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Abstract 

Cerebral perfusion plays a crucial role in maintaining brain function and is tightly 

coupled with neuronal activity. While previous studies have examined cerebral 

perfusion trajectories across development and aging, precise characterization of its 

lifespan dynamics has been limited by small sample sizes and methodological 

inconsistencies. In this study, we construct the first comprehensive normative model of 

cerebral perfusion across the human lifespan (birth to 85 years) using a large multi-site 

dataset of over 12,000 high-quality arterial spin labeling (ASL) MRI scans. Leveraging 

generalized additive models for location, scale, and shape (GAMLSS), we mapped 

nonlinear growth trajectories of cerebral perfusion at global, network, and regional 

levels. We observed a rapid postnatal increase in cerebral perfusion, peaking at 

approximately 7.1 years, followed by a gradual decline into adulthood. Sex differences 

were evident, with distinct regional maturation patterns rather than uniform differences 

across all brain regions. Beyond normative modeling, we quantified individual 

deviations from expected CBF patterns in neurodegenerative and psychiatric conditions, 

identifying disease-specific perfusion abnormalities across four brain disorders. Using 

longitudinal data, we established typical and atypical cerebral perfusion trajectories, 

highlighting the prognostic value of perfusion-based biomarkers for detecting disease 

progression. Our findings provide a robust normative framework for cerebral perfusion, 

facilitating precise characterization of brain health across the lifespan and enhancing 

the early identification of neurovascular dysfunction in clinical populations.  
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Introduction 

Cerebral perfusion, also referred to as cerebral blood flow (CBF), represents the 

delivery of oxygen and nutrients to brain tissue through the capillary bed, a process 

essential for sustaining normal brain function and overall brain health (Churchill et al., 

2023; Fantini et al., 2016). CBF is tightly coupled with neuronal activity through 

neurovascular coupling, wherein activated brain regions signal the neurovascular unit 

to increase blood flow, ensuring an adequate supply of oxygen and nutrients to meet 

and the metabolic demands (Kaplan et al., 2020; Kastrup et al., 2002; Kisler et al., 2017; 

Logothetis & Wandell, 2004; Schaeffer & Iadecola, 2021). Beyond its immediate role 

in neuronal function, CBF dynamics are closely associated with structural brain 

integrity, underscoring the critical role of vascular health in maintaining both brain 

morphology and cognitive function (Chen et al., 2013; Li et al., 2023; Ngo et al., 2024). 

Disruptions in CBF have been implicated in a wide range of neurological and 

psychiatric disorders, including stroke (Hernandez et al., 2012), Alzheimer’s disease 

(AD) (Alsop et al., 2008; Alsop et al., 2010; Alsop et al., 2000; Camargo et al., 2021; 

Camargo et al., 2023; Clark et al., 2017; van Dinther et al., 2024; Wang, 2014; Wang et 

al., 2013; Xu et al., 2010), frontotemporal dementia (FTD) (Hu et al., 2010b; Mutsaerts 

et al., 2019), and major depressive disorder (MDD) (Chiappelli et al., 2023; Liao et al., 

2017; Wei et al., 2018).  

 

Previous studies have characterized the trajectories of cerebral perfusion across 

development and aging, consistently reporting an initial rapid increase during early 

childhood, stabilization around preschool years, and a gradual decline with advancing 

age (Biagi et al., 2007; Carsin-Vu et al., 2018; Leung et al., 2016; Ouyang et al., 2024; 

Paniukov et al., 2020; Wang, Fernandez-Seara, et al., 2008; Zhang et al., 2018). 

However, pinpointing the exact age at which CBF peaks remains challenging due to 

two key limitations. First, many studies have focused on restricted developmental 

periods with narrow age intervals, leading to findings that either show a consistent 

positive or negative correlation between CBF and age (Biagi et al., 2007; Leung et al., 
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2016; Paniukov et al., 2020). Second, while some studies encompass broader age ranges 

spanning childhood to late adulthood, their findings remain inconsistent and 

constrained by limited sample sizes (Carsin-Vu et al., 2018; Takahashi et al., 1999; Wu 

et al., 2016). Consequently, a comprehensive understanding of continuous lifespan 

dynamics in CBF, from gestation through old age, remains incomplete. 

 

A promising approach to addressing these gaps involves the development of normative 

models that systematically map brain maturation across the lifespan. For instance, 

Bethlehem et al. (2022) constructed a normative model of brain morphometry by 

aggregating the largest multisite structural magnetic resonance imaging (MRI) dataset 

to date, offering a reproducible and generalizable framework for brain growth charts. 

This model utilized generalized additive models for location, scale, and shape 

(GAMLSS), a robust and flexible statistical framework endorsed by the World Health 

Organization for modeling non-linear growth trajectories (Borghi et al., 2006; 

Stasinopoulos & Rigby, 2008). Extending this approach to establish a cerebral perfusion 

chart could provide a valuable framework for elucidating CBF dynamics and their 

implications for brain health and disease. 

 

Beyond lifespan characterization, normative models offer critical insights at the 

individual level, enabling the identification of deviations from median CBF values. 

Such models can serve as biomarkers for brain development and for neurological and 

psychiatric disorders, enhancing diagnostic precision in those conditions (Holz et al., 

2023; Marquand et al., 2019; Segal et al., 2023). Given the high heterogeneity of these 

conditions (Segal et al., 2023; Verdi et al., 2024; Wolfers et al., 2018), normative 

modeling represents a powerful tool to bridge group-level biomarkers with individual-

level metrics. By enabling statistical inferences for individual deviations, these models 

facilitate personalized diagnoses and targeted interventions (Bethlehem et al., 2022; 

Marquand et al., 2019; Rutherford et al., 2023; Rutherford et al., 2022). Although 

normative deviation scores have been applied to structural MRI and resting-state 
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functional MRI data (Bethlehem et al., 2022; Segal et al., 2023; Sun et al., 2024; Verdi 

et al., 2023; Verdi et al., 2024), their potential in CBF research remains largely 

unexplored, despite CBF’s critical role in brain function and disease mechanisms. 

 

To address this gap, we assembled a large, multi-site neuroimaging dataset with 

rigorous quality control, incorporating both cross-sectional and longitudinal resting-

state arterial spin labeling (ASL) perfusion MRI data. ASL MRI is the only non-

invasive technique to quantify regional CBF (Detre et al., 2012; Tsujikawa et al., 2016; 

Wong et al., 2014). Because ASL MRI does need any exogenous contrast agents or 

radioactive tracers and can be repeated many times if needed, it is highly appealing to 

lifespan research, offering detailed insights into the dynamics of cerebral perfusion and 

their implications for brain health and disease across the human lifespan (Detre et al., 

2012; Detre et al., 2009; Z. Wang, 2022). We first leveraged cross-sectional ASL data 

to construct comprehensive normative models capturing the nonlinear trajectory of 

cerebral perfusion at global, network, and regional levels. By integrating these models 

with structural MRI data, we established benchmarks for key developmental milestones. 

Furthermore, we assessed the clinical utility of CBF-based normative models by 

computing individual deviation scores relative to the 50th percentile. These scores were 

used to characterize disease heterogeneity in patients with AD, FTD, mild cognitive 

impairment (MCI), and MDD. Additionally, by integrating longitudinal ASL data, we 

identified typical and atypical disease progression trajectories in MCI and AD. 

 

Our findings highlight the clinical potential of cerebral perfusion-based normative 

models in identifying atypical brain development, monitoring disease progression, 

stratifying patient subtypes, and evaluating therapeutic responses, which may 

potentially lead to precise and personalized diagnosis and treatment. As the first study 

to establish normative models of cerebral perfusion, this work provides a robust 

framework for individualized assessment, offering a suite of open science resources to 

advance standardized, quantitative evaluations of CBF. This approach fosters novel 
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research directions into the role of vascular health in brain function and disease. 

 

Results 

Mapping the normative growth of the global cerebral perfusion across the lifespan 

We aggregated multi-modal MRI data from 12,633 participants, including structural 

MRI and resting-state ASL MRI. After applying stringent quality control based on the 

quality evaluation index (QEI) and restricting the age range to birth to 85 years, the 

final dataset comprised 9,363 participants with high-quality imaging data. This cohort 

included 8,460 healthy individuals and 903 patients pooled from 20 datasets. Detailed 

demographics and acquisition parameters for each dataset are provided in 

Supplementary Tables 1 and 2. 

 

To examine the developmental and aging trajectories of global cerebral perfusion, we 

characterized the normative growth patterns of its mean and variability (estimated via 

bootstrapping) across the lifespan (Figure 1, Panels A–D). Both shared and region-

specific patterns emerged across cortical, white matter, and subcortical regions.  

 

Global CBF exhibited a sharp increase postnatally, peaking at approximately 7.1 years 

(95% CI: 6.5–7.5), followed by a gradual, near-linear decline through adulthood and 

into later life. Cortical CBF showed the highest peak during early childhood, with 

substantial between-subject variability that stabilized in adulthood (Figure 1, Panels A 

and D). In contrast, white matter CBF followed a flatter trajectory, peaking earlier at 

5.5 years (95% CI: 4.5–6.2) and declining more slowly (Panel B). Subcortical perfusion 

presented an intermediate pattern, peaking in late childhood to early adolescence at 6.7 

years (95% CI: 6.1–7.2) and declining at a rate comparable to cortical CBF (Figure 1, 

Panels B and C).  

 

Growth rate analyses (Figure 1, Panel C) further highlighted region-specific dynamics, 

with the sharpest perfusion increases occurring during early childhood. These findings 
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underscore the differential timing of peak perfusion and subsequent declines across 

brain regions, offering critical insights into lifespan trajectories of cerebral perfusion 

and their potential implications for neurodevelopmental and aging-related processes. 

 

Sex was found to significantly influence cerebral perfusion. Using GAMLSS modeling, 

we incorporated sex as a covariate to establish normative growth curves across the 

lifespan. The analysis revealed that global cerebral perfusion, including cortical, white 

matter, and subcortical regions, was significantly higher in females than in males (p < 

0.0001). A significant sex difference in variance was observed only in white matter 

(pFDR = 0.002), whereas no significant variance differences were detected in cortical or 

subcortical regions. Detailed sex-specific patterns of cerebral perfusion at the network 

and regional levels are listed in Supplementary Tables 3. 
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Figure 1. Normative Cerebral Perfusion Chart. Panel A, Raw CBF values across the 

cortex, white matter, and sub-cortical regions, normalized to the maximum cortical CBF. 

Panel B, Normative CBF Trajectories for males and females, modeled using a 

generalized additive model. Solid lines represent mean CBF, while dashed lines denote 

the 95% confidence intervals (CI). Panel C, CBF Growth Rate Across Age: illustrating 

a sharp decrease in early childhood, stabilization during adulthood, and a gradual 

decline in later life. The horizontal line (y = 0) marks the transition point where CBF 

shifts from increasing to decreasing, while the vertical line denotes the age of peak CBF 

growth. Panel D, Between-Subject Variability in CBF: Trajectories of median CBF 

variability and corresponding 95% CI, estimated using sex-stratified bootstrapping. 

 

Developmental milestones 

Key neuroimaging milestones were defined by the inflection points observed in brain 

trajectories (Figure 2). Global cortical cerebral perfusion peaked at approximately 7.1 

years (95% CI: 6.5–7.5), closely aligning with the peak age for global gray matter 

volume (GMV) at 7.8 years (95% CI: 7.3–8.3). In contrast, white matter volume (WMV) 

peaked significantly later, around 32.5 years, consistent with its prolonged maturation 

trajectory. Meanwhile, cerebrospinal fluid (CSF) volume showed a continuous increase 

across the lifespan, reflecting the progressive ventricular expansion and brain atrophy 

during aging. 

 

To extend brain charts beyond global cerebral perfusion, we applied the GAMLSS 

modeling approach to estimate normative regional cerebral perfusion trajectories. The 

analysis results revealed a distinct maturation gradient across brain regions, mirroring 

the hierarchical cortical gradient observed in prior neurodevelopmental studies. This 

maturation followed a structured sequence, initiating in sensorimotor areas, progressing 

through the limbic system, posterior temporal cortex, parietal cortex, and eventually 

reaching the prefrontal cortex, with peak ages ranging from 6.2 to 8.6 years (highlighted 

in the gray circle in Figure 2). Additionally, we examined relative perfusion retention 
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at key lifespan benchmarks—18, 50, and 80 years—highlighting characteristic age-

related declines in metabolic and vascular demands (illustrated in the bottom section of 

Figure 2).  

 

 

Figure 2. Neurodevelopmental milestones. A graphical summary of the normative 

trajectories of the median (50th percentile) for cerebral perfusion, gray matter volume, 

white matter volume, and cerebrospinal fluid volume across the lifespan. Triangles 

indicate the peak age for each phenotype, defined as the maximum of the median 

trajectories. The peak ages for regional cerebral perfusion are color-coded, with warmer 

colors indicating regions that mature later. Below the graph, regional perfusion maps 

illustrate the relative retention of cerebral perfusion at different life stages (e.g., early 

childhood, adolescence, adulthood, and old age), with warmer colors representing 

regions retaining a higher proportion of their peak perfusion. 

 

Characterizing individual CBF heterogeneity in brain disorders using cerebral 

perfusion normative models 

We assess the clinical utility of normative CBF modeling, we examined individual 



10 

 

deviation scores derived from CBF data across four neurological and psychiatric 

disorders —AD, MCI, FTD, and MDD (Figure 3). These deviation scores quantified 

the degree of atypicality in cerebral perfusion patterns, revealing disorder-specific 

deviations. 

At the global cerebral perfusion level (Figure 3, Panel A-B), a significant portion of 

patients demonstrated extreme negative deviations in cortical perfusion, with 14.1% of 

AD (Z = -1.57 ± 0.745), 13.6% of FTD (Z = -1.65 ± 0.734), 9.7% of MCI (Z = -1.09 ± 

0.909), and 6.5% of MDD (Z = -1.15 ± 0.811) cases falling below normative thresholds. 

A similar pattern was observed in white matter perfusion, where 3.5% of AD (Z = -1.05 

± 0.856), 2.3% of FTD (Z = -0.93 ± 0.738), 5.2% of MCI (Z = -0.80 ± 0.936), and 3.8% 

of MDD patients (Z = -0.826 ± 0.818) exhibiting extreme deviations. Subcortical 

perfusion showed notable deficits in 10.6% of AD (Z = -1.43 ± 0.732), 9.1% of FTD (Z 

= -1.445 ± 0.783), 10.8% of MCI (Z = -1.04 ± 0.914), and 5.3% of MDD patients (Z = 

-1.12 ± 0.832). 

 

At the network level (Figure 3, Panel A-B), disorder-specific patterns of perfusion 

deficits emerged. AD patients displayed significant perfusion decreases in the dorsal 

attention network (DAN, Z = -1.69 ± 0.771, 25.6% extreme negative deviation), 

frontoparietal network (FPN, Z = -1.74 ± 0.766, 24.7%), and default mode network 

(DMN, Z = -1.70 ± 0.793, 25%). FTD patients exhibited even greater deficits in: ventral 

attention network (VAN) (Z = -1.62 ± 0.844, 20.5%), FPN (Z = -1.83 ± 0.804, 25%), 

and DMN (Z = -1.85 ± 0.837, 34.1%). MCI patients demonstrated more heterogeneous 

deficits across multiple networks, with higher variability in network-specific Z-scores. 

In contrast, fewer than 10% of MDD patients showed extreme perfusion decreases 

across networks, suggesting relative stability in perfusion patterns within this group. 

Regional differences (Figure 3, Panel C-D) are detailed in Supplementary Tables 4. 

These findings highlight the heterogeneity in cerebral perfusion profiles across brain 

disorders, underscoring the utility of normative models in capturing individual 

deviations from typical perfusion patterns. These deviations provide insights into 
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disease-specific pathophysiology and hold potential for clinical applications, including 

subtype identification, classification, and prediction of clinical outcomes. 

 

Using individual deviation scores, we identified two MCI subtypes and explored their 

predictive value for disease progression using cognitive score and diagnostic 

information (Figure 3, Panel E): MCI-N (MCI normal cerebral perfusion) and MCI-A 

(MCI AD like cerebral perfusion). Baseline (within 90 days to first ASL scan) Mini-

mental state examination (MMSE) scores (Estimate = 0.766, t = 1.768, p = 0.078) and 

clinical dementia rating (CDR) scores (Estimate = -0.47625, t = 1.631, p = 0.103) did 

not differ significantly between the two clusters. However, individuals in the MCI-A 

group exhibited a steeper decline in MMSE scores (Estimate = -0.335, t = 4.156, p < 

0.001) and a steeper increase in CDR scores (Estimate = 0.175, t = -3.133, p = 0.0018) 

over time, indicating faster cognitive decline. Logistic regression further revealed that 

individuals in the MCI-N group had significantly lower odds of converting to AD 

compared to the MCI-A group (OR = 0.45, 95% CI = [0.22, 0.94], p = 0.031), 

highlighting the clinical relevance of identifying these subtypes. 

 

We assessed the classification performance of each disorder based on the area under the 

curve (AUC) derived from individual deviation scores after 1,000 permutation tests 

(Figure 3, Panel F). The classification model demonstrated high accuracy for FTD 

(mean AUC = 87.67, p < 0.001) and AD (mean AUC = 80.24, p < 0.001). For MCI, the 

classification performance was significant but lower in accuracy (mean AUC = 70.90, 

p = 0.001). In contrast, the model's performance for MDD was not significant (mean 

AUC = 54.88, p = 0.272), likely due to the imbalanced sample size between MDD and 

healthy controls. 

 

In addition to classification, we examined the predictive value of perfusion deviations 

for clinical outcomes (Figure 3, Panel G). Perfusion deviations significantly predicted 

CDR scores in AD (R² = 0.117, p = 0.022) and MCI (R² = 0.046, p = 0.004). However, 
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no significant association was found in FTD (R² = 0.003, p = 0.420). In MDD, perfusion 

deviations demonstrated a modest but significant association with Hamilton Depression 

Rating Scale (HDRS) scores (R² = 0.012, p = 0.045). 

 

 

Figure 3. Clinical Relevance of Perfusion Deviation Patterns in Brain Disorders. 

A) Violin plots illustrating deviation scores across global and network levels for AD, 
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FTD, MCI, and MDD. B) Proportion of extreme deviations (z < -2.3) at global and 

network levels across the four disorders. C) Regional deviation score maps depicting 

spatial patterns of perfusion deviations in AD, FTD, MCI, and MDD. D) Regional maps 

highlighting extreme negative deviations (Z < -2.3) across the four disorders. E) 

Identification of MCI subtypes (MCI-A and MCI-N) using Euclidean distances of 

regional deviation scores. Subtypes show distinct clinical trajectories for CDR, MMSE, 

and conversion rates to AD over time. F) Classification performance of brain disorders 

(AD, FTD, MCI, and MDD) compared to controls using receiver operating 

characteristic (ROC) curves based on deviation scores. G) Predictive value of perfusion 

deviation scores for clinical outcomes, including CDR in AD, CDR Box in FTD, CDR 

in MCI, and HDRS in MDD.  

 

Longitudinal Cerebral Perfusion in brain disorders 

We constructed new normative modeling of the longitudinal cerebral perfusion changes 

in neurodegenerative diseases, including AD, MCI, and CN (Figure 4). Changes in 

deviation scores over time provided valuable insights into the typicality or atypicality 

of aging-related perfusion patterns, revealing disorder-specific progression trajectories 

(Figure 4A-B). 

At baseline, the total extreme negative proportion (TNP) of cerebral perfusion 

deviations (Z < -2.3) was significantly higher in AD (Estimate = 4.234, t = 2.773, p = 

0.006) and MCI (Estimate = 2.053, t = 2.072, p = 0.039) compared to CN. Over time, 

TNP increased significantly in AD compared to CN (Estimate = 2.752, t = 2.260, p = 

0.009), indicating a faster progression of perfusion abnormalities in AD. However, the 

rate of TNP increase was not significantly different between MCI and CN. Regionally, 

MCI and AD exhibited distinct progression trajectories in perfusion deviation scores 

(Figure 4C, left and right), and detailed statistical differences between the groups are 

presented in Supporting Table S5. 

We further examined longitudinal changes in TNP between stable MCI and progressive 

MCI. While no significant difference in TNP was observed at baseline (p = 0.47), 
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progressive MCI exhibited a significantly faster increase in TNP over time compared 

to stable MCI (Estimate = 1.629, t = 3.643, p = 0.0003), highlighting distinct trajectories 

within the MCI group (Figure 4D, left). Progressive and stable MCI subgroups also 

demonstrated different regional patterns in deviation score trajectories over time 

(Figure 4D, right). Statistical differences between the groups at the regional level are 

presented in Supporting Table S6. 

Finally, we analyzed progression trajectories in MCI-A (AD like perfusion changes) 

and MCI-N (perfusion similar to NC) subtypes. Baseline TNP was significantly higher 

in MCI-A compared to MCI-N (Estimate = 6.41, t = 4.527, p < 0.001). However, the 

rate of TNP increase over time was not significantly different between the subtypes (p 

= 0.527). Both subtypes showed significant increases in TNP over time (MCI-A: β = 

0.611 [0.293, 0.929], p = 0.0002; MCI-N: β = 0.773 [-0.0125, 1.56], p = 0.05; Figure 

4E, left). Distinct regional progression patterns in deviation scores were also observed 

between the subtypes (Figure 4E, right). Regional progression statistics are detailed in 

Supporting Table S7. 
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Figure 4. Longitudinal perfusion progression in Brain Disorders. Panel A, 

longitudinal perfusion deviation score maps at the regional level in CN, MCI, and AD 
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groups at baseline and follow-up. Panel B, longitudinal extreme negative perfusion 

deviation maps (Z < -2.3) at the regional level in CN, MCI, and AD groups at baseline 

and follow-up. Panel C: Perfusion change rates in CN, MCI, and AD groups. The left 

panel shows changes in total extreme negative proportion (TNP) over two years, while 

the right panel illustrates regional variability in perfusion change rates. Panel D: 

Perfusion change rates in progressive vs. stable MCI. The left panel shows changes in 

TNP between the two subgroups, while the right panel displays regional differences in 

perfusion change rates. Panel E: Perfusion change rates in MCI-A vs. MCI-N subtypes. 

The left panel shows changes in TNP over time for the two subtypes, while the right 

panel illustrates regional variability in perfusion change rates. 

 

Sensitivity analyses 

The lifespan growth patterns of cerebral perfusion were validated at the global, network, 

and regional levels using multiple rigorous analysis strategies. Each validation 

approach demonstrated strong alignment with the main results, confirming the 

robustness of the findings: 

1. Data Quality Validation: Analyses were repeated with a stricter quality control 

threshold (QEI > 0.15) to assess the impact of data quality. 

2. Balanced Sampling: A balanced sampling strategy was employed to address 

potential biases from uneven sample and site distributions across ages. 

Participants and site numbers were matched uniformly by resampling 1,000 

times. 

3. Reproducibility Testing: A split-half approach was used to validate the 

reproducibility of the results by dividing the dataset into two equal halves and 

comparing the outcomes. 

4. Bootstrap Resampling: A bootstrap resampling analysis (1,000 iterations) was 

conducted to examine the influence of data sample variability. 

5. Site-Specific Effects: A leave-one-site-out (LOSO) analysis was performed to 

evaluate the potential impact of specific sites on the observed patterns. 
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The results of these validation strategies were quantitatively compared to the primary 

findings and demonstrated consistent growth patterns across all analyses. Detailed 

results are provided in Supplementary Tables 8–13. 

 

Discussion 

This study is the first to comprehensively characterize cerebral perfusion growth 

patterns across the lifespan (birth to 85 years) using large multisite datasets. By 

integrating structural MRI and ASL MRI data, we mapped nonlinear growth trajectories 

at global, network, and regional levels, revealing critical milestones of perfusion 

maturation and age-related decline. Our normative models establish typical cerebral 

perfusion ranges, enabling precise detection of individual deviations and offering 

insights into both healthy aging and disease-specific patterns. The longitudinal analysis 

captured dynamic perfusion changes over time, providing a framework for 

understanding disease progression and transitions between clinical stages. These 

findings underscore the value of cerebral perfusion-based normative models as essential 

tools for studying brain development, aging, and the pathophysiology of 

neurodegenerative and psychiatric disorders. 

 

At the global level, our study confirmed a rapid postnatal increase in cerebral perfusion, 

followed by a gradual decline with age, with peak age identified through precise 

confidence intervals derived from bootstrap and balanced resampling analyses. This 

early surge in cerebral perfusion is essential for meeting the heightened metabolic 

demands of the developing brain, supporting fundamental processes such as 

synaptogenesis, dendritic arborization, myelination, and glial proliferation (A et al., 

2021; Ouyang et al., 2024; Silbereis et al., 2016). During childhood, the brain accounts 

for up to 44% of the body’s total energy consumption (A et al., 2021; Blüml et al., 

2013) , far surpassing the adult metabolic demands. This elevated perfusion ensures the 

delivery of oxygen and nutrients necessary for dynamic plasticity underlying sensory, 

cognitive, and motor development (Hijman et al., 2024; Ouyang et al., 2024). At the 
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network level, the maturation of the DMN is facilitated by increased perfusion in DMN 

regions, reflecting the growing connectivity and functional specialization of this 

network (Yu et al., 2023). The structural development of the cerebral vasculature, 

including increased intracranial arterial diameters observed early in life, further 

supports these metabolic needs (Taylor et al., 2022). Disruptions in global and regional 

cerebral perfusion have been associated with neurodevelopmental delays and multiple 

infant disorders, highlighting the importance of balanced perfusion for typical brain 

development (Hijman et al., 2024; Mahdi et al., 2018; Nagaraj et al., 2015).  

Following the rapid increase in cerebral perfusion during infancy, perfusion peaks 

around the age of 7 years and gradually declines throughout the life. This trajectory 

aligns with previous findings indicating the peak GMV occurs in early childhood, 

closely aligning with peak cerebral perfusion (Bethlehem et al., 2022). Sustaining brain 

volume during this period is highly energy-dependent, as daily glucose utilization by 

the brain also reaches its highest levels around this age (Kuzawa et al., 2014). Notably, 

brain glucose demand is inversely related to body growth from infancy to puberty, 

indicating that the substantial metabolic costs of neurodevelopment may be partially at 

the cost of a slowing of somatic growth (Aronoff et al., 2022; Kuzawa et al., 2014; 

Vandekar et al., 2017). During adolescence, as GMV decreases and WMV expands, the 

associated reduction in cerebral perfusion reflects a transition toward greater neural 

efficiency (Satterthwaite et al., 2014). This shift is reflected by the increasing 

neurovascular coupling during childhood, indicating improved coordination between 

neural activity and vascular responses (Schmithorst et al., 2015). After the phase of 

synaptic overproduction, synaptic pruning selectively eliminates redundant synapses to 

achieve optimal network efficiency (Nikiruy et al., 2024; Tierney & Nelson, 2009). 

Notably, this process follows a regionally specific timeline, with auditory regions 

completing pruning by around 6 years of age, whereas higher-order cognitive areas, 

such as the frontal cortex, continue pruning into adolescence (Dow-Edwards et al., 2019; 

Tierney & Nelson, 2009). These spatially inhomogeneous development patterns are 

consistent with our findings of a later cerebral perfusion peak age in frontal regions, 
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reflecting the protracted development of higher-order cognitive and executive functions. 

 

Significant sex differences in cerebral perfusion have been consistently reported across 

multiple studies (Alisch et al., 2021; Liu et al., 2016; Satterthwaite et al., 2014; 

Vandekar et al., 2017) , highlighting the critical influence of biological, hormonal, 

structural, and cardiovascular factors on the brain’s vascular and metabolic processes. 

Anatomically, sex-based variations in brain size, gray matter volume, and cortical 

thickness contribute to distinct perfusion patterns (Bethlehem et al., 2022; Dukart et al., 

2018). Hormonal influences, particularly estrogen and progesterone, play a central role 

in modulating cerebral blood flow, with estrogen’s vasodilatory effects contributing to 

the higher perfusion levels typically observed in females (Cote et al., 2021; Krause et 

al., 2006; Liu et al., 2016). Cardiovascular factors further shape these differences, as 

sex-related variations in systemic blood pressure, heart rate, and vascular compliance 

influence cerebral perfusion regulation (Barnes & Charkoudian, 2021). 

 

Cerebral perfusion normative modeling provides a powerful tool for capturing 

individual differences, mapping disease-specific patterns, and characterizing variability 

in disorders such as AD, FTD, MCI, and MDD. While previous studies have extensively 

investigated group-level cerebral perfusion differences between these disorders and 

healthy controls (Alsop et al., 2000; Hu et al., 2010a; Liao et al., 2017; van Dinther et 

al., 2024; Wang et al., 2013; Wang et al., 2007; Wei et al., 2018; Ze Wang, 2017) , this 

study is the first to employ a normative modeling framework, offering several key 

advantages and novel insights. First, normative modelling enables individualized 

inference, revealing disease heterogeneity beyond group averages. By leveraging large 

multisite datasets, this method provides more precise estimates of individual deviations 

from the median. For instance, in FTD, although the mean deviation z-score was similar 

between the FPN and the DMN, the proportion of extreme negative deviations was 

significantly higher in the DMN (34%) compared to the FPN (25%), suggesting greater 

consistency of alterations in the FPN but higher heterogeneity in the DMN. Second, 
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age- and sex-normalized cerebral perfusion facilitates transdiagnostic comparisons and 

disease-specific analyses. Segal et al. Segal et al. (2023) previously demonstrated the 

utility of such approaches in identifying shared and distinct brain abnormalities across 

psychiatric disorders. In our study, we observed distinct patterns of cerebral perfusion 

alterations across neurodegenerative diseases and psychiatric conditions. 

Neurodegenerative diseases like AD, FTD, and MCI exhibited greater degrees of 

perfusion alterations, characterized by higher proportions of extreme deviations and 

lower mean z scores compared to MDD. These findings are consistent with evidence 

suggesting that neurodegenerative diseases are more prominently associated with 

neurovascular dysfunction (Solis et al., 2020). Third, the normative model enhances 

sensitivity to subtle perfusion changes, increasing statistical power and improving 

discrimination between disease-related and non-disease-related variability (Rutherford 

et al., 2022). This advantage is particularly relevant for early diagnosis, as demonstrated 

in our MCI analysis. We identified two subgroups: MCI-A, characterized by decreased 

cerebral perfusion similar to AD, and MCI-N, with perfusion patterns resembling those 

of normal controls. While baseline cognitive impairment did not differ significantly 

between the subgroups, their trajectories diverged substantially over time. MCI-A 

exhibited greater declines in cognition and cerebral perfusion and a higher likelihood 

of conversion to AD, highlighting the predictive value of cerebral perfusion deviations 

for disease progression (Duan et al., 2021; Solis et al., 2020; Wolters et al., 2017). 

Finally, we demonstrated the practical applications of deviation scores in disease 

classification and prediction. These findings underscore the importance of 

individualized cerebral perfusion assessments for understanding disease heterogeneity, 

predicting progression, and guiding early interventions. 

 

The longitudinal analysis of cerebral perfusion using normative modeling offers critical 

insights into the progression trajectories of neurodegenerative diseases, particularly in 

AD and MCI, compared to CN individuals. Over time, the significantly faster decline 

in cerebral perfusion and increase in TNP (total negative perfusion) in AD relative to 
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CN highlights the progressive nature of perfusion abnormalities in AD. This pattern 

reflects accelerated neurovascular and metabolic dysfunction, consistent with previous 

findings of increasing brain atrophy in AD using normative models (Verdi et al., 2024). 

Given that accelerated disease progression is a hallmark of AD (Leung et al., 2013), 

these findings underscore the value of normative modeling for early diagnosis and 

intervention. In contrast, MCI exhibited notable heterogeneity, with distinct trajectories 

observed in stable and progressive MCI subgroups. Progressive MCI showed a faster 

increase in TNP over time, while the absence of baseline differences between stable and 

progressive MCI suggests that longitudinal modeling can uncover subtle progression 

patterns that may not be detectable in cross-sectional analyses. Furthermore, the 

longitudinal trajectories of cerebral perfusion in stable and progressive MCI, as well as 

in the MCI-A and MCI-N subgroups, suggest bidirectional associations between 

cerebral perfusion decline and the likelihood of AD conversion. This aligns with 

previous studies linking increased brain atrophy to a heightened risk of AD conversion 

(Verdi et al., 2023; Verdi et al., 2024). Collectively, these findings demonstrate the 

utility of integrating cross-sectional and longitudinal normative modeling to capture 

disease progression dynamics, inter-individual heterogeneity, and regional-specific 

patterns in neurodegeneration.  

 

Several challenges and implications should be considered in the context of this study. 

First, the estimation of CBF can be influenced by various ASL sequence factors, such 

as the use of PASL versus PCASL, single versus multiple PLDs, the inclusion of a 

separate M0 image or one generated from control images, and the application of 

background suppression (Luis Hernandez-Garcia, 2022; Ze Wang, 2022). Although we 

accounted for sequence effects by including them as fixed factors in the normative 

modeling, this approach enhances generalizability but does not fully mitigate the 

inherent limitations of the primary study designs. Developing a more standardized and 

quantitative pipeline for cerebral perfusion assessment across multicenter studies is 

needed to ensure robust and comparable results. Second, similar to prior normative 
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modeling studies using structural MRI (Bethlehem et al., 2022), the current 

neuroimaging datasets disproportionately represent populations from Europe and North 

America. Future research should prioritize the inclusion of more diverse neuroimaging 

cohorts, ensuring balanced representation across ethnic groups and reducing geographic 

bias. Third, ASL data included in this study were acquired with a low resolution. Some 

were with limited brain coverage to include the full visual cortex and cerebellum. As 

more and more research sites are using the state-of-arts ASL MRI sequence developed 

by us (Chang et al., 2017; Vidorreta et al., 2014; Vidorreta et al., 2017; Vidorreta et al., 

2012) and others (Alsop et al., 2014), high-resolution ASL CBF maps may become 

more available, allowing us to explore finer-grained cerebral perfusion atlases. Fourth, 

the age distribution of participants in the datasets was uneven, with certain age ranges, 

such as 0–5 years and 30–40 years, being underrepresented. Including data from fetal 

and neonatal stages would provide a more complete understanding of cerebral perfusion 

across the lifespan (Wang, Fernandez-Seara, et al., 2008). Fifth, this study focused 

exclusively on CBF though ASL MRI can provide several other neurovascular 

measures in addition to CBF, including arterial transit time, blood-brain-barrier water 

exchange time or rate, and vascular health (Li et al., 2022; Li & Wang, 2023). These 

parameters, however, depend on long ASL MRI scans with different PLDs and TEs or 

pre-conditions such as diffusion-weighted vasculature water saturations, which were 

not-available in most of datasets included in this paper. When data will be available, 

expanding future models to incorporate these metrics could yield a more comprehensive 

understanding of brain physiology. Sixth, while we demonstrated the application of 

regional deviation scores in subgroup identification, classification, and prediction, the 

reliability and utility of these applications could be greatly enhanced with 

advancements in artificial intelligence algorithms and higher-quality cerebral perfusion 

data. These developments may ultimately facilitate the translation of these tools into 

clinical practice. Finally, the cerebral perfusion-based growth charts established in this 

study are intended to serve as a dynamic resource. As more high-quality datasets on 

brain metabolism become available, these lifespan normative growth models can be 
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refined and updated, further enhancing their utility for research and clinical applications. 

 

Conclusion 

This study establishes normative cerebral perfusion charts across the lifespan, 

providing a robust framework to quantify individual variability and detect deviations 

linked to neurodevelopmental and neurodegenerative processes. By integrating cross-

sectional and longitudinal analyses, these models offer insights into brain development, 

aging, and disease progression, enabling precise characterization of heterogeneity and 

prediction of clinical trajectories. These findings highlight the potential of perfusion-

based models as valuable tools for research and clinical applications. 

 

Method 

Datasets and Participants 

To delineate the normative growth of cerebral perfusion in the human brain, we 

aggregated multisite neuroimaging datasets, each containing both 3T structural MRI 

and resting-state ASL data. For participants with multiple test-retest scans or 

longitudinal data, only the session with the highest quality score was included. Written 

informed consent was obtained from participants or their legal guardians, and all 

recruitment procedures were approved by the local ethics committees overseeing each 

dataset. 

 

Image quality control process 

To ensure the reliability of imaging data, all T1-weighted structural MRI and ASL scans 

exhibiting severe artifacts or partial brain coverage were independently reviewed and 

excluded by X.Z. and Y.L. Additionally, data quality was further assessed using the 

cerebral blood flow quality evaluation index (QEI) (Dolui et al., 2024) , a metric 

ranging from 0 to 1, with higher values indicating better quality. The QEI captures three 

critical aspects of valid CBF maps: 1) Structural similarity: The degree of correlation 

between brain structure and CBF, as structure and function are typically aligned; 2) 
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Spatial variability: The variability of CBF values across voxels within each tissue type. 

High variability suggests data noise or insufficient post-labeling delay. All the 

participants with QEI less than 0.1 were excluded for further analysis and we used 

several thresholds for validation.  

 

Image preprocessing 

Structural data preprocessing 

Publicly available, containerized HCP structural preprocessing pipeline was used 

(Glasser et al., 2013). Briefly, this pipeline consists of two stages: (1) The PreFreeSurfer 

stage: This stage normalizes anatomical MRI data and includes preprocessing steps 

such as brain extraction, denoising, and bias field correction of T1-weighted images. (2) 

The FreeSurfer stage: This stage generates cortical surfaces from the normalized 

anatomical data. Key steps include anatomical segmentation, construction of pial, white, 

and mid-thickness surfaces, and surface registration to the standard atlas. The 

preprocessed T1 data was used for further ASL CBF estimating, registration and 

providing brain volume information. 

 

ASL data preprocessing 

ASLtbx (Li et al., 2018; Wang, 2012; Wang, Aguirre, et al., 2008) was used to process 

the ASL MRI data using standard processing pipelines. The ASL label and control 

images were motion-corrected, temporal confound filtered, and spatially smoothed. 

Quantitative CBF maps were calculated in physiological units (mL/100 g/min) using 

the general kinetic model:  

𝐶𝐵𝐹 =  
∆𝑀

2 ∗ 𝑀0 ∗ 𝜆 ∗  𝛼 ∗  𝛽 ∗  𝑒−𝜎/𝑇
                                                          (1) 

, where ∆𝑀 is the difference between control and label images, 𝑀0 is the equilibrium 

magnetization of arterial blood, 𝜆  is the brain-blood partition coefficient, 𝛼  is the 

labeling efficiency, 𝛽 is the bolus duration, 𝜎 is the post-labeling delay (PLD), and 

𝑇 is the longitudinal relaxation time of blood (1.65 s at 3T). M0 images were explicitly 

acquired in the 3D background suppressed ASL data, and the pulsed ASL (PASL) data. 
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For the 2D background unsuppressed pseudo continuous Arterial Spin Labeling 

(pCASL) data, the mean of the control images from the ASL time series was used as 

the M0 image. Partial volume correction was performed using tissue segmentation 

results based on the structural T1-weighted images. 

 

Functional-to-standard image registration was performed to align processed CBF maps 

to MNI152 space for region-specific analyses. First, the CBF map was linear registered 

to the subject’ s T1-weighted structural image. The T1-weighted image was then 

nonlinear aligned to the MNI152 standard space. The CBF image was subsequently 

transformed to standard space by combining the functional-to-structural affine matrix 

and the nonlinear warp. All registration outputs were visually inspected to ensure 

accuracy. Regional CBF values were measured using the Harvard-Oxford brain atlas, 

encompassing 48 cortical and 8 subcortical regions (Desikan et al., 2006). Additionally, 

network-level CBF values were explored using Yeo’s atlas, focusing on networks such 

as the DMN, FPN, affective network (AN), VAN, DAN, and somatosensory network 

(SSN) (Yeo et al., 2011). Due to potential sequence issues, the visual network was 

excluded from the analysis. 

 

Modeling normative growth curves across the lifespan 

To estimate normative growth patterns for cerebral perfusion metrics in healthy 

individuals across cohorts, we applied GAMLSS to the cross-sectional data using the 

gamlss package (version 5.0-6) in R 4.2.0 (Borghi et al., 2006; Stasinopoulos & Rigby, 

2008). The GAMLSS procedure consisted of two steps: identifying the optimal data 

distribution and determining the best-fitting model parameters for each global cerebral 

perfusion metric (Sun et al., 2024). Using these metric-specific GAMLSS models, we 

obtained nonlinear normative growth curves and their first derivatives. Furthermore, 

the sex-stratified growth patterns were assessed. Nonlinear normative growth curves 

and their first derivatives were generated, with sex-stratified growth patterns also 

examined. The robustness of these growth curves was validated using bootstrap 
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resampling, leave-one-study-out analysis, balanced resampling, and split-half 

replication (Bishop, 2006). 

 

(i). Model data distributions 

We assessed 28 continuous distribution families for their fit to the data using global 

cortical CBF as the reference metric. Model fits were evaluated using the Bayesian 

Information Criterion (BIC) (Neath & Cavanaugh, 2012), where lower BIC values 

indicate superior model performance. Among the evaluated distributions, the 

Generalized Beta 2 (GB2) distribution consistently provided the best fit across all 

models (see Supplementary Figure). 

 

(ii). The GAMLSS framework. 

The GAMLSS framework was applied with CBF values as the dependent variable, age 

as a smoothing term (using B-spline basis functions), and sex as a fixed effect. To 

account for variability introduced by ASL sequences, the ASL sequence type was also 

included as a fixed effect, while dataset site was treated as a random effect (Sun et al., 

2024). The GB2 distribution, which has four parameters: median (μ), coefficient of 

variation (σ), skewness (ν), and kurtosis (τ), was chosen to fit the data distribution. Each 

CBF values, denoted by y, was modeled as: 

𝛾 = 𝐺𝐵2 (𝜇, 𝜎, 𝜈, 𝜏)                                    (2) 

𝜇 = 𝑓𝜇 (𝑎𝑔𝑒) + 𝛽𝜇
1 (𝑠𝑒𝑥) + 𝛽𝜇

2 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) + 𝑍𝜇 (𝑠𝑖𝑡𝑒)                  (3) 

𝜎 = 𝑓𝜎  (𝑎𝑔𝑒) + 𝛽𝜎 (𝑠𝑒𝑥)                        (4) 

𝜈 = 𝛽𝜈                                       (5) 

𝜏 = 𝛽𝜏                                   (6) 

 

To explore the age-related trends in global and network-level CBF values, three 

GAMLSS models with different degrees of freedom (df = 5–9) were tested for the B-

spline basis functions in the μ(location) and σ (scale) parameters. The optimal model 

was selected based on the lowest BIC value. Across all analyses, a consistent df = 8 was 
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identified as optimal. Regional CBF models also used df = 8 to maintain consistency in 

identifying potential peak ages. Following prior studies, only intercept terms were 

included for the ν and τ parameters (Di Biase et al., 2023). For model estimation, we 

used a default convergence criterion of log-likelihood < 0.001 between iterations, with 

a maximum of 500 iteration cycles. 

 

(iii). Sex differences across the lifespan. 

To assess the influence of sex on CBF across the lifespan, we included sex as a fixed 

effect in the GAMLSS model. Adjusted mean (μ) and variance (σ) coefficients, along 

with their standard errors, T-values, and P-values, were computed for the sex variable 

(see Supplementary Tables 3 and 4 for global and network-level CBF, respectively). 

The T-value, calculated as the coefficient divided by its standard error, was used to test 

the null hypothesis that the sex has no significant effect on CBF. To ensure robust 

estimates of sex-specific effects on CBF growth trajectories, we adjusted for key 

covariates, including age, ASL sequence type, and scanner site as a random effect. 

 

Sensitivity analysis of normative models 

To validate the lifespan normative growth patterns at global, network, and regional 

levels, we conducted multiple sensitivity analyses. These analyses addressed critical 

methodological concerns, including data quality, sample size imbalance, site 

distributions variability, model replication, model stability, and the influence of specific 

sites. By systematically testing these factors, we ensured the robustness and 

generalizability of our normative models across diverse datasets and methodological 

conditions. 

 

(i). CBF data quality assurance using QEI > 0.15. 

To ensure the robustness of our findings against variations in ASL data quality, a stricter 

quality control threshold was applied, excluding participants with a QEI below 0.15. 

This stricter threshold was selected based on previous research emphasizing the critical 
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role of ASL data quality in brain imaging studies (Li & Wang, 2023). Normative model 

analyses were then re-run to verify consistency with the original results, ensuring the 

reliability of our findings. 

 

(ii). Balanced resampling analysis. 

To mitigate potential biases from uneven sample sizes and site distributions across age 

groups, a balanced sampling strategy was employed. The lifespan was segmented into 

17 five-year age bins spanning birth to 85 years, with the smallest group containing 64 

participants (ages 35–40). To achieve balanced representation across age groups, 

random sampling was used to equalize all age group to 64 participants. This procedure 

was repeated at ratios of 1×, 1.5×, and 2× the size of the smallest group size (64 here) 

to assess the robustness of the findings. 

For global and network CBF values, sampling was repeated 1,000 times on a pool of 

9,800 participants. Each iteration included a random subset of 1,300 participants, and 

GAMLSS models were refitted to generate 1,000 growth curves per metric. Confidence 

intervals were calculated for the growth curves, the peak of the 50th centile, and the 

correlations between the resampled median centile curves and the original cohort’s 

median centile curve.  

 

(iii). Split-half replication analysis. 

To evaluate model reproducibility and performance, we employed a split-half validation. 

The dataset was randomly divided into two equal halves, stratified by site. One half was 

used to train the GAMLSS model, and the other half was used to evaluate the model’s 

goodness of fit. This process was repeated with the roles of training and testing sets 

reversed. 

Model fit was assessed using R-squared (R2) for central tendency and quantile 

randomized residuals (randomized z-scores) for calibration. The Shapiro-Wilk test 

evaluated the normality of residuals, with W values close to 1 indicating good fit. 

Higher-order moments, including skewness (values near 0 indicate symmetry) and 
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kurtosis (values near 0 indicate light tails), provided further insights into model fit. This 

procedure was repeated 1,000 times, generating median and 95% CI values for R2, W, 

skewness, and kurtosis. 

 

(iv). Bootstrap resampling analysis. 

To assess the robustness of lifespan growth curves, we conducted 1,000 bootstrap 

repetitions with replacement sampling. The sampling preserved the age and sex 

proportionality of the original cohort by stratifying the lifespan into nine intervals. For 

each functional metric, 1,000 growth curves were generated, and 95% CIs were 

computed for the median (50th) centile curve and inflection points. The CIs were 

derived from the mean and standard deviation of the bootstrap growth curves and 

growth rates. 

 

(v). Leave-one-study-out (LOSO) analysis. 

To evaluate the influence of individual sites on the growth curves, LOSO analysis was 

performed. Samples from one site were excluded in each iteration, and the GAMLSS 

models were refitted. Growth curves and rates were then re-estimated, with mean and 

standard deviation values used to compute 95% CIs for both the growth curves and 

rates. The narrow CIs indicated that the models remained robust and consistent, even 

when data from individual sites were removed. 

 

Clinical relevance of CBF-based normative models in brain disorders 

To evaluate the clinical utility of lifespan perfusion models, this study analyzed quality-

controlled structural MRI and ASL data from individuals with four brain disorders: 

MDD, MCI, AD, and FTD. Data were drawn from the EMBARC (MDD), ALLFTD 

(FTD; 5 sites), ADNI (AD and MCI), and UMB (MCI) datasets, including 28 CNs and 

186 patients with MDD, 56 CNs and 44 patients with FTD, 213 CNs and 64 patients 

with AD, and 251 patients with MCI. 
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(i). Individual deviation z scores. 

The standard protocol for normative modeling emphasizes the importance of including 

control samples from the same imaging sites as the patient data in the testing set to 

account for site effects. To ensure robust modeling, a stratified approach was adopted, 

incorporating site-specific CNs in the testing set. This approach enabled the 

identification and mitigation of site effects, minimizing confounding in case-control 

comparisons. All CNs from disease-specific datasets were randomly split into training 

and testing subsets, stratified by sex and site. Lifespan normative models of cerebral 

perfusion were constructed using the training set, which included half of the CNs and 

data from other large datasets. 

The testing set, comprising the remaining CNs and all patient cases, served as an 

independent validation set for calculating deviation scores. Quantile scores relative to 

the normative model curves were calculated for each individual, followed by the 

computation of deviation z-scores. These z-scores were derived by transforming the 

fitted generalized beta distribution (GB2) quantiles into standard Gaussian z-scores 

using quantile randomized residuals. Extreme negative deviations were defined as z < 

-2.3, consistent with prior studies. Percentage maps of extreme deviations revealed 

substantial heterogeneity in deviation patterns among individuals within each disease 

group. 

To ensure reliability, this process was repeated 100 times, generating 100 independent 

models and corresponding sets of deviation scores for both patients and testing CNs. 

The normality of the z-score distributions was evaluated using two-tailed Kolmogorov-

Smirnov tests, which consistently yielded p<0.05 across all models and iterations. 

Subsequent analyses were based on these independently derived deviation scores for 

testing HCs and patient cohorts. The stability of individual deviation estimates was 

assessed by calculating pairwise Pearson correlation coefficients and mean squared 

errors (MSE) across the 100 independent models. Results demonstrated highly stable 

deviation scores within specific disease cohorts, with mean correlations exceeding 0.95 

and mean MSE values below 0.2 for all metrics. Case-control comparisons and disease 
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classification analyses were repeated across the 100 models to confirm robustness. 

 

(ii). Identification of MCI Subtypes Using individual perfusion deviations. 

Given the substantial individual heterogeneity in cerebral perfusion patterns and the 

limited number of patients, we employed a data-driven k-means clustering algorithm to 

identify subtypes of MCI. Deviation features for each patient included both regional 

and network-level CBF metrics. The Euclidean distance was used to calculate the 

similarity matrix across patients. The optimal number of clusters was determined to be 

between 2 and 8. To identify the final cluster count, we utilized the NbClust package, 

which computes 30 different clustering indices. The most frequently identified optimal 

cluster number was selected as the final solution. The clustering analysis revealed two 

distinct MCI subtypes. One subtype exhibited deviation patterns closer to those of AD, 

which we labeled MCI-A, while the other showed deviations more similar to CNs, 

labeled MCI-N. We then explored disease progression trajectories within these subtypes. 

A logistic regression analysis was conducted to assess the association between baseline 

subtype and the risk of conversion from MCI to AD during the follow-up period. The 

outcome variable was binary, indicating whether participants converted to AD 

(Converted = 1) or remained MCI (Converted = 0). Age and gender were included as 

covariates to account for potential confounding factors. The logistic regression model 

was fitted using a generalized linear model (GLM) with a binomial distribution (logit 

link function). The odds ratio (OR) and corresponding 95% CIs were calculated to 

quantify the effect of each predictor on conversion risk. Statistical significance was set 

at p < 0.05. To further evaluate the longitudinal cognitive changes in the identified 

subtypes, we applied a linear mixed model (LMM) to examine the interaction between 

MCI subtype and time on the MMSE scores and CDR scores. Age and gender were 

included as covariates in the model. The fixed effects included MCI subtype, time 

(defined as year), and their interaction to capture group differences in longitudinal 

changes. Time points were defined as whole-year intervals, with measurements within 

±3 months assigned to the closest year (e.g., 11 months as Year 1, 26 months as Year 
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2). Different participants were as a random effect to account for repeated measures over 

time. 

 

(iii). Disease classification and prediction based on connectome-based deviations. 

We applied support vector machine (SVM; www.csie.ntu.edu.tw/~cjlin/libsvm/) 

analysis to evaluate the discriminative power of perfusion-based deviations in 

distinguishing patients from healthy controls (HCs). Model was repeated 1000 times 

using a 2-fold cross-validation framework, with training and testing sets alternated in 

each fold. Classification performance was assessed by plotting receiver operating 

characteristic (ROC) curves and calculating the area AUC. The statistical significance 

of AUC values was determined using a nonparametric permutation test (1,000 

iterations), in which labels were randomly shuffled prior to implementing SVM and 

cross-validation. This procedure generated a null distribution of AUC values, and 

corresponding p-values were computed. Mean ROC curves and mean AUC values were 

derived by averaging results across the 1000 repetitions. 

We employed support vector regression (SVR) with a linear kernel to predict clinical 

scores based on connectome-based deviations. A 2-fold cross-validation framework 

was used to estimate prediction accuracy. Each fold alternated as the training and test 

set. Similar to SVM, features were normalized in the training set, with the same 

parameters applied to the testing set. Predictive performance was evaluated using 

Pearson’ s correlation coefficients between predicted and observed clinical scores. 

Statistical significance was assessed via a nonparametric permutation test (1,000 

iterations), with target scores shuffled before implementing SVR and cross-validation. 

This process yielded a null distribution of correlation coefficients, and p-values were 

computed. All analyses were conducted using the libsvm software. 

 

Longitudinal cerebral perfusion changes in brain disorders 

To investigate longitudinal changes in cerebral perfusion in brain disorders, this study 

utilized quality-controlled structural MRI and ASL data (visual inspection and QEI 
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values) from individuals with at least one year of longitudinal neuroimaging follow-up. 

Prevent AD and Dalas lifespan were set as reference health control dataset, which 

includes 506 participants with 1430 scans, the ADNI were set as disease dataset, 

included 649 health controls with 213 scans, 256 MCI with 911 scans, 64 AD with 189 

scans.  

 

(i). Deviation z scores at each scan. 

Deviation z-scores for each scan were calculated using a procedure similar to the 

previously described normative model. The reference healthy control dataset, combined 

with a randomly sampled 50% of healthy controls from the disease dataset, served as 

the training dataset. The remaining 50% of healthy controls and all patients were 

included in the testing dataset. This process was repeated 100 times, and the final 

deviation z-scores for each scan were averaged across the 100 iterations. The TNP was 

defined as the proportion of extreme negative deviations (z < −2.3) across all brain 

regions (58 cortical and 8 subcortical regions) (Verdi et al., 2024). 

 

(ii). Cerebral perfusion progression model 

The timepoint of each scan was recoded as the number of months after the first scan 

and categorized into yearly intervals (±3 months). LMMs were employed to examine 

the effect of timepoint on cerebral perfusion metrics. Dependent variables included 

TNP and z-scores for global, network, and regional perfusion, with timepoint as the 

independent variable. Group differences were assessed by modeling the interaction 

between group and timepoint effects. Age and gender were included as covariates, and 

individual participants were treated as random effects to account for repeated measures 

over time. 

For MCI participants, progression models were analyzed based on diagnostic stability. 

Stable MCI was defined as participants who remained in the MCI diagnostic category 

throughout follow-up, while progressive MCI was defined as participants who 

converted to AD during the study period. Additionally, progression models were 
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examined for the MCI-A and MCI-N subtypes to identify differences in longitudinal 

perfusion trajectories. 
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