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Objective. Gestational diabetes mellitus (GDM) is a common metabolic disorder with onset during pregnancy. However, the
etiology and pathogenesis of GDM have not been fully elucidated. In this study, we used a metabolomics approach to investigate
the relationship between maternal serum metabolites and GDM in early pregnancy. Methods. A nested case-control study was
performed. To establish an early pregnancy cohort, pregnant women in early pregnancy (10‐13+6 weeks) were recruited. In total,
51 patients with GDM and 51 healthy controls were included. Serum samples were analyzed using an untargeted high-
performance liquid chromatography mass spectrometry metabolomics approach. The relationships between metabolites and
GDM were analyzed by an orthogonal partial least-squares discriminant analysis. Differential metabolites were evaluated using a
KEGG pathway analysis. Results. A total of 44 differential metabolites were identified between GDM cases and healthy controls
during early pregnancy. Of these, 26 significant metabolites were obtained in early pregnancy after false discovery rate
(FDR < 0:1) correction. In the GDM group, the levels of L-pyroglutamic acid, L-glutamic acid, phenylacetic acid, pantothenic
acid, and xanthine were significantly higher and the levels of 1,5-anhydro-D-glucitol, calcitriol, and 4-oxoproline were
significantly lower than those in the control group. These metabolites were involved in multiple metabolic pathways, including
those for amino acid, carbohydrate, lipid, energy, nucleotide, cofactor, and vitamin metabolism. Conclusions. We identified
significant differentially expressed metabolites associated with the risk of GDM, providing insight into the mechanisms
underlying GDM in early pregnancy and candidate predictive markers.

1. Introduction

Gestational diabetes mellitus (GDM), a common metabolic
disorder during pregnancy, is defined as glucose intolerance
occurring in the second and third trimesters, resulting in
varying degrees of hyperglycemia [1]. Owing to the increase
in prevalence, negative economic impacts, and adverse health
outcomes of GDM, research focused on GDM has increased.

The exact prevalence of GDM worldwide remains unclear
[1]; however, in the context of the increasing global preva-
lence of obesity and diabetes, the prevalence of GDM has
increased annually [2], particularly in China [3]. For exam-
ple, based on a survey of 105473 pregnant women in Tianjin,
the prevalence of GDM increased threefold from 2.4% to
6.8% between 1999 and 2008 [4]. GDM has short- and
long-term adverse health effects on women and their
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offspring. During pregnancy, GDM can increase the proba-
bility of obstetric complications, such as gestational hyper-
tension, postpartum hemorrhage, dystocia, and abortion,
and can lead to a higher incidence of macrosomia, preterm
birth, and fetal malformation [5–7]. Furthermore, women
who have had GDM have an increased risk of type 2 diabetes
mellitus (T2DM), metabolic syndrome, fatty liver, and car-
diovascular disease [7–9]. Furthermore, the risk of impaired
glucose tolerance, diabetes, hypertension, obesity, and coro-
nary heart disease in the offspring of women with a history
of GDM may be significantly elevated [1, 10, 11].

Epidemiological evidence has shown that a family history
of diabetes, prepregnancy obesity, excessive weight gain dur-
ing pregnancy, and advanced age are the main determinants
of GDM [12–15]. Researchers have also focused on the stud-
ies on the pathogenesis of GDM. There was evidence that
some metabolic disorders, such as β-cell dysfunction and
insulin resistance, are critical components of the pathophys-
iology of GDM [16]. In addition, genetic factors, inflamma-
tion, adipocytokines, and oxidative stress are also closely
related to the pathology of GDM [16]. However, the patho-
genesis of GDM has not been fully elucidated, to some extent,
which limits the further development of effective prevention
strategies and treatment measures for GDM. In recent years,
advances in metabolomics technology have provided us with
help to explore the pathophysiological mechanisms of under-
lying metabolic abnormalities of GDM. Briefly, analyses of
changes in low-molecular-weight metabolites after exposure
to external stimuli enable the identification of novel bio-
markers for diseases and improve our understanding of path-
ogenic mechanisms [17]. More and more researchers have
explored the changes of GDM-related metabolites and iden-
tified novel biomarkers of GDM from biological specimens.
For example, based on a nested case-control study, de Sey-
mour et al. analyzed 48 maternal serum samples using gas
chromatography coupled to mass spectrometry (GC-MS) at
20 weeks gestation and found that the serum itaconic acid
level is significantly higher in pregnant women with GDM
than in healthy pregnant women [18]. Sachse et al. analyzed
maternal urine samples from a prospective, multiethnic
cohort study using proton nuclear magnetic resonance (1H-
NMR) spectroscopy and found that the steady increase of
urinary lactose concentration is the most significant change
in the development of GDM [19]. Liu et al. used an advanced
metabolomics platform based on ultraperformance liquid
chromatography quadrupole time-of-flight mass spectrome-
try (UPLC/Q-TOF-MS) and found differences in serum argi-
nine, glycine, and 3-hydroxy-isovalerate carnitine levels
between pregnant women with GDM and healthy pregnant
women in early pregnancy [20]. However, the results of these
metabolomics studies of GDM are inconsistent, which may
be due to the differences in the GDM diagnostic criteria used,
differences in the use of instrumental methods in metabolo-
mics, differences in the various biological specimens, and
the differences in the study population characteristics [21].

In general, there have been few longitudinal metabolo-
mics studies in early pregnancy in the Chinese population,
while most of the studies are designed with a case-control
study conducted in the second trimester. In fact, longitudinal

metabolomics studies are a more powerful approach in iden-
tifying metabolite changes and their association with related
disease [21]. Based on a longitudinal cohort, Law et al. inves-
tigated maternal plasma metabolite changes in early preg-
nancy in GDM women and found that the levels of a
number of polyunsaturated or chemically modified phospho-
lipids in the plasma of pregnant women with GDM were
significantly lower than those in healthy controls [22]. Mean-
while, they used the same metabolomics approach to explore
the differences in the urinary metabolome of GDM cases and
healthy controls and found that hypoxanthine, xanthine,
xanthosine, and 1-methylgypoxanthine are all elevated in
the urine metabolome of pregnant women with GDM [23].
Zhao et al. performed an untargeted longitudinal metabolo-
mics study and revealed that amino acid metabolism, lipid
metabolism, and other pathways might be disrupted prior
to the onset of GDM [24]. Early pregnancy is a critical period
for the onset of GDM, and metabolite detection during this
period is of clinical significance for prognosis prediction
and early diagnosis. Previous studies have shown that the
most significant metabolite changes between GDM and the
control group occurred in the first and/or third trimester of
pregnancy, with less significant metabolite changes in the
second trimester [21]. In addition, there may be significant
differences in metabolomic characteristics between ethnic
groups, which may be due to differences in genetics, diet, cul-
ture, or gut microbes. Thus, more longitudinal metabolomics
studies of GDM in the Chinese population in the first trimes-
ter of pregnancy are needed.

In this cohort study with follow-up, we investigated the
relationship between early pregnancy maternal serum
metabolites and the risk of GDM in a Chinese population
using an untargeted HPLC-MS metabolomics approach.
We attempted to advance the observation starting point to
the onset of GDM and explore the possible metabolic abnor-
malities in the early stage of GDM, so as to develop effective
prevention strategies and treatment measures for GDM in
the early stage. Our results identify candidate biomarkers
for GDM and associated metabolic pathways.

2. Methods

2.1. Study Subjects. This nested case-control study was based
on an early pregnancy follow-up cohort. The prospective
cohort (ChiCTR1900020652) included Chinese women
recruited during early pregnancy (10‐13+6 weeks) from the
Hunan Provincial Maternal and Child Health Care Hospital
in Changsha between 2016 and 2017. The inclusion criteria
are as follows: (1) single birth; (2) conceived naturally; (3)
no history of diabetes, hypertension, thyroid disease, and car-
diovascular and cerebrovascular diseases before pregnancy;
and (4) no acute infection in the last 2 weeks, and no antibi-
otics were used during pregnancy. A total of 872 subjects
were included in the follow-up cohort. The diagnosis of
GDM was based on the IADPSG standard updated by the
American Diabetes Association in 2011 [25], with a 75 g rou-
tine oral glucose tolerance test at 24–28 weeks of gestation
after overnight fasting. Patients with blood glucose levels
exceeding 5.1, 10.0, and 8.5mmol/L, respectively, in fasting
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plasma glucose, 1 h plasma glucose, and 2h plasma glucose
were diagnosed with GDM. According to the diagnostic cri-
teria, 51 cases of GDM were obtained. The controls were
matched (1 : 1) to cases with respect to age (±3 years) and
timing of blood collection (±1 week). Finally, 51 patients with
GDM and 51 healthy participants were included in the study.
The study was approved by the Medical Ethics Committee of
Hunan Maternal and Child Health Hospital, China (number:
EC201624). All methods were performed in accordance with
relevant guidelines and regulations, and all participants
provided written informed consent.

2.2. Serum Collection and Metabolite Extraction. Blood sam-
ples (3–5mL) were collected from all subjects in the first tri-
mester of pregnancy with the assistance of nurses in the
blood collection room of the hospital. The samples were
thawed and vortexed for 30 s. For preparation of tissue
homogenate, tissue was weighed, gradually added to H2O,
and homogenized. Cells were added to water and sonicated
for 10min at 4°C. For metabolites, sample volumes of
200μL were extracted with MeOH :ACN (1 : 1, v/v). The
samples then vortexed for 30 s and sonicated for 10min. To
precipitate proteins, the samples were incubated with MeO-
H :ACN (1 : 1, v/v) for 1 h at -20°C, followed by 15min cen-
trifugation at 20,000 g and 4°C. The resulting supernatant
was removed and evaporated to dryness in a vacuum concen-
trator. The dry extracts were then reconstituted in
40μL/mg·pro of ACN :H2O (1 : 1, v/v), vortexed for 30 s,
and sonicated for 10min. The extracts were centrifuged for
15min at 20,000 rpm and 4°C to remove insoluble debris.
The supernatants were transferred to HPLC vials and stored
at -80°C prior to LC/MS analysis. The quality control (QC)
samples were prepared by pooling 10μL of each sample.
The extraction procedure for QC samples was the same as
that used for metabolite extraction.

2.3. HPLC-MS Analysis. The metabolomics analyses were
performed on an Agilent 1260 Infinity HPLC platform (Agi-
lent Technologies Co. Ltd., Palo Alto, California, USA)
coupled with a Thermo Scientific Q Exactive Mass Spectrom-
eter (Thermo Fisher Scientific, Waltham, Massachusetts,
USA). The data was acquired with DDA (DDA method
parameters: full scan range: 60 to 900 (m/z); resolution for
MS1 and ddMS2: 70,000 and 17,500, respectively; maximum
injection time for MS1 and ddMS2: 100ms and 45ms; auto-
matic gain control (AGC) for MS1 and ddMS2: 3e6 and 2e5;
isolation window: 1.6m/z; normalized collision energies
(NCE): 10, 17, 25 or 30, 40, 50). Then, the samples were sep-
arated on an amide column (3.5μM, 2:1 × 100mm) using
water mixed with 25mM ammonium acetate as mobile phase
A and 25mM ammonium hydroxide mixed with ACN as
mobile phase B. The injection volume was 4μL, and the flow
rate was 0.4mL/min.

2.4. Data Processing and Analysis. Compound Discoverer
(2.0.0.303) was used to process raw HPLC-MC data, includ-
ing the extraction of peak statistics, retention time correction,
and grouping. An R script was used for signal drift correction
for compound quantification. By fitting a local quadratic

regression model to correct for signal drift and batch effects,
the median peak values were obtained and are shown in the
peak table. All missing values, zero values, and negative
values were replaced with half of the smallest positive value
in the default data set. All metabolites were identified accord-
ing to the MSI guidelines. We identified metabolites using
MzCloud (ddMS2) and ChemSpider (formula or exact mass)
databases. MzCloud was compared with ddMS2 (secondary
mass spectrometry), while ChemSpider was compared with
the molecular formula and mass number obtained by CD
software.

An orthogonal partial least-squares discriminant analysis
(OPLS-DA) was used to identify differentially expressed
metabolites between the GDM and control groups. PLS
regression was performed using the PLSR function in R. As
a supervised multidimensional statistical analysis method,
OPLS-DA was used to identify differences between sample
groups and to obtain metabolites with potentially signifi-
cant differences. A paired t-test was used for metabolic
signature discovery. Metabolites with variable importance in
projection ðVIPÞ values > 1:0 in the OPLS-DA model and p
< 0:05 by a paired t-test were considered significantly differ-
ent between the GDM and control groups. A false discovery
rate (FDR) of <0.1 was used to correct for multiple compari-
sons. The q value in the FDR control was defined as the
FDR analog of the p value [26]. Metabolites with significant
differences were further screened using a q value threshold
of <0.05. The main parameters determining the quality of
the OPLS-DA model are R2Y and Q2, which represent the
interpretation rate and prediction rate of the model,
respectively.

2.5. KEGG Pathway Analysis. Pathway analyses were con-
ducted using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway Database. KEGG IDs were matched with
metabolites in the database and input into MetaboAnalyst
(http://www.metaboanalyst.ca/faces/upload/PathUploadView
.xhtml) to identify the metabolic network and changes in met-
abolic pathways related to GDM.

3. Results

3.1. Demographic and Clinical Characteristics. There were no
significant differences in maternal age, gestational age at the
time of investigation, gestational age at blood sampling, gra-
vidity, and parity between patients with GDM and controls.
However, early pregnancy weight, body mass index (BMI),
blood pressure (SBP/DBP), and history of GDM were signif-
icantly higher in the GDM group than in the control group
(p < 0:05). In terms of biochemical markers in early preg-
nancy, the levels of HGB and LDL were higher in patients
with GDM than in controls (p < 0:05). Detailed information
regarding demographic and clinical characteristics is shown
in Table 1.

3.2. Quality Control. QC samples were used to evaluate the
repeatability and stability of measurements. Figure 1 shows
a total ion chromatogram for QC samples. The QC samples
showed good peak fitting, good data repeatability and

3Journal of Diabetes Research

http://www.metaboanalyst.ca/faces/upload/PathUploadView.xhtml
http://www.metaboanalyst.ca/faces/upload/PathUploadView.xhtml


instrument stability, and high reliability. The intensities were
corrected for signal drift and batch effects by fitting a locally
quadratic (LOESS) regression model to the median intensity
of pooled QC samples. The alpha parameter (span) control-
ling smoothing was set to 2 to avoid overfitting. After correc-
tion, the median areas of all pooled QC samples were the
same. Metabolites with a coefficient of variation in QC
samples of >25% were then filtered (6% filtered) owing to
their unstable quantifiability (see Figure 2).

3.3. Multivariate Data Analysis. In this study, 102 serum
samples were evaluated by HPLC-MS, and 2035 characteris-
tic peaks were detected. In order to better distinguish the dif-
ferences between sample groups and obtain the metabolite
information with potential significant differences, OPLS-
DA was used to detect metabolic differences between the
GDM and control groups. The OPLS-DA score plot
(Figure 3(a)) showed that the intragroup difference threshold
for metabolites in the GDM and control groups was 10.5%
and was mainly explained by variation among individuals.
The significance threshold for metabolite differences between
the GDM and control groups was 2.53%. Figure 3(b) showed
a scatter plot of model covariance and model correlation

combinations from the OPLS-DA model (using Corr > 0:25
and Cov > 0:5). The model quality parameters were R2X =
0:18, R2Y = 0:80, and Q2 = 0:24. The OPLS-DA model
showed a good degree of differentiation (R2Y = 0:80) and
was relatively stable and reliable. However, the prediction
rate was less than 0.50 (Q2 = 0:24), indicating that the predic-
tion error of the model was high. A permutation test showed
that the R2Y (pR2Y = 0:01) and Q2 (pQ2 = 0:01) values for
groups obtained by random sampling were less than those
of the original model, indicating that the model has high
accuracy and reliability, with significant differences between
groups (Figure 3(c)).

3.4. Identification of Differential Metabolites. In total, 44
metabolites with significant differences between groups were
identified using VIP > 1:0 and p < 0:05 as thresholds
(Table 2). These substances were related to the metabolism
of lipids, amino acids, sugars, vitamins, nucleotides, and
purines, to various degrees (fold change values, 0.78–1.42).
After correction for multiple hypothesis testing (FDR < 0:1),
26 highly significant differential metabolites (q < 0:05) were
obtained. Of the 26 significant metabolites, 4-oxoproline,
dihydrothymine, 1,5-anhydro-D-glucitol, leu-leu, met-val,

Table 1: Baseline characteristics and clinical information in the case and control groups.

Variables Case (n = 51) Control (n = 51) p value

Gestational age of investigation 12.6 (±0.87) 12.7 (±0.61) 0.503

Gestational age of blood collection 12.7 (±0.99) 12.8 (±0.77) 0.625

Maternal age (years) 32.4 (±4.61) 31.7 (±4.33) 0.494

Early pregnancy weight (kg) 57.7 (±9.27) 51.1 (±7.24) <0.001
Early pregnancy BMI (kg/m2) 23.4 (±3.23) 20.4 (±2.49) <0.001
Early pregnancy SBP (mmHg) 120.0 (±10.38) 113.7 (±10.07) <0.001
Early pregnancy DBP (mmHg) 77.0 (±8.55) 72.2 (±7.90) <0.001
Gravidity 2.5 (±1.22) 2.3 (±1.46) 0.608

Parity 0.6 (±0.61) 0.6 (±0.50) 1.000

History of GDM 0.010

No 43 (84.3%) 51 (100.0%)

Yes 8 (15.7%) 0 (0.0%)

History of gestational hypertension 1.000

No 50 (98.0%) 50 (98.0%)

Yes 1 (2.0%) 1 (2.0%)

Smoking 0.475

No 51 (100%) 49 (96.1%)

Yes 0 (0%) 2 (3.9%)

Drinking 0.475

No 51 (100.0%) 49 (96.1%)

Yes 0 (0%) 2 (3.9%)

HGB (g/L) 127.9 (±8.55) 122.9 (±8.78) 0.004

TG (mmol/L) 1.8 (±0.68) 1.5 (±0.72) 0.067

TC (mmol/L) 4.6 (±0.70) 4.4 (±0.70) 0.262

HDL (mmol/L) 1.8 (±0.40) 1.9 (±0.37) 0.079

LDL (mmol/L) 2.6 (±0.60) 2.3 (±0.62) 0.034
†Data are n (%),means ± SD. ‡BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HGB: hemoglobin; TG: triglyceride; TC: total
cholesterol; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol.
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hexadecanedioic acid, and calcitriol were more abundant in
the control group than in the GDM group (R‐fold < 1). In
contrast, L-glutamic acid, L-pyroglutamic acid, L-
cysteinesulfinic acid, xanthine, 2-methylhippuric acid, pan-
tothenic acid, and incadronic acid were more abundant in
the GDM group than in the control group (R‐fold > 1).
See Table 2 for details.

3.5. Metabolic Pathway Analysis. A total of 15 related meta-
bolic pathways were obtained by a KEGG enrichment analy-
sis (Table 3). Among these metabolic pathways, amino acid
(including other amino acids) metabolism was the main
pathway, followed by carbohydrate metabolism, lipid metab-
olism, energy metabolism, nucleotide metabolism, and cofac-
tor and vitamin metabolism. In addition, D-glutamine and
D-glutamate metabolism and alanine, aspartate, and gluta-
mate metabolism had the highest enrichment coefficients
(Figure 4). The differential metabolites corresponding with
the potential metabolic pathways were mainly xanthine, L-
glutamic acid, 4-oxoproline, 4-acetamidobutanoic acid, dihy-
drothymine, pyroglutamic acid, and phenylacetic acid. These
differential metabolites and their corresponding metabolic

pathways in early pregnancy may be related to the subse-
quent development of GDM.

4. Discussion

In this prospective study, we performed a nested case-control
study of GDM using an HPLC-MS untargeted metabolomics
approach. By multivariate statistical analysis, we identified 44
significant differential metabolites associated with the risk of
GDM. Of these, 26 metabolites differing significantly
between the GDM and control groups were obtained after
FDR analysis. Our results suggest that in early pregnancy,
the serum levels of pantothenic acid, phenylacetic acid, and
xanthine are significantly elevated and that of 4-oxoproline
is significantly decreased, indicating that these molecules
are potential predictors of GDM.

Various differentially expressed metabolites, such as pan-
tothenic acid, L-pyroglutamic acid, L-glutamic acid, phenyla-
cetic acid, and xanthine, were significantly elevated in the
GDM group compared with controls. GDM and T2DM have
pathophysiological similarities and are expected to share
similar metabolic profiles [27]. L-Pyroglutamic acid, L-
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glutamic acid, phenylacetic acid, and pantothenic acid are
each associated with GDM or T2DM. Serum levels of pan-
tothenic acid in patients with T2DM and high BMI are
higher than those in normal controls [28]; however,
increased serum levels of pantothenic acid have not been
reported in GDM. Pantothenic acid, a component of coen-
zyme A, is involved in the metabolism of carbohydrates, fatty
acids, proteins, and gluconeogenesis as a cofactor for a vari-
ety of enzyme-catalyzed reactions. A pantothenic acid defi-
ciency can lead to metabolic alterations, including a loss of
the eosinopenic response to adrenocorticotropin (ACTH)
and increased sensitivity to insulin [29]. Li et al. examined
early changes in the development of insulin resistance via
liver and plasma metabolome analyses and found that
increased pantothenate may be associated with insulin resis-
tance [30]. Thus, the observed increase in pantothenic acid
may be associated with changes in insulin sensitivity and
insulin resistance, thereby increasing the risk of GDM; how-
ever, the underlying mechanism needs to be further studied.
Kim et al. reported that L-pyroglutamate, an insulin-like sub-
stance that inhibits epinephrine-induced fat breakdown and
promotes fat synthesis from glucose, is significantly increased
in the peripheral blood of patients with T2DMwith impaired
fasting blood glucose [31]. However, a GC-MS analysis of a
Western population has shown that L-pyroglutamic acid
levels are decreased during early pregnancy in patients with
GDM [32], inconsistent with our results. This difference
may be explained by differences in diagnostic criteria for
GDM, differences in metabolome profiling platforms, differ-
ences in study populations, or other factors. Therefore, fur-

ther studies are needed to provide a theoretical basis for the
link between L-pyroglutamic acid and GDM in early preg-
nancy. L-Glutamic acid enhances islet function and increases
insulin secretion. Our results showed that serum L-glutamic
acid levels are significantly increased in early pregnancy in
patients with GDM, consistent with previous results obtained
by Zhao et al. [24], suggesting that the decrease in insulin
sensitivity occurs earlier in pregnant women with GDM than
in healthy pregnant women, which in turn promotes
increased L-glutamic acid metabolism and increased insulin
compensatory secretion. We obtained the evidence that the
level of serum xanthine is significantly increased in the
GDM group during early pregnancy. Xanthine is an interme-
diate product of the purine metabolic process and can be fur-
ther metabolized to uric acid by xanthine oxidase. The
increased xanthine levels in the serum of patients with
GDM reflect impaired xanthine oxidase activity. Xanthine
oxidase is an important indicator of oxidative stress [33],
which can increase inflammatory cytokines, leading to pla-
cental damage, insulin resistance, and the occurrence of
GDM [34]. Accordingly, we speculate that patients with
GDM have an impaired antioxidant capacity before abnor-
mal glucose metabolism. A previous study confirmed that
patients with T2DM have elevated phenylacetic acid levels
in the peripheral blood [31], suggesting that increased phe-
nylalanine acid levels are related to an increased risk for the
development of T2DM. Consistent with this, we observed
elevated serum phenylacetic acid levels in pregnant women
with GDM in early pregnancy. This may be due to a compen-
satory increase in serum phenylacetic acid levels in patients
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with GDM during early pregnancy. Cellular and in vivo
experiments have shown that phenylacetic acid can signifi-
cantly inhibit gluconeogenesis and increase blood glucose
by inhibiting pyruvate carboxylase (promoting islet cell activ-
ity) [35]. However, the underlying mechanisms need to be
further studied.

We also identified various differentially expressed metab-
olites, such as 1,5-anhydro-D-glucitol (1,5 AG), calcitriol,
and 4-oxoproline, showing significant decreases in the
GDM group during early pregnancy compared to the con-
trols, and these may be associated with the subsequent onset
of GDM. For example, 1,5 AG is a major polyol in humans
and is structurally similar to glucose; it is a sensitive and reli-
able marker of short-term glucose control [36]. Serum levels
of 1,5 AG are lower in pregnant women with GDM than in
women without GDM [36, 37], consistent with our findings,
suggesting that 1,5 AG is a potential marker for the early
identification and management of GDM. In addition, 1,5
AG might suppress elevated blood glucose by inhibiting
sucrase, lactolytic enzymes, and intestinal glucose absorption
[38]. Thus, the decrease in serum 1,5 AG in early pregnancy
may reflect a reduction in the inhibition of 1,5 AG via
increased blood glucose. Calcitriol is one of the most impor-
tant active metabolites of vitamin D, which may directly or
indirectly regulate β-cell function and secretion and enhance
insulin sensitivity [39]. Previous studies have shown that a
maternal vitamin D deficiency in early pregnancy is associ-

ated with an elevated risk of GDM [40, 41]. Consistent with
the results of these studies, we found decreased calcitriol
levels in patients with GDM in early pregnancy, which may
be related to insulin resistance and impaired insulin secretion
during pregnancy, subsequently increasing the risk of GDM.
To the best of our knowledge, only one study has evaluated 4-
oxoproline in T2DM, showing that 4-oxoproline can predict
the treatment response of T2DM to metformin and that low
4-oxoproline is associated with a significant decrease in gly-
cated hemoglobin (HbA1c) [42]. We speculate that the
decreased 4-oxoproline level may be related to insulin resis-
tance during pregnancy. However, further studies are needed
to determine whether the low level of 4-oxoproline in the
GDM group is the result of glucose regulation in the compen-
satory period or other factors. The metabolites described
above represent only a portion of the differential metabolites
identified in this study, and relationships between other
metabolites and the risk of GDM need to be further explored,
especially the significant metabolites obtained by secondary
screening, such as dihydrothymine, L-cysteinesulfinic acid,
met-val, and hexadecanedioic acid.

Furthermore, 15 related metabolic pathways were
obtained by a KEGG enrichment analysis, including amino
acid metabolism, carbohydrate metabolism, lipid metabo-
lism, energy metabolism, nucleotide metabolism, and cofac-
tor and vitamin metabolism. Recent evidence suggests that
amino acid metabolism is closely related to insulin resistance,
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Table 2: The 44 differential metabolites associated with the risk of gestational diabetes.

Metabolite (m/z) RT (min) VIP p value R-fold

DL-3-Aminoisobutyric acid 103.06 18.998 2.46 <0.001 1:24∗

N-Acetylglycine 117.04 4.096 2.53 0.00499 1.38

2-Methyl-3-hydroxybutyric acid 118.06 2.881 1.59 0.00292 0:82∗

Dihydrothymine 128.06 16.652 2.06 <0.001 0:80∗

4-Oxoproline 129.04 17.506 1.50 0.00231 0:88∗

L-Pyroglutamic acid 129.04 19.01 2.02 0.00236 1:18∗

Phenylacetic acid 136.05 0.673 2.69 0.01636 1.23

Trimethadione 143.06 3.674 2.46 0.00181 1:23∗

4-Acetamidobutanoic acid 145.07 2.844 1.84 0.01210 1.29

(2E)-3-(Carbamimidoylsulfanyl)acrylic acid 146.02 19.827 2.83 0.00221 1:39∗

L-Glutamic acid 147.05 18.998 2.35 <0.001 1:23∗

L-Cysteinesulfinic acid 153.01 2.579 2.95 <0.001 1:42∗

4-Methylquinolin-2-ol 159.07 5.706 2.07 0.00371 1.22

5-Carbamimidamidopentanoic acid 159.10 17.727 3.07 <0.001 1:33∗

1,5-Anhydro-D-glucitol 164.07 2.870 1.74 0.00117 0:81∗

N-Acetylornithine 174.10 18.644 1.83 0.01884 1.28

Aceglutamide 188.08 18.819 1.51 0.00298 1:20∗

Homo-L-arginine 188.13 22.002 1.60 0.00480 1.18

2-Methylhippuric acid 193.07 1.540 2.58 0.00284 1:37∗

4-(Nitrosoamino)-1-(3-pyridinyl)-1-butanol 195.10 5.333 2.52 0.01138 1.39

Dinotefuran 202.11 17.917 2.26 0.01146 1.33

Hept-2-ulose 210.07 5.785 1.94 0.00714 1.21

Pantothenic acid 219.11 4.998 2.07 <0.001 1:24∗

Eugenitin 220.07 0.631 3.17 0.00796 1.29

Leu-Val 230.16 2.800 2.52 0.00312 0.79

2-Methoxy1,3-thiazino6,5-bindol-4(9H)-one 232.03 19.006 2.30 <0.001 1:22∗

Phenobarbital 232.08 1.831 2.08 0.02063 1.31

UNII: 734CNR85EV 234.09 0.667 3.14 0.00960 1.28

4-Phenylbutanoyl hydrogen sulfate 244.04 14.168 1.58 0.00560 1.16

Leu-Leu 244.18 1.753 2.50 <0.001 0:78∗

Met-val 248.12 2.852 3.86 <0.001 0:68∗

(2R)-2,3-Dihydroxypropyl beta-D-galactopyranoside 254.10 2.961 1.63 0.00731 0.82

Hexadecanedioic acid 286.21 1.456 1.77 <0.001 0:82∗

Incadronic acid 287.07 15.528 3.33 <0.001 1:30∗

Ethylestrenol 288.25 2.780 2.04 0.00411 1.21

Pentiapine 299.12 15.404 2.33 0.00502 1.17

(9Z,11E,13S,15Z)-13-Hydroperoxy-9,11,15-octadecatrienoic acid 310.21 1.504 1.98 <0.001 0:80∗

(9E)-9-Octadecenedioic acid 312.23 1.076 2.41 0.00191 0:79∗

Icomucret 320.24 0.819 1.98 0.01263 1.23

Sulfometuron-methyl ANSI 364.08 14.156 1.45 0.00276 1:17∗

Calcitriol 416.33 0.815 1.69 <0.001 0:80∗

(1S,3R,5Z,7E)-1,3,25-Trihydroxy-9,10-secocholesta-5,7,10-trien-18-yl acetate 474.33 0.853 1.54 0.00286 0:83∗

Mupirocin 500.30 2.803 2.14 0.00286 1:21∗

Xanthine 76.02 2.799 1.90 0.00174 1:19∗
∗A false discovery rate (FDR) of <0.1 was used to correct for multiple comparisons. The q value in the FDR control was defined as the FDR analog of the p value,
and the q values < 0.05.
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T2DM, and GDM [43, 44]. In this study, pathways associated
with significantly altered metabolites with large impact coef-
ficients were mainly involved in alanine, aspartate, and gluta-

mate metabolism and D-glutamine and D-glutamate
metabolism. Vangipurapu et al. performed a large prospec-
tive population-based cohort and found that alanine,

Table 3: Results of KEGG enrichment analysis of the metabolic pathways related to GDM.

Metabolic pathway Matched differential metabolites p −Log pð Þ FDR Impact

D-Glutamine and D-glutamate metabolism L-Glutamic acid <0.01 8.321 0.019 0.283

Arginine and proline metabolism L-Glutamic acid, 4-oxoproline, 4-acetamidobutanoic acid <0.01 6.259 0.072 0.039

Alanine, aspartate, and glutamate
metabolism

L-Glutamic acid <0.01 5.920 0.072 0.442

Histidine metabolism L-Glutamic acid 0.015 4.203 0.229 0.009

Caffeine metabolism Xanthine 0.026 3.667 0.409 0.070

Pyrimidine metabolism Dihydrothymine 0.034 3.382 0.453 0.036

Aminoacyl-tRNA biosynthesis L-Glutamic acid 0.059 2.823 0.594 0.113

Glutathione metabolism
L-Glutamic acid

L-Pyroglutamic acid
0.075 2.584 0.632 0.013

Nitrogen metabolism L-Glutamic acid 0.079 2.539 0.632 0.001

Alpha-linolenic acid metabolism
(9Z,11E,13S,15Z)-13-Hydroperoxy-9,11,15-octadecatrienoic

acid
0.298 1.211 1 0.213

Purine metabolism Xanthine 0.305 1.188 1 0.056

Butanoate metabolism L-Glutamic acid 0.387 0.950 1 0

Galactose metabolism (2R)-2,3-Dihydroxypropyl beta-D-galactopyranoside 0.394 0.931 1 0.016

Phenylalanine metabolism Phenylacetic acid 0.423 0.860 1 0.054

Porphyrin and chlorophyll metabolism L-Glutamic acid 0.724 0.3232 1 0
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aspartate, and glutamate are significantly associated with
decreases in insulin secretion and elevations of fasting or
2 h glucose levels [45]. Changes in serum metabolites disrupt
alanine, aspartate, and glutamate metabolism, affecting insu-
lin tolerance and insulin secretion, which may be related to
the subsequent occurrence of GDM. Glutamine is an effective
glucose progenitor that stimulates insulin secretion [46].
Andersen et al. reported that glutamate uptake and gluta-
mine metabolism are disrupted in the hippocampus of a
T2DM db/db mouse model, potentially affecting the homeo-
stasis of the glutamate/glutamine cycle [47]. Thus, changes in
serum metabolites in the early gestational period of GDM
may disrupt glutamic acid/glutamine metabolism, affecting
the energy balance. Other related metabolic pathways, such
as those for lipids, carbohydrates, cofactors, and vitamins,
provide insight into GDM-related metabolic changes in early
pregnancy and should be evaluated in future studies.

Our study explored differences in the serum metabolic
profile in early pregnancy between patients with GDM and
healthy controls by untargeted HPLC-MS-based metabolo-
mics techniques in a Chinese population; our approach is
beneficial for the identification of specific biomarkers of
GDM with predictive and/or diagnostic value in early preg-
nancy. The analysis of metabolites and metabolic pathways
can provide a theoretical basis for future research on the
pathogenesis of GDM. However, our study had some limita-
tions. First, the subjects were recruited from a single hospital,
limiting the generalizability of the findings. Second, func-
tional studies of some differential metabolites discovered in
the study are lacking, and further analyses of the effects of
these metabolites are needed. Third, due to the limitations
of funds and detection conditions, we only used HPLC-MS
instead of UPLC-MS for metabolomic detection and analysis.

5. Conclusion

In this study, we identified 44 significantly differentially
expressed metabolites associated with the risk of GDM. The
levels of L-pyroglutamic acid, L-glutamic acid, xanthine, phe-
nylacetic acid, L-cysteinesulfinic acid, and other metabolites
were higher and the levels of 1,5-anhydro-D-glucitol, calci-
triol, 4-oxoproline, dihydrothymine, and other metabolites
were lower in the GDM group than in the control group,
indicating that these molecules are candidate predictors of
GDM. Most of the metabolic pathways obtained by a KEGG
enrichment analysis are related to amino acid metabolism,
suggesting that this process is important for the development
of GDM. Of course, further validation of these differentially
expressed metabolites in a larger sample population should
be considered in the future so as to better elucidate the path-
ogenesis of GDM.
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