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Abstract

Background: The analysis of gene expression data shows that many genes display similarity in their expression profiles
suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a
correlation-based research method to stratify individuals.

Methodology/Principal Findings: Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression
profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering
method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an
example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus
erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-
based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other
approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes
showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could
reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF
treatment identified changes in type I IFN gene activity induced in RA patients.

Conclusions: In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a
biological function showing that the activation levels of a biological signature could be characterized by its overall state of
correlation.
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Introduction

A wide range of methods for microarray data analysis have

evolved, ranging from simple fold-change approaches to many

complex and computationally demanding techniques [1]. Gene

expression profiling by microarray technology has become a

widely used strategy for investigating the molecular mechanisms

underlying many complex diseases [2]. However, the analysis is

further complicated by the biological heterogeneity encountered in

most of the diseases.

A common observation in the analysis of gene expression is that

many genes show similar expression patterns [3] which may share

biological functions under common regulatory control. Moreover,

these co-expressed genes are frequently clustered according to

their expression patterns in subset of experimental conditions [4].

Thus, gene co-expression instead of differential expression could

be informative as well. Bi-clustering methods seek gene similarity

in subsets of available conditions, which is more appropriate for

functionally heterogeneous data [5,6].

We have further explored this approach to study the heteroge-

neity of rheumatoid arthritis (RA) patients regarding their mRNA

profiles in whole blood samples. In the context of RA, the clinical

presentation of patients shows a high degree of heterogeneity,

ranging from mild cases with a benign course to severe and erosive

disease. In RA, gene expression profiling has been used to stratify

patients based on molecular criteria using synovial tissue [7,8] and

more recently from peripheral blood cells [9].

Here, we took the signature of interferon (IFN)-related genes as

an example to study correlation levels between genes composing

that signature. A biclustering algorithm was applied to study a

large gene expression dataset from peripheral whole blood of 102

RA patients. A correlation-based search algorithm referred to as
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Classification Algorithm Based on a Biological Signature (CABS)

was developed to characterize patients based on their IFN

signature. In RA patients with an activated IFN signature, gene

expression levels were highly correlated and this was linked to the

level of global IFN signature activation.

Results

Analysis of heterogeneity in RA with the biclustering
method

Based on 102 RA patients, the study of biological data

heterogeneity was conducted with a biclustering approach. This

method using the SAMBA algorithm performs clustering on genes

and conditions simultaneously in order to identify subsets of genes

that show similar expression patterns across specific subsets of

patients and vice versa. After data filtering, 121 biclusters were

identified from 9,856 selected probe sets. To draw a clear picture

of these co-expressed gene groups, the TANGO algorithm was

used for GO functional enrichment analysis. The details of the

results are given in table S1. Among them, these results have

highlighted the importance of immune regulation across the

‘‘immune response’’ and ‘‘response to virus’’ ontology groups

(biclusters 4, 21, 34, 35 and 39; see Table S1 as supplement

information). Subsequently, we focused on bicluster 4 which

represents the largest number of genes in these two GO categories.

Ingenuity pathway analysis of IFN signature
To further elucidate the importance of immune regulation, we

conducted pathway analyses on bicluster 4 (n = 37 genes). To

summarize, a pathway corresponding to interferon signaling

(IFI35, IFIT1, IFIT3, IFITM1, IRF9, MX1, OAS1, STAT2) was

prominently represented (B-H p-value = 1.86E-13). Moreover, a

literature review showed that 35 genes among the 37 appeared

directly or indirectly related to interferon. Thereafter, IPA was

conducted on the 35 genes which composed the IFN signature.

IPA can not only build associations of genes identified in our

analysis (‘‘focus’’ genes), but also predict the involvement of

additional molecules not associated in the main gene list. Out of

the list, 32 genes were found in the IPA knowledge database, and

are labelled ‘‘focus genes’’. Based on these focus genes, IPA

generated a biological network (score 85, focus genes 32) providing

evidence that type I IFN represented by the IFNa and IFNb genes

is responsible for the activation of IFN-related genes (Figure 1).

The list of these 35 genes is presented in the right column of

figure 2.

Activation of IFN pathway in a sub-group of RA patients
To visualize the expression profiles of the 35 IFN-response

genes among all RA patients and to investigate their interactions, a

hierarchical clustering was performed with the Spotfire Decision

Site 8.2.1. This clustering separated the samples into two main

groups, one of patients with RA (n = 26/102, 25.5%) with high

expression (Figure 2, blue dendrogram) of this set of IFN-related

genes (IFNhigh) and another (n = 76/102, 74.5%) with lower

expression (Figure 2, purple dendrogram) (IFNlow).

Characterization of the IFN signature based on a
correlation approach

The expression pattern of 35 IFN-response genes was defined

as the ‘‘IFN signature’’. To go further in the description of the

IFN-related genes, the correlation levels between the co-

expressed genes were assessed in the two groups of RA patients.

Interestingly, the analysis revealed disparities between correlation

levels. The group associated with high IFN expression level

showed a better correlation (Rmedian = 0.63) than the other one

(Rmedian = 0.33), with a significant difference (p = 8.46E-13),

suggesting a functional difference in the activated state of these

genes. A classification algorithm was applied to obtain a better

characterization of the IFN signature based on the correlation of

the 35 gene expression levels. The results showed that the IFN

signature presented a large variation between individuals

(Figure 3). 15/100 HC (15%), 22/102 RA patients (22%) and

10/10 SLE patients (100%) with a decision variable $1 for the

high signature (IFNhigh) were identified, while the remainder of

individuals, with a decision variable ,1, were defined as IFNlow.

From the sub-groups identified by the CABS, the comparison of

the correlation profiles showed heterogeneous distributions

(Figure 4). Two groups were observed, first with RA and SLE

patients with a high IFN signature and a median correlation of

0.63 and 0.68 respectively; second with RA patients and HC

IFNlow and a median correlation of 0.33 and 0.27 respectively.

However, the shape of the curve for the HC IFNhigh

(Rmedian = 0.44 ; Figure 4, blue line) is very different from that

seen for the IFN high RA or SLE patients and for the IFN low

RA or controls. This suggests a very heterogeneous activation

status of genes in this group of controls.

Comparison of characterization methods of IFN signature
A comparative analysis between correlation-based approach

(CABS) and the classical ‘‘IFN score’’ based on the average values

of gene expression was performed (Figure 5). First, this figure

showed a correlation between the decision variable (correlation

value) and the average values of gene expression (Spearman

correlation test, r = 0.65, p-value,0.0001). Second, based on the

respective thresholds, this comparison revealed differences be-

tween both approaches (9%). Individuals (black triangles) with a

high average expression value of IFN-related genes were

associated with a low level of correlation and vice versa with

individuals represented by a black square.

Effect of TNF inhibition on IFN pathway activation
The functional relationship between TNF inhibition and

possible changes in IFN pathway activation was studied. CABS

was used to assess the correlation levels in RA patients before and

after anti-TNFa treatment. Out of the subgroup of 43 RA patients

treated with anti-TNF, 22 RA patients (11 RA IFNhigh and 11 RA

IFNlow; infliximab n = 6, etanercept n = 10 and adalimumab n = 6)

were evaluated at 6 months for treatment response using the

DAS28 criteria. Although the values appeared quite heteroge-

neous, a statistical significant decrease (p = 0.0186) of the

correlation level was observed in patients associated with high

IFN signature (Figure 6A). In contrast, a statistical significant

increase (p = 0.002) of correlation levels was seen in RA patients

with low IFN signature before treatment (Figure 6B). Despite a

significant increase, the majority of these RA patients IFNlow did

not reach the threshold of positivity. No statistical association was

observed between the molecular stratification of RA patients

(IFNhigh/IFNlow) and the clinical characteristics presented in

table 1 or the response to treatment at 6 months.

Discussion

In this study, the heterogeneous nature of RA was addressed at

a molecular level and the data showed that disease characteristics

could be reflected by gene expression levels in whole blood. Using

microarray technology, RA patients could be categorized into 121

biclusters, sub-groups of patients sharing a same profile for a group
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of genes. With the type I IFN signature as an example, we showed

a variation of the correlation level within 102 RA patients

representative to the RA population. Each patient can be

characterized by a single correlation value of the expression

observed for the 35 IFN-related genes. Interestingly, our results

revealed a heterogeneous IFN expression (Figure 2) characterized

by a correlation level of the gene expression which may reflect the

global IFN signature activation. This method allowed us to define

two well separated groups (IFNlow vs. IFNhigh; p = 8.46E-13) based

on the correlation levels with the IFNhigh corresponding to 22% of

our RA patients cohort. In fact, it was shown that genes with

similar functions usually are co-expressed under certain experi-

mental conditions only [4]. The sample profiles can resemble to

the physiological relationships expected between the studied

samples [10]. Prieto C. et al. demonstrated that studies of

heterogeneous datasets, mixing many case samples from patho-

logical or altered states with ‘‘normal’’ samples disturb gene co-

expression analysis. In the context of these observations, our

results suggest that the co-expressed gene clusters, defining

functional groups, depend on the activation status.

The method commonly used in the literature does not take into

account the activation status of the biological signature, which

could generate some misclassification. Indeed, the increase of IFN

regulated genes has been reported in different diseases like SLE

[11], systemic sclerosis [12], multiple sclerosis [13] and in tissues

from patients with Sjögren’s syndrome [14], type I diabetes

[15,16] and dermatomyositis [17,18]. To characterize the IFN

signature, an IFN ‘‘score’’ is calculated for each patient and

control based on the average expression of genes which composed

the signature [9,11,15,18,19,20]. However, this approach does not

take into account the co-regulation of these IFN-related genes.

When genes are co-regulated under various biological conditions,

the corresponding expression profiles may display relative

similarity or co-expression [21]. Our method offers an alternative

with which the IFN signature could be characterized by the level

of global correlation (Figures 3 and 4) and not solely by the

Figure 1. The network derived from the 35 genes which composed the IFN signature using Ingenuity Pathway Analysis (IPA)
software. Edges (gene relationships) are displayed with labels that describe the nature of the relationship between nodes (genes). Nodes are
displayed using various shapes that represent the functional class of the gene product. Genes in red belong to the list of the 35 IFN-related genes.
Genes in blue were integrated into the computationally generated networks on the basis of the evidence stored in the IPA knowledge memory
indicating a relevance to this network. The network showed central connection represented by the type I interferon. The pink arrows represent the
direct and indirect interactions for genes of type I family of interferons (IFN-a, IFN-b).
doi:10.1371/journal.pone.0024828.g001
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expression levels. In fact, analyses of our results based on the mean

expression of the IFN-related genes showed disparities in the

classification of HC and RA patients (9%, Figure 5). These

differences between gene expression and correlation levels in the

IFN signature could be explained by different factors. Studies

showed that IFN-related genes could be regulated by several

independent pathways on IFN signaling [22,23]. Their expression

could be also controlled by the polymorphic sequences which

mainly composed the promoter regions of theses genes [24,25].

These different factors could explain the presence of individual

heterogeneity in the expression of these genes and thus the

discrepancies observed between the two approaches.

To better understand differences between disease and healthy

status, different approaches like transcriptomics or proteomics

analyses allow the study of molecular networks and signaling

pathways, with the major challenge of integrating this information

into a systems approach [15]. Our method permits to identify truly

active biological networks associating only with high levels of

correlation of biological signature components. Indeed, taking into

account this new correlation aspect for the interpretation of

biological networks should allow capturing the actually activated

mechanisms at the cellular level.

Interestingly, such correlation-based approach can be advanta-

geously applied to investigate the dynamics of evolution of cellular

mechanisms like response to treatment. As an example, in the

context of RA, we have applied this method to monitor patients

treated by anti-TNF therapy. Although the cross-regulation of

TNFa and IFNa has been previously described [26], the effects of

anti-TNF treatment on the expression of IFN-related genes had

never been shown by such approach. The results showed that a

high IFN signature was conserved after anti-TNF treatment

(Figure 6A), while a significant increase was observed in RA

IFNlow six months after treatment (Figure 6B). However, the level

of positivity has never reached the one observed in SLE patients,

known to strongly express the IFN signature. This observation

could explain that RA patients treated with anti-TNF develop

rather benign clinical symptoms of SLE that are reversible after

discontinuation of therapy [27,28]. Contrary to a recent

Figure 2. Gene expression profiles from the IFN signature. Unsupervised hierarchical clustering of 35 IFN-related genes that distinguish
rheumatoid arthritis (RA) patients IFNhigh (blue dendrogram) from RA patients IFNlow (purple dendrogram). Each row represents a gene; each column
shows the expression for 35 IFN-related genes expressed by each patients. Red indicates genes that are expressed at higher levels and green
indicates genes that are expressed at lower levels.
doi:10.1371/journal.pone.0024828.g002
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publication [29], we did not find clinical relevance associated to

this IFN signature. The authors showed that an increased IFN-

response gene activity after anti-TNF treatment was linked to a

poor clinical outcome. In our results, only a trend was observed

according to the delta DAS28 score (p = 0.07, data not shown).

Besides the difference in method used or the sample size which

may explain the discrepancies, our study presented RA patients

with a large panel of anti-TNF treatments (infliximab, etanercept

and adalimumab). Indeed, several studies suggest differential

effects of anti-TNF treatments on IFN-response activity which

could explain the lack of specificity in our study [29].

Interestingly, our method using CABS allowed us to pinpoint

type I IFN signaling as a means to stratify RA patients even

starting with whole blood transcriptomics analysis from samples

collected in PAXgene tubes. Similar analyses can be performed for

the other identified biclusters, highlighting the obvious advantage

of whole blood transcriptomics. Using the example of the IFN

signature, the use of correlations showed interest in the

characterization of the genes sharing both an expression pattern

and a biological function. The use of expression correlations may

be a better way to obtain a global picture of an activated signature

in various disease conditions.

Methods

Ethics statement
All subjects provided written informed consent and the study

was approved by the local Ethical Committee for clinical research

of the University hospitals of Lyon.

Patients and controls
102 RA patients fulfilling the revised American College of

Rheumatology 1987 criteria for RA [30] were enrolled. Their

clinical characteristics are shown in table 1. Among the 102 RA

patients, a subgroup of RA patients treated for 6 months with anti-

TNF, 22 RA patients characterized as IFNhigh (n = 11) and IFNlow

(n = 11), were included (IFNhigh group: infliximab n = 4, etanercept

n = 3 and adalimumab n = 4; IFNlow group: infliximab n = 2,

Figure 3. Stratification of individuals according to the IFN
signature. Each point represents a single individual with the decision
variable calculated from the Classification Algorithm based on a
Biological Signature (CABS). The shaded box indicates the normal
range according to the rule of the CABS: If Dhigh_low$1, the signature is
defined as ‘‘high signature’’ and If Dhigh_low,1, the signature is defined
as ‘‘low signature’’ knowing that Dhigh_low = CORhigh/CORlow.
doi:10.1371/journal.pone.0024828.g003

Figure 4. Correlation profiles from the different groups. A
correlation index was defined for each gene of the IFN signature as the
median of its correlations with the remaining genes. Thus, the
correlation profiles for the different groups: healthy controls (HC)
IFNlow (blue dotted), HC IFNhigh (blue line), rheumatoid arthritis patients
(RA) IFNlow (red dotted) and RA IFNhigh (red line) and systemic lupus
erythematosus patients (SLE) IFNhigh (green line), are represented using
the 35 calculated correlation indexes from the IFN signature genes. The
median values of the correlation indexes obtained for the different
groups are 0.27, 0.44, 0.33, 0.63 and 0.68, respectively.
doi:10.1371/journal.pone.0024828.g004

Figure 5. Comparative analysis of characterization methods of
IFN signature. Each dot represents a single individual. The y-axis
represents the decision variable of the IFN signature calculated from
CABS. The grey dotted line indicates the threshold according to the rule
of the CABS: If Dhigh_low$1, the signature is defined as ‘‘high signature’’
and If Dhigh_low,1, the signature is defined as ‘‘low signature’’ knowing
that Dhigh_low = CORhigh/CORlow. The x-axis represents the average
values of gene expression of the IFN signature. The solid grey line
indicates the threshold of IFN response, by calculating the 95% limits of
the HC (normal values, defined as the mean (SD) expression of the 35
IFN-related genes, 61.96 SD). If the average gene expression is $9.68,
the signature is defined as ‘‘high signature’’ and if average gene
expression ratio is ,9.68, the signature is defined as ‘‘low signature’’.
The shaded boxes show the divergence observed between both
methods. The black triangles represent individuals with high average
values of gene expression and low decision variable. The black squares
represent individuals with low average values of gene expression and
high decision variable.
doi:10.1371/journal.pone.0024828.g005
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etanercept n = 7 and adalimumab n = 2). As an IFN positive

control group (IFNhigh), 10 systemic lupus erythematosus patients

(SLE) fulfilling the American College of Rheumatology criteria for

the SLE [31] were studied. In addition, 100 age- and sex-matched

healthy control subjects (HC) without any familial history of RA,

autoimmune disease and concomitant medication were also

recruited.

Sample collection, processing and microarray
hybridization

Peripheral blood samples were collected in PAXgeneTM Blood

RNA tubes (PreAnalytix, Hilden, Germany) in order to stabilize

mRNA [32]. Blood samples were incubated at room temperature

for 2 h, and then stored at 220uC until RNA extraction according

to the manufacturer’s instructions. Briefly, RNA was isolated using

the PAXgeneTM Blood RNA kit (PreAnalytix). Following cell lysis,

nucleic acids were pelleted and treated with a buffer containing

proteinase K. After digestion with a RNase-free DNase (Qiagen,

Valencia, CA, USA), RNA was subsequently purified on PAXgen-

eTM spin columns and eluted in 80 ml of elution buffer. The quality

of RNA was determined with the BioanalyzerH 2100 (Agilent

Technologies, Waldbronn, Germany), following the manufacturer’s

protocol. cDNA was synthesized from 50 ng of total RNA using the

WT-OvationTM System (NuGEN, San Carlos, CA, USA) powered

by Ribo-SPIATM technology. Fragmented cDNA was end labeled

with a biotin-conjugated nucleotide analog (DLR-1a; Affymetrix,

Santa Clara, CA, USA) using terminal transferase (Roche

Diagnostics, Mannheim, Germany). Fragmented and labeled

cDNA was hybridized for 18 h at 50uC in a hybridization solution

containing 7% DMSO. Hybridization was performed using

GeneChipH Human Genome U133 Plus 2.0 arrays (Affymetrix),

containing 54,675 probe sets corresponding to 38,500 identified

genes. After washing, chips were stained with streptavidin-

phycoerythrin according to Affymetrix EukGE-WS2v4 protocol

using the Fluidic FS450 station. The microarrays were read with the

GeneChipH Scanner 3000 (Affymetrix). Affymetrix GeneChip

Operating Software version 1.4 (GCOS) was used to manage

Affymetrix GeneChip array data and to automate the control of

GeneChip fluidics stations and scanners.

Data analysis
Data processing. Expression data were generated using the

Robust Multi-array Average (RMA) method [33] implemented in

the Affy package of the Bioconductor microarray analysis

environment (http://www.bioconductor.org). The RMA method

consists of three steps: background adjustment, quantile normal-

ization [34] and probe set summary of the log-normalized data

applying a median polishing procedure. Before the analysis of

heterogeneity, two filters were applied based on expression level

and variability to lower the dimensionality of the data and to avoid

false discoveries. First, genes with a median expression value below

a given threshold were eliminated. This threshold was set to 6 in

log base 2 corresponding to twice the average background level.

The second filter eliminated genes with a low variation. Thus, the

Median Absolute Deviation (MAD) for the remaining genes was

calculated and those with a MAD lower than the median of the

MAD calculated over the remaining genes after intensity based

filtering were eliminated.

Biclustering and functional enrichment analyses. The

SAMBA algorithm (Statistical-Algorithmic Method for Bicluster

Figure 6. Follow-up the IFN signature in patients with rheumatoid arthritis (RA) treated with anti-TNF. Each point represents a single
individual with the decision variable calculated from the Classification Algorithm based on a Biological Signature (CABS). The shaded box indicates
the normal range according to the rule of the CABS: If Dhigh_low$1, the signature is defined as ‘‘high signature’’ and If Dhigh_low,1, the signature is
defined as ‘‘low signature’’ knowing that Dhigh_low = CORhigh/CORlow. The Wilcoxon signed rank test was used to evaluate the statistical significance
between patients before and after anti-TNF treatment A) (*p = 0.0186) B) (**p = 0.002).
doi:10.1371/journal.pone.0024828.g006

Table 1. Demographic and clinical characteristics of the
patients and control subjects.

RA
(n = 102)

SLE
(n = 10)

C
(n = 100)

Demographic data

Agea 50 (40,3–60) 37 (34–44) 57 (52–63)

Sex: Female, Male 79F, 23M 10F 86F, 14M

Disease characteristics

ESRa 18 (8–44) NA NA

Rheumatoid Factor pos.(%) 70 (68,6) NA NA

Disease duration (years)a 5 (2–9) 4 (3–6) NA

Disease activity 4,2 (3,3–5,2)b 13 (12–17.5)c NA

Medication

MTX (%) 87 (85,3) NA NA

MTX dosea 15 (15–20) NA NA

aMedian (Q1–Q3).
bDAS28: Disease Activity Score.
cSLEDAI: Systemic Lupus Erythematosus Disease Activity Index.
ESR: Erythrocyte Sedimentation Rate; MTX: Methotrexate.
doi:10.1371/journal.pone.0024828.t001
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Analysis) implemented in EXPANDER 4.0.3 (EXPression

ANalyzer and DisplayER) was used for the biclustering [35].

This algorithm uses probabilistic modeling of the data and

theoretical graph techniques to identify such subsets of genes that

behave similarly across a subset of patients [36].

The TANGO algorithm (Tool for Analysis of GO enrichment),

implemented in EXPANDER 4.0.3, was used to identify the

biological significance of these biclusters [35].
Interferon molecular pathway analysis. Canonical

pathway analyses was performed to define overrepresentation of

canonical pathways of the selected genes. Canonical pathway

analyses of specific genes coming from statistical analysis were

performed using Ingenuity Pathway Analysis (IPA), (www.

ingenuity.com). B-H multiple testing correction p-value test was

used to calculate the p-value for determining the probability that

each canonical pathway assigned to the dataset was due to chance

alone. P-value,0.01 was applied in calculations and the Human

Genome U133 Plus 2.0 array was used as the reference when

ranking the statistical significance of canonical pathways.

Networks of the IFN genes were constructed using Ingenuity

Pathway Analysis (IPA), (www.ingenuity.com). Genes were found

in the IPA knowledge database are labeled ‘‘focus’’ genes. Based

on the focus genes, IPA generated a set of molecular networks with

a cutoff of 70 genes for each network based on interactions

between uploaded genes and all other genes/proteins stored in the

knowledge base. Each network is assigned a score according to the

number of focus genes in our dataset. These scores are derived

from negative logarithm of the P and are indicators of the degree

of significance. Scores of 4 or higher have 99.9% confidence level

of significance as defined in detail elsewhere [37].
Classification Algorithm based on a Biological Signature

(CABS). Taking the example of the IFN-related genes, a

classification algorithm was developed to identify individuals

with or without this biological signature. Applied to the IFN-

related genes, the CABS is divided into three steps.

Step 1 Prototype construction: Two groups of RA patients (IFNhigh;

IFNlow) were identified from the hierarchical clustering represent-

ing the 35 IFN-related genes which characterized the IFN

signature (Figure 2). The prototype was defined from these two

groups. Median expression values was calculated in the two

groups. Prototype Pi was defined from group i; the vector

(Gi1,…,GiM) represents the expression of the prototype Pi, where

i is high or low, Gij is the median expression of gene j in group i, M

is the size of the IFN signature.

Step 2 Decision Variable Calculation: Given the definition of the

prototypes described above, a criteria was needed to assess the

similarity of a given individual to those prototypes. For a given

individual, the IFN signature profile was defined as the vector

corresponding to the expression level of the 35 genes constituting

the signature. The similarity of this profile with both prototypes

was calculated using the Pearson correlation coefficient and noted

CORhigh et CORlow. The decision variable calculation was given by

the ratio between these two correlations: Dhigh_low = CORhigh/CORlow

indicating proximity to one or other of the prototypes.

Step 3 : Decision Making: Given the decision variable describe

above, an individual was assigned High IFN if the ratio Dhigh_low$1

meaning that CORhigh$CORlow. Inversely, an individual was

assigned low IFN if the ratio Dhigh_low,1 meaning that CORhigh,

CORlow.

Supporting Information

Table S1 Ontological analysis of the 121 biclusters
obtained from the 102 RA patients. The TANGO algorithm

(Tool for Analysis of GO enrichment) was used to identify the

biological significance of 121 biclusters from 9,856 selected probe

sets (see material and methods for details). Among them, these

results have highlighted the importance of immune regulation

across the ‘‘immune response’’ and ‘‘response to virus’’ ontology

groups (biclusters 4, 21, 34, 35 and 39. Processes with corrected p

value,0.05 were considered significant [36].
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