ε φ ε→ =
∂

∂∂
= ∂ + ∂ = − →

µ µ µ µ µx t
A

A E x t( , ) ( ) ( , )
(7)t

t0 0
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The canonical momentum conjugated to the vector potential 
→
A  is the electric field (up to the constant −ε0). This 

result is then gauge invariant because of the gauge invariance of the electric field. The canonical momentum asso-
ciated to the scalar potential is null πφ = 0. With the help of the canonical momenta, the hamiltonian density can 
be derived. After an integration by part it reads (see [ref. 32, p. 74]):

π ψ
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π π

µ

π π ψ φ

→ = → 
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 + → 







→

+








→ → + → → 
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with the help of this Hamiltonian density, Hamilton equations give the dynamical equations31, p.374, i.e. 
the time-evolution of the vector potential [that is in fact the eq. (7)], the Maxwell-Ampère equation and the 
Schrödinger equation. However, in the hamiltonian formalism, at the semiclassical level as well as in the quantum 
theory, the Maxwell-Gauss equation is considered as a constraint that the solutions have to satisfy (see [ref. 31, p. 
363, 375]).

We are now ready to quantize the theory. We quantize both the Schrödinger field and the electromagnetic 
field. Following the canonical quantization procedure33–35, we can obtain a quantum theory by imposing canoni-
cal commutation relations between canonical conjugated quantities now considered as operators acting on a 
Hilbert space. In the Heisenberg picture, the time-evolution of operators is given by the Heisenberg equation. The 
generator of time-translations is the hamiltonian operator defined on the phase-space spanned by the dynamical 
variables ψ π π φ πψ

µ
µ µ ϕ=A{( , ); ( , ) ; ( , )}1,2,3 . All these quantities are considered as being independent of each oth-

ers. This is indeed not correct for quantum electrodynamics that is a constrained theory. The original idea of 
Dirac33 is to restrict the phase-space to the subspace allowed by the constraints with the help of the commutators. 
Then, the commutators allow to derive the “correct” equations between operators; “correct” means here that, as a 
postulate, the quantum operators have to satisfy the same analytical relationships as the classical quantities and 
the same constraints33, 35. To this goal, Dirac33 defines new brackets33, 35, the Dirac brackets noted {●, ○}D, that 
replace the Poisson brackets {●, ○}P. The commutators are obtained by multiplying the Dirac brackets by iħ, 
• = • ˆ ˆ ˆi I[ , ] { , }D  where Î  is the identity matrix. The Dirac brackets force the dynamical equations to follow the 
constraints as illustrated schematically in Fig. 1. There, the Hamiltonian density eq. (8) is plotted as a function of 
πμ and πφ. With the help of the Heisenberg equation, the dynamical equation for the operator π →

φˆ x t( , ) is: 
π →

φ
ˆi x t( , )  = 

∫ π π ψ→ ∂ → + → →
µ

µ
ψˆ ˆ ˆi dy y t y t y t( ( , ) ( , ) ( , ))q

i
 π φ→ →

φ
ˆx t y t I{ ( , ), ( , )}D . It would not be zero for independ-

ent variables. Indeed, for a couple of independent dynamical variables α and its canonical momentum πα, the 
Dirac bracket value is given by the Poisson bracket value α π→ →

αx t y t{ ( , ), ( , )}D
 = α π→ →

αx t y t{ ( , ), ( , )}P
 = δ → − →x y( ). 

In the present theory, the constraint is ensured by the Dirac bracket π φ→ → =φˆ x t y t{ ( , ), ( , )} 0D  that projects the 
dynamical equation on the red line in Fig. 1 given by π =φˆ 0.

Dirac brackets are fundamental quantities to build up a constrained quantum theory. We now review the 
constraints that act on the quantum optics theory. Four constraints denoted χ →x t( , )i  (i = 1 … 4) act on the 
dynamics of the system. The canonical conjugate momentum of the scalar field being null, the first constraint is 
χ π→ = →

φx t x t( , ) ( , )1 .  As this constraint has to hold at any time, a second constraint derives: 


χ π π ψ→ = ∇

→
. → + → →

ψx t x t x t x t( , ) ( , ) ( , ) ( , )q
i2 , this is in fact Maxwell-Gauss equation. The third constraint is the 

Figure 1. Schematic view of the action of the Dirac brackets. The hamiltonian density varies as π∝ µ
2 . We 

plot its restriction to the phase space {πμ, πφ}. Because of the constraint πφ = 0, the accessible values of the 
hamiltonian density are given by the red line. The Dirac brackets restrict the dynamics to the red line whereas 
the hamiltonian density is defined in the entire phase-space {πμ, πφ}.



www.nature.com/scientificreports/

4Scientific REPORTs | 7: 11115  | DOI:10.1038/s41598-017-11076-5

gauge condition that we chose to be the Poincaré-gauge condition χ → = → → →x t x A x t( , ) and ( , )3 . The last constraint 
is χ π ε φ→ = →. → → − ∇

→ →x t x x t x t( , ) [ ( , )/ ( , )]4 0  deriving from χ →x t( , )3  since it has to hold at all time. These four 
constraints allow to compute the Dirac brackets that give the canonical commutation relations between quantum 
operators. We impose canonical anti-commutation relations for the Schrödinger field ψ̂ and commutation rela-
tions for the electromagnetic field:
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There, the Schwartz distribution θ δ δ→ → = → − → − −→K x y x y x y x y( , ) ( ) ( ) ( )
x2,3
1

2 2 3 3
 is the solution of the equa-

tion δ∇
→

. → → → = → − →→ x K x y x y[ ( , )] ( )x 2,3  and θ denotes the Heaviside function. Note that the transverse Dirac dis-
tribution that appears in the case of the Coulomb gauge1, 35 is not present here. This is the consequence of a 
different gauge condition, the gauge constraint being taken into account by the commutators. To the best of our 
knowledge, the commutators in the Poincaré gauge [eq. (9)] are not available in the literature. We provide a 
detailed calculation of these commutators in the Supplementary Materials (III) where we have also shown that 
they allow to recover the correct dynamical equations while ensuring the gauge condition → . → =ˆx A x t( , ) 0 [see 
section (III-F) in the Supplementary Materials].

We can now explicitly write the Hamiltonian-density operator taking into account all the constraints of the 
Poincaré. With the help of the set of equations [eqs (4), (5) and (7)] and the constraints χ → =x t( , ) 0i . It reads:

∫ψ ψ

ψ ψ

ε
µ

→ = → 









−











∇
→

+ → × → 











→

+ → → →

+








→ + → 







ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

x t x t
m

iq x B u x udu x t

x t V x t x t

E x t B x t

( , ) *( , )
2

( ) ( , )

*( , ) ( , ) ( , )

1
2

( , ) 1
2

( , )
(10)

2

0

1 2

0
2

0

2

H �
�

The quantum theory in the Poincaré gauge is based on the knowledge of the quantum hamiltonian eq. (10) and 
the commutation rules eq. (9) that specifies the operators algebra. The hamiltonian involves only the physical 
fields that can make it suitable for many studies in quantum optics.

The Power-Zienau-Woolley hamiltonian as a result of a gauge transformation of the minimal- 
coupling hamiltonian. The Power-Zienau-Woolley hamiltonian is said to be the minimal-coupling 
hamiltonian in the multipolar gauge4–7 (see also [ref. 1, p. 333]). As a consequence our result should be the 
Power-Zienau-Woolley hamiltonian. But, it is not. For completeness, we quote here Power-Zienau-Woolley results 
for a hamiltonian density8 (see also [ref. 11, p. 97, eq. (4.66)]). In the work of Power et al., the canonical momentum 
associated to the vector potential is found to be the opposite of the transverse part of the displacement vector5, 7, 8:

π→ → = −
→ →⊥

x t D x t( , ) ( , ) (11)pzw

where ε
→ → =

→ → +
→ →⊥ ⊥ ⊥

D x t E x t P x t( , ) ( , ) ( , )0  is the transverse part of the displacement vector defined as the sum 
of the transverse part of the electric field →⊥

Ê x t( , ) and the transverse part of the polarization field 
→ →⊥
P x t( , ). In 

our derivation, we have found that the canonical momentum conjugated to the potential vector eq. (7) is propor-
tional to the electric field, which is a gauge-invariant quantity.

The Power-Zienau-Woolley semiclassical-Hamiltonian density reads;
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where ξ →x t( , ) is the particle wave-function. The kinetic energy term eq. (12) and the potential energy terms eq. 
(13) in the Power-Zienau-Woolley Hamiltonian density are similar to our result [compare with the two first-terms 
in eq. (10)]. Nevertheless, the Power-Zienau-Woolley hamiltonian density presents many differences as compared 
to our result. One of them is the term eq. (14) = → → +

→ →
ε µ

D x t B x t( , ) ( , )1
2

2 1
2

2

0 0
 that is interpreted as the electromag-

netic field energy-density. This is awkward since this term is neither the electromagnetic energy in vacuum nor in 
matter30. As far as we know, this point has never been commented. Another difference with our result is that the 
Power-Zienau-Woolley Hamiltonian density presents an interaction term eq. (16) that couples the displacement 
vector and the matter through the polarization field. Finally, on the opposite to our results the 
Power-Zienau-Woolley Hamiltonian density is also characterized by a contact term eq. (17) and a self-interaction 
term eq. (15). After quantization of the Power-Zienau-Woolley hamiltonian density, the canonical commutations 
rules are unchanged as compared to the Coulomb gauge7, 8. They involve the transverse Dirac-distribution1, 35. We 
have shown that the commutators take the gauge conditions into account. Commutators involving the 
transverse-Dirac distribution force the dynamics to follow the Coulomb-gauge condition and not the 
Poincaré-gauge condition. So, in addition to the breaking of the gauge-invariance of the canonical momentum 
conjugated to the vector potential, we conclude that the Power-Zienau-Woolley hamiltonian density is not the 
minimal-coupling hamiltonian in the multipolar gauge. In this article, we have focus the discussion on a gauge 
transformation of the hamiltonian density. In the literature the gauge transformation was done on the hamilto-
nian function4–7. We discuss the gauge transformation for a hamiltonian function in the supplementary materials 
(I). Again we have found that the Power-Zienau-Woolley hamiltonian is not the minimal-coupling hamiltonian 
in the Poincaré gauge on the opposite to previous authors conclusions1, 4–7. We have also listed in the section (I-C) 
of the supplementary materials the errors done by previous authors7 that leads to the incorrect result.

The Power-Zienau-Woolley hamiltonian as a result of a unitary transformation of the 
minimal-coupling hamiltonian. The historical derivation of the Power-Zienau-Woolley hamiltonian2 
is based on a unitary transformation applied to the minimal-coupling hamiltonian written in the Coulomb 
gauge. Applying a unitary transformation to the minimal coupling hamiltonian can indeed produce the 
Power-Zienau-Woolley hamiltonian. Nevertheless, we demonstrate in this paper that both hamiltonians are not 
equivalent in the sense that they do not predict the same physical results. As we will show in the following, 
the Power-Zienau-Woolley hamiltonian creates photon states with a longitudinal polarization, i.e. non-physical 
photon states within the Coulomb gauge constraints. Here we should point out again that the phase-space is con-
strained. The constraints define a subspace (submanifold) where the dynamical variables are allowed to evolve. In 
order to make the physical results invariant through a unitary transformation, the unitary transformation must 
not modify the equations of constraints36 since only points on the phase-space submanifold represent physical 
states. However the Power-Zienau-Woolley transformation change the constraint satisfied by the vector potential 
as we demonstrate in the next paragraph.

Since a unitary transformation can not modify the commutators found in the Coulomb gauge (they are pro-
portional to the identity operator), it can not implement a gauge transformation. The gauge being initially fixed 
to the Coulomb gauge, therefore after the unitary transformation the vector potential should satisfy again the 
Coulomb gauge condition. Nevertheless, if we have a look at the kinetic energy term of the Power-Zienau-Woolley 
hamiltonian given by the eq. (12), we conclude that the vector potential is ∫

→ → = −→ × →ˆA x t x B u x udu( , ) ( )pzw 0

1 , 
an expression similar to eq. (5). Then it satisfies the Poincaré-gauge constraint →. → =ˆxA x t( , ) 0pzw  instead of the 
Coulomb-gauge condition1. So the by Power et al.1, 2, 4, 8–11 has modify the equation of constraints without modi-
fying the commutators correspondingly. A unitary transformation has to be applied with cares when a con-
strained hamiltonian is concerned since the dynamics is not defined in the entire phase-space but constrained on 
a subspace. As a consequence, we claim that the Power-Zienau-Woolley Hamiltonian is not unitary equivalent to 
the minimal-coupling hamiltonian. Up to our knowledge, these findings and the appropriate precautions inherent 
to a unitary transformation on the minimal-coupling hamiltonian are underestimated in the quantum-optics 
community since we have found no references, no textbooks mentioning them. Our result is not restricted to the 
case of the Power-Zienau-Woolley unitary transformation but extend to any unitary transformation applied to 
the minimal-coupling hamiltonian9, 23, 37, 38. It is not the goal of the present paper to determine if the unitary trans-
formations used in the previously cited papers9, 23, 37, 38 change or not the equations of constraints but we want to 
emphasize that cautions should be taken in order to avoid generation of non-physical states.

1More details are given in the section (II-B) of the Supplementary Materials.

The gauge is not fixed in the Power-Zienau-Woolley results. In order to show that the gauge is not 
properly fixed in the Power-Zienau-Woolley hamiltonian density, we need to write it in term of the electric and 
magnetic fields. To do so, we expand the momentum as π ε→ → =

→ → +
→ →⊥ ⊥

x t E x t P x t( , ) ( , ) ( , )pwz 0 . Then, the inter-
action term eq. (16) and the contact term eq. (17) cancel. Next, we remark that the self-interaction term eq. (15) 
is actually the contribution of the scalar potential in the Coulomb gauge (see [ref. 31, p. 373–378]) i.e. the 
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contribution of the longitudinal-component of the electric field: eq. (15) = ε φ ε∇
→ → =

→ →x t E x t( , ) ( , )c
1
2 0

2 1
2 0

2 where 
φ →x t( , )c  is the scalar potential in the Coulomb gauge. The Helmholtz theorem states that any vector field is 
uniquely decomposed into transverse and longitudinal part. In such a case, whatever the gauge condition is, the 
transverse part of the electric field is given by ref. 39: 

→ → = −∂
→ →⊥

E x t A x t( , ) ( , )t c  where 
→ →A x t( , )c  is the 

vector-potential in the Coulomb gauge. With the help of the eq. (5) that gives the expression of the vector poten-
tial in the Poincaré gauge, the Power-Zienau-Woolley Hamiltonian density finally reads:
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The kinetic energy term is written in the Poincaré gauge whereas the electromagnetic-energy density is written in 
the Coulomb gauge. There is a gauge-inconsistency in the Power-Zienau-Woolley hamiltonian. In the quantum 
version, the operators algebra is undetermined since we do not know what is the gauge condition. So we do not 
know which commutators the operators have to satisfy.

We want to highlight that this observation is consistent with the derivation of the Power-Zienau-Woolley 
Hamiltonian density eqs (12–17) starting from a (semi-classical) lagrangian density8. In this reference, the 
authors broke the gauge symmetry of the lagrangian density by performing only the phase transformation of the 
wave function eq. (1) without performing the corresponding transformation of the gauge fields eqs (2) and (3). 
As a result the kinetic energy term is written in the new gauge (the Poincaré gauge) whereas the electromagnetic 
lagrangian density remains written in the initial gauge (the Coulomb gauge).

The Power-Zienau-Woolley hamiltonian creates non-physical photon states. At the quantum 
level, the breaking of the gauge symmetry or said in other words, that the dynamical variables are no more con-
strained on the submanifold of physical states, has important consequences. The Power-Zienau-Woolley theory 
considers the vector and the scalar potentials in the Coulomb gauge as the dynamical variables2, 7. In this gauge 
the annihilation and creation operators generate transverse electromagnetic modes. The Fock space of photon 
states contains only transverse electromagnetic modes (i.e. photon-polarization states perpendicular to the 
wave-vector). On the opposite, as we derived in the Supplementary Materials (IV), the term 

∫
→ → = −→ × →ˆA x t x B u x udu( , ) ( )pzw 0

1  generates photonic states with longitudinal component2 that do not belong 
to the Fock space. As a consequence, the Power-Zienau-Woolley hamiltonian generates photon states that do no 
satisfied the Coulomb gauge condition i.e. non-physical photon states. The contribution of the term → →A x t( , )pzw  is 
usually neglected9, 23 and, as far as we know, no references to the creation of non-physical photon states can be 
found in the literature.

Discussion
To conclude, we have proved that the results obtained by Power et al. have some inconsistencies. The 
Power-Zienau-Woolley hamiltonian can not be derived from a gauge transformation since it mixes two gauge 
conditions. Even if a unitary transformation applied to the minimal-coupling hamiltonian generates the 
Power-Zienau-Woolley hamiltonian both results can not considered to be unitarily equivalent since the 
Power-Zienau-Woolley hamiltonian creates non-physical photon states. One can wonder why the inconsistencies 
of the Power-Zienau-Woolley hamiltonian have not been reported before our work. A possible explanation might 
hinge on the fact that most of the papers that use the Power-Zienau-Wooley hamiltonian perform one approxi-
mation before doing explicit calculations. Actually, all terms proportional to P⊥2 are typically neglected. As a 
consequence, the self-interaction term eq. (15) is usually neglected and the interaction term reduced to 
→ → .

→ →⊥
P x t E x t( , ) ( , ). Within this approximation, the Power-Zienau-Woolley hamiltonian reduces to the 
minimal-coupling hamiltonian in the long-wavelength approximation. Consequencely, under some approxima-
tions, the Power-Zienau-Woolley Hamiltonian could be considered as a phenomenological hamiltonian. 
Nevertheless since it breaks the gauge symmetry it cannot be included in the framework of the well-established 
gauge theory40 that explains, as far as we know, all known experiments in quantum optics and in quantum elec-
trodynamics but also many results in particle physics.

We have presented here a derivation of the multipolar hamiltonian starting from a lagrangian density. The 
hamiltonian density we have found depends only on the physical fields and may find applications in many fields 
of quantum physics. We have shown that in the multipolar gauge, there is no interaction term on the form 
−
→ → .

→ →P x t D x t( , ) ( , ). Instead, the interaction term is on the usual form 


ψ ψ→ 




− 

∇
→

− → 







→ˆ ˆ( )x t A x x t*( , ) ( ) ( , )
m

iq
2

22
. 

As a consequence, the A2-term23 still occurs in the multipolar gauge. Highlighting that quantum electrodynamics 
is a constrained theory, we have shown that constraints between dynamical variables should be carefully taken 
into account otherwise some errors can occur. As far as we know, we give for the first time the correct commuta-
tors that apply in the Poincaré gauge. The properties of the Fock space in the Poincaré gauge will be the subject of 
a future paper.
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