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Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an
epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and
comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability
towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-
tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment
regimens for CHIKVare mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and
neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing
antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we
describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic
applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions
as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson
learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based
therapeutic measures.
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Introduction

Chikungunya disease has emerged as an epidemic threat over
the past 2 decades, causing serious global health problem. The
disease has significant socioeconomic impact, severely affect-
ing the health care system due to difficulty in diagnosis, lack
of proper treatment protocol and delay in the treatment pro-
cesses. CHIKV infection is reported all around the world, and,
in the USA, it has been listed as Priority Pathogen (as a
Category B) by National Institute of Allergy and Infectious
Diseases (NIAID) (https://www.niaid.nih.gov/research/
emerging-infectious-diseases-pathogens). Category B
pathogens are the second highest priority biological agents,
which moderately disseminate with low mortality rate

(Bhooshan et al. 2015; Dinkar et al. 2018). The economic
burden of disease varies between different epidemics and also
depends on physical status and financial access to health
care facility. The 2006 epidemic report of India suggests
that over 72% of patients were suffered from arthralgia
(Vijayakumar et al. 2011; Weaver et al. 2012). However,
the disability-adjusted life years (DALYs) lost was esti-
mated to be 25,588, with an overall burden of 45.26
DALYs per million arthralgia (Krishnamoorthy et al.
2009; Weaver et al. 2012).

Chikungunya is a viral disease transmitted to humans by
infected Aedes species mosquitoes and is characterized by
fever, rashes and severe joint pain. Other symptoms include
muscle pain, myalgia, headache, nausea, fatigue and rash
(Simon et al. 2015). The name ‘Chikungunya’ is derived from
Kimakonde language of Mozambique which means ‘to walk
bent over’. The disease caused by CHIKV is an arbovirus
(arthropod borne virus) and belongs to genus alphavirus of
Togaviridae family. It was first reported in 1952 in Tanzania
outbreak and was isolated in 1953 from patient serum and
mosquitoes (Robinson 1955; Suhrbier et al. 2012).
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The alphaviruses genus comprise of 31 viruses, which are
commonly referred to as ‘NewWorld’ and ‘Old World’ virus-
es. ‘New World’ viruses are primarily associated with poten-
tially fatal encephalitic disease, while the ‘Old World’ viruses
are responsible for acute febrile illnesses followed by severe
polyarthralgia (Runowska et al. 2018). Out of 31 alphavirus, 7
are associated with human joint disorder like symptoms,
namely, CHIKV, Ross River (RRV), Barmah Forest (BFV)
(Australia and the Pacific), Semliki Forest (SFV), O’Nyong-
Nyong (ONNV) (Central Africa), Sindbis (cosmopolitan) and
Mayaro (MAYV) (South America and French Guyana) virus-
es and are categorized as old world virus (Petitdemange et al.
2015; Suhrbier et al. 2012). Recent epidemic and re-
emergence of the CHIK viral disease in non-endemic areas
of global territories have brought waves of higher incidences
of morbidity and fatality (Freitas et al. 2018; Mavalankar et al.
2008). The precise causative factors associated with CHIKV
emergence/re-emergence are still not clearly defined, but it has
been hypothesized that, in addition to ecologic and viral fac-
tors, the immune status of the affected populations in a partic-
ular geographical location also plays an important role in
higher intensity and periodicity of recurrence (Petitdemange
et al. 2015).

Currently, there are no approved vaccines or antiviral drugs
available for the prevention or treatment of CHIKV. Due to
lack of licensed vaccines, therapies or effective antivirals
against CHIKV, the treatment regimens are mostly symptom-
atic and are based on the clinical manifestations (Fig. 1). The
most common approach used in the preventive measures in-
cludes strategies to prevent spread of mosquitoes by using
insect repellents, the elimination of standingwater where mos-
quitoes could lay eggs, the minimization of skin surface ex-
posed to mosquito bites and the installation of window and
door screens.

Although, antibody therapy has been shown as a promising
approach in the prevention or treatment of CHIKV disease in
preclinical animal models. The major challenges for
implementing such therapies in human treatment are still in
progress (Burt et al. 2017). Antibody-based therapeutics is of
particular interest in the context of emerging disease outbreaks
(Marston et al. 2018). In disease outbreaks, the process of
vaccine development for new pathogens or re-emerged strains
may be difficult and a prolonged process. In this review, we
described the substantial advancement made in isolation of
CHIKVmonoclonal antibodies (mAbs) and potential implica-
tion as a therapeutic or prophylactic agent, in vitro and in vivo
experiments of mAbs in various models and role of antibodies
in modulating CHIKV infection. We highlighted the role of
the natural humoral system in controlling chikungunya infec-
tion and the lesson learned from the natural infection that
helps in a better understanding of future expectancy for the
development of antibody-based therapeutic measures.We also
discussed the importance and challenges associated with

vaccine development and antibody-based therapeutics for
chikungunya.

Chikungunya pathogenesis (symptoms
and life cycle)

CHIKV infection is generally self-limiting and acute symp-
toms resolve within 1 to 2 weeks. About 80–85% of infected
individuals develop symptoms out of which 90–95% of in-
fected individuals develop acute debilitating polyarthralgia
(Sa et al. 2017) with rare reports of fatality (1 in 1000)
(Josseran et al. 2006). However, the recent re-emergence and
its co-infection with other related viruses have shown atypical
mortality rate up to 10% over the past few years
(Economopoulou et al. 2009). The presence of other comor-
bidities influences the mortality rate of CHIKV infection
(Chow et al. 2011; Economopoulou et al. 2009). The major
challenge is to differentiate clinical signs of alphaviruses like
dengue, CHIKVand ZIKA, especially when these viruses are
in co-circulation. Both dengue and CHIKVare transmitted by
the same Aedes vector, and thus both infections belong to the
same ecological niche and are epidemiologically and spatially
related. In dengue-endemic area, CHIKV is mainly
misdiagnosed or under-diagnosed as acute CHIKV infection
is usually associated with dengue-like symptoms, except
CHIKV infection is associated with intense arthralgia. The
clinical manifestations like polyarthralgia, myalgia/arthralgia
of greater severity are strong predictive symptoms for
chikungunya; such long-lasting symptoms are typically not
observed in dengue fever (Chow et al. 2011; Fric et al. 2013).

The elderly patients, pregnant women, neonates and indi-
viduals with other health problems like hypertension, respira-
tory conditions and diabetes mellitus are at higher risk for
severe CHIKV disease (Tharmarajah et al. 2017). The most
common manifestations that occur in these cases are due to
neurological and non-neurological manifestations like abnor-
mal cellularity with elevated protein levels in the CSF (Burt
et al. 2017; Marston et al. 2018; Tharmarajah et al. 2017). The
children born from women infected with CHIKV during the
first two trimesters of pregnancy have more than 50% chances
of developing abnormalities including preterm birth, cardiac
defects and hyperpigmentation (Barr and Vaidhyanathan
2019; Senanayake et al. 2009). The higher frequency of pa-
tients having neurological manifestations is more reported re-
cently in the elderly in CHIKV-infected cases with other co-
morbidities. These data suggest that the virus can manipulate
and evade the immune system to reach the brain and its sur-
rounding structures resulting in ineffective immune responses,
which subsequently fail to control viral spread and high vire-
mia. Women are also found to be more vulnerable and can be
grouped under increased risk group for CHIKV infection
(Runowska et al. 2018; Senanayake et al. 2009).
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CHIKV infection is mainly divided into three phases: acute
(the first 3 weeks from the onset of clinical symptoms), post-
acute (from 21st day to the end of 3rd month) and chronic
stage (after 3 months from onset of clinical symptoms). The
incubation period for CHIKV is between 2 and 4 days.
CHIKV infection triggers a rapid innate immune response
by strong activation of type 1 interferon (IFN) and pro-
inflammatory cytokines (Tang 2012). The CHIKV infection
is characterized by a high viral load ranging from 105 up to
1012 viruses per milliliter of blood (Hoarau et al. 2010)
(Fig. 2). High viral load is more likely to be detected in
new-born (Tanabe et al. 2018) and elderly patients that con-
tribute to disease severity in these age groups. Approximately
two-thirds of infected individuals (30 to 60%) with CHIKV
develop persistent arthritis that lasts for months to years after
the initial onset of infection. The severity of disease also de-
pends on viral and host factors. It is reported that some of the
lineage viruses replicate to a higher level as compared with
other lineage viruses, and these differences can be correlated
in terms of acute-phase disease severity as well as associated
prolonged symptoms (Jin et al. 2015; Kam et al. 2012c; Pal

et al. 2013). Unlike other mosquito-borne viruses such as den-
gue (DENV) and West Nile virus (WNV), the majority of
individuals exposed to CHIKV become symptomatic (Kam
et al. 2012c). Debilitating polyarthralgia is reported in major-
ity of symptomatic patients; however, children tend to display
milder arthralgia (Gardner et al. 2010; Kam et al. 2012c).
Encephalitis appears to be the most common clinical manifes-
tation in neurological complications in CHIKV infection. It
develops within a few days of onset of systemic symptoms,
during the period of viremia (Chandak et al. 2009; Kashyap
et al. 2010). Recent reports have suggested that persons hav-
ing a previous history of dengue virus infection or arbovirus
havemore chances of having atypical severe CHIKVinfection
with dermatological diseases. However, the mechanism that
contributes to persistent arthritis is unclear and is not well
understood. A recent study showed that the virus uses the
molecular mimicry mechanism to escape and evade host im-
mune responses (Lin et al. 2011; Reddy et al. 2017). Two
peptides from CHIKVenvelope glycoprotein are showing ho-
mology and similarity with the host proteins. This molecular
mimicry between CHIKV E1 glycoprotein and host human

Aedes species

Chikungunya viral infection

Symptoms of chikungunya

Possible Chikungunya viral infection interventions

Rash Back Pain Joint Pain Fever

NauseaVomitingChillsHeadache

Antiviral drugs Vaccines Antibodies

Fig. 1 Infographic showing
different symptoms of CHIKV
infection and methods of
prevention: a, b Common
CHIKVinfection symptoms icons
include fever, headache,
depression, tiredness, nausea,
acute or chronic joint pains and
rash. c Interventions like vaccine,
antiviral drugs or monoclonal
antibody therapy could be
beneficial for prevention and
treatment of CHIV infection
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components might be responsible for debilitating
polyarthralgia in CHIKV infected patients (Reddy et al.
2017). In some reports, CHIK viral RNA/antigen has been
detected in joint-associated tissue and lymphoid tissue even
after several months of acute infection (Cardona-Correa et al.
2017; Kam et al. 2012c). Moreover, there are no reports till
date that suggests the presence of actively replicating virus
during the chronic phase. It is assumed that viruses may ‘hi-
jack’ and replicate in synovial macrophages, as CHIKV viral-
RNA (vRNA) may drive an aberrant inflammatory response
resulting in chronic infection in human tissues (Hoarau et al.
2010). It has been shown that, in acute phase, CHIKVinfects a
wide range of host cells such as fibroblasts, synoviocytes,
macrophages, skeletal muscle fibers, satellite cells, osteo-
blasts, endothelial cells, keratinocytes and neuronal cells
(Cardona-Correa et al. 2017; Miner et al. 2017). However,
cells that harbor the CHIKV RNA during the chronic phase
are unknown, possibly due to the low sensitivity of detection
techniques. To identify the cells that might contribute to path-
ogenesis during this chronic phase, Young et al. (2019) devel-
oped a novel recombinant CHIKV system that expresses Cre
recombinase (CHIKV-3´-Cre). This model system can be a
useful tool for understanding CHIKV pathogenesis in the
acute and chronic disease stages and will help in the future
development of intervention strategies (Freitas et al. 2018).

CHIK virus and infectious cycle

CHIKV is a small enveloped virus (70 nm virions) with a
positive-strand RNA genome of 12 kb long in size and con-
sists of two open reading frames (ORF). ORF one encodes for
non-structural proteins that are responsible for replication of

the virus in the host cell cytoplasm, and second ORF encodes
the structural proteins: capsid and envelope. The virus particle
is formed of approximately 240 copies of capsid protein, em-
bedded in approximately 80 spikes of envelope trimers of E1
and E2 glycoprotein heterodimers. The virus is believed to be
originated from Africa and then spread to Asian countries
(Burt et al. 2017). In 2004, CHIKV re-emerged and spreads
its tertiary towards non-tropical countries. In 2005 and 2006,
CHIKVoutbreak was reported in India and La Re′union, caus-
ing a severe health concerns. About one third (34%) of the
population in Reunion Island (Charrel et al. 2007) and over
1.3 million people in India were infected with virus
(Krishnamoorthy et al. 2009). In 2007, the virus first time
emerged in Italy (Rezza 2018). A genetic variation in the virus
envelope protein has resulted in the virus adaptability towards
new vector Aedes albopictus (than Aedes aegypti), which has
widened the horizon of distribution towards non-tropical and
previous non-endemic areas to temperate regions (Burt et al.
2017). This adaptability to the new vector has increased the
infectivity of virus, causing efficient replication and dissemi-
nation to the vertebrate host by Aedes albopictus (Tsetsarkin
et al. 2007).

CHIKV virus is transmitted both horizontally and vertical-
ly; horizontal transmission occurs during mosquito bites to a
viremic patient (or previously infected patients with viral
load). The viruses are transmitted through a blood meal, rep-
licates in mosquito midgut and migrate to the salivary glands
from where virus disseminates to next host during bite/blood
meal. The mechanism of vertical transmission ensures
CHIKV adaptability to survive under adverse condition
(Wong et al. 2016). Virus replicates in the ovaries of the carrier
mosquitoes and the virus harboring eggs ensure the potential
viral survival by protecting the virus from adverse
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Fig. 2 Following transmission
through mosquito’s bites, virus
replicates in the skin and
fibroblasts cells, enters the
bloodstream and disseminates to
other tissue organs like liver,
muscle, joints and lymphoid
tissues. After an incubation period
of 2 to 7 days, an abrupt onset of
symptoms including high fever,
muscle pain, skin rash, weakness
and headache. Symptoms remain
for about 4–8 days as a self-
limiting disease. Neutralizing
IgM responses appear as early as
days 2–4 of onset of symptoms.
As soon as the level of IgM anti-
bodies increases from day 4 to 10,
the viral load decreases. After a
point (after day 10), IgM acts in a
complementary manner with the
early IgG antibodies
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environmental conditions hence survival of the virus (Hardy
et al. 1983; Matusali et al. 2019; Rosen et al. 1983). Besides,
the virus can also transmit directly from one individual to
another through needle stick injury, organ graft, blood dona-
tions and from infected mother to the neonates (Couderc et al.
2012; Parola et al. 2006; Rosso et al. 2018). In a recent study,
CHIKV has also been detected in the breast milk of CHIKV
infected mother; however, there is no report on the transmis-
sion of the virus from mother to the breast feeding baby.
(Campos et al. 2017).

CHIKV infections could be endemic or epidemic or
both. CHIKV is transmitted to the human population by
mosquito bite, which maintained in a zoonotic cycle and
involves both sylvatic and urban cycles. In the sylvatic
transmission cycle, the virus is maintained between non-
human primates, bats, rodents and other vertebrates;
these animals develop viremia but no physical manifes-
tations or symptoms (Erasmus et al. 2016; Petitdemange
et al. 2015). Outbreaks in rural areas are mostly due to
sylvatic cycle where mosquitoes are capable of infecting
both primates and humans. However, primates act as the
main virus reservoirs for sylvatic cycle. In Africa,
CHIKV is primarily maintained in a sylvatic cycle
(Powers and Logue 2007). Most of the endemic infec-
tions take place in rural areas in the form of small
outbreaks or isolated population. In Asia, CHIKV typi-
cally circulates through urban cycle by peri-domestic
A. aegypti and A. albopictus mosquitoes and the human
hosts without the need for animal reservoirs. In urban
cycle, the transmitted virus directly circulates in the hu-
man host through the human-mosquito-human transmis-
sion cycle because of the sufficiently high levels of
viremia developed in the infected individuals (Go
et al. 2014; Tan et al. 2011). The urban cycle can also
start with the spillover of enzootic/sylvatic CHIKV via
vectors (Diallo et al. 2012) (Fig. 3).

Lesson learned from natural infection

In this section, we have discussed how studies in past on
chikungunya outbreaks could help in better understanding of
the disease and host immune response thus enabling us for the
development of antibodies with therapeutic potential.

Immunoglobulin’s in CHIKV infection: a lesson
learned

Role of IgG

Studies have shown that protection from CHIKV infection is
mainly because of neutralizing antibodies. Studies conducted
on human samples from CHIKV infected or recovered indi-
viduals had clearly shown that neutralizing IgG persists in
these subjects for several months to years exhibiting lifelong
immunity.

Initial neutralizing IgG immune response in these subjects
are mostly targeted against linear epitopes, although in vivo
animal immunization studies with linear epitope has shown
mild neutralizing activity and partial protection (Kam et al.
2012b). The immunization studies with inactivated or attenu-
ated whole virion CHIKV induce strong neutralizing IgG re-
sponse and an effective in vivo protection (Goh et al. 2013;
Plante et al. 2011). This suggests that strong nAb response is
dependent on better representation of native trimeric enve-
lopes as compared to the linear one (Jin and Simmons
2019). Studies conducted on patient samples have clearly
demonstrated that CHIKV infection induces a robust
humoral/B cell immune response. Most of the infected pa-
tients developing early neutralizing antibodies had less severe
chronic symptoms. This neutralizing activity of anti-CHIKV
IgG might be responsible for lifelong protection. Persistence
and a high level of neutralizing antibodies have been detected
even after 20 years of primary CHIKV infection. The presence
of these high titers of neutralizing antibodies could be due to
multiple exposures to the same or different lineage viruses that
act as a booster in the natural course over years (Nitatpattana
et al. 2014).

Among the different classes of IgGs response developed
during CHIKV infection, IgG3 subtype is predominant. In
CHIKV infection patients with high viral load rapidly develop
high levels of anti-CHIKV IgG3 antibodies. These patients
develop more severe acute symptoms, the virus is cleared
faster and patients develop less persistent arthralgia.
However, an inverse correlation was found in patients who
develop late IgG3 with low viremia because, at this disease
stage, virus is no longer detectable in the blood (Kam et al.
2012a), such patients have found to develop persistent arthral-
gia in later stages. In joint biopsies of patients with chronic
arthralgia, virus has been detected in macrophages, while it is
plausible that these viruses are in non-replicative stage

Urban cycle Sylva�c cycle/ 
Rural Cycle

Fig. 3 Infographic showing transmission cycles of chikungunya virus
(CHIKV). The virus is maintained in two cycles: sylvatic cycle that
primarily occurs in Africa and virus is maintained between non-human
primates, bats, rodents and other vertebrates. In urban cycle that primarily
occurs in Asia where transmitted virus directly circulates in human host
through human-mosquito-human transmission cycle
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(Hawman et al. 2013; Hoarau et al. 2010; Labadie et al. 2010).
The high level of anti-CHIKV IgG3 response has also been
shown to be associated with a higher level of cytokine pro-
duction, which increases along with IgG3, apparently known
as major B cell growth factor and inducer of IgG3 (Hirano
et al. 1985; Kam et al. 2012c; Kawano et al. 1994). Induction
of neutralizing antibodies in the early stage of acute infection
is crucial to prevent persistent complications of chronic viral
infections; therefore, the absence of early CHIKV-specific
IgG3 antibodies might serve as a specific marker for patients
with increased risk of disease (Kam et al. 2012b). As IgG3 is
the dominant class of neutralizing antibodies in the early stage
of CHIKV infection, it can readily transfer through the placen-
ta in case of pregnant women and could protect newborns
from CHIKV infection (Palmeira et al. 2012). Studies show
that passive transfer of neutralizing antibodies to healthy preg-
nant women could also protect the newborn from subsequent
infections (Englund 2007). It has been proven in several stud-
ies that these neutralizing IgGs or mAbs show the protective
effect when given as pre-exposure prophylaxis in immune
compromised animal models against lethal CHIKV challenge
(animal model used in CHIKV studies are explained in detail
in next session of this review). Post-exposure therapy of these
IgGs or mAbs also reduces the severity of disease by limiting
the viral spread to muscle and joint tissues.

Role of IgM

In the human immune system, 30% of circulating antibodies
are IgM. The high percentage of these naturally circulating
antibodies plays an important role in early recognition and
elimination of external pathogens like bacteria and viruses
before the development of robust and specific IgG secondary
immune response (Vollmers and Brandlein 2005).

In CHIKV infections, early neutralization responses are
due to IgM antibodies, which are followed by robust IgG
response. Early IgM response in viral infection is important
to confer protection, particularly in early stages of infection by
enhancing antigen entrapment to the secondary lymphoid or-
gans and bridging the innate and adaptive immunity before the
IgG response. Viruses that infect mucosal surfaces encounter
secretory IgA antibody responses first present at the apical
surfaces of epithelial cells (Blutt and Conner 2013).
However viruses that spread in the blood will be exposed to
IgM first followed by IgG antibodies.

Neutralizing IgM responses first appear as early as days 2–
4 of onset of symptoms, and their appearance from day 6 is
associated with a reduction in viral load (Petitdemange et al.
2015). IgM has the dominant neutralizing role up to 8–10 days
from the onset of clinical symptoms, followed by variable but
strong contributions by neutralizing IgG. In some cases, it has
been reported that IgM even persists from several weeks to a
year after resolution as shown in Fig. 2. The persistence of

IgM antibodies for months after the initial infection has been
reported in other alphavirus infections also, and this is be-
lieved to be due to viral persistence, though the exact mecha-
nism is not well characterized. However, one possible mech-
anism for persistence of long-lasting IgM response could be
due to viral evade Tcell–dependent IgG and IgA responses by
attenuating CD40L gene expression. Such an evasion mecha-
nism has been postulated previously with various other viral
infections (Lin et al. 2005; Malvy et al. 2009; Qiao et al. 2006;
Sitati et al. 2007). The presence of anti-CHIKV IgM antibod-
ies has also been detected in the cerebrospinal fluid of human
neonates and patients with encephalopathy (Couderc et al.
2009; Dunman and Nesin 2003). Patients with chronic
CHIKV-induced arthralgia have often been correlated with
persistent virus-specific IgM antibodies, which could be due
to continued exposure to CHIKVantigen and RNA (Couderc
and Lecuit 2015; Hoarau et al. 2010; Levade et al. 1991;
Malvy et al. 2009). The long term survival and persistence
of CHIKV have also been reported in non-human primate
by evading immune defense mechanisms (Labadie et al.
2010).

As soon as the level of IgM antibodies increases from day 4
to 10 the viral load decreases. After a point (after day 10), IgM
acts in a complementary manner with the early IgG antibod-
ies. The IgM antibodies preferentially bind to epitopes on the
native E1-E2 fusion glycoprotein of the CHIK viral surface
(Tanabe et al. 2018). A neutralizing monoclonal IgM antibody
isolated from mice has shown to target N218 of domain B of
E2 protein with increased breadth and potency. This mAb has
shown to block the virus attachment in the permissive host
cells (Lam et al. 2015).

The amount and timing of the appearance of neutralizing
antibodies (both IgM & IgG) have a major significant impact
on CHIKV clinical outcomes. This neutralizing IgM response
varies within individuals. Surveillance studies have shown the
persistence of IgM antibodies in serum of CHIKV infected
patients for 11–18 months post-infection. The percentage of
IgM positive patients in different surveillance studies varies
from 11 to 55% of sample populations (Chua et al. 2017;
Pierro et al. 2015).

The pentameric nature of IgM antibodies makes them effi-
ciently mediate virus aggregation, recognition and destruction
by cytotoxic T cells. The short half life span of IgM antibodies
can render their neutralizing effectiveness, but the indirect
function of IgM antibodies makes them attractive agents to
inhibit viral budding and clearance of infected cells by acti-
vating the complement- mediated pathways (Landry 2016).

Present and future of therapeutic options

Humoral immunity holds the center stage for protection
against CHIKV infection. Several vaccine candidates for
CHIKV are under development including attenuated or
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inactivated, chimeric, subunit and genetic vaccines (Powers
2018), which are focus of eliciting long-term humoral re-
sponses. The clinical studies conducted on these different vac-
cine candidates highlights the importance of humoral immu-
nity in controlling CHIKV infection. However, challenges as-
sociated with chikungunya vaccine development has been
discussed in detail in the next section.

Monoclonal antibody (mAb)–based therapeutics are alter-
native ways of treatment when effective vaccines are not
available or do not confer protection (Pelfrene et al. 2018).
The increasing emergence of resistant/escape variants of the
various pathogens has opened the door for mAb-based thera-
peutics (Berkelman et al. 1994; Lim et al. 2014). Antibody-
based therapeutics has several advantages over vaccine-
induced immunity, provides quick protection, is safe in high-
risk population (immunocompromised hosts, pregnant wom-
en, elderly patients etc.) and can be made available faster than
vaccines during emergencies and outbreaks (Sparrow et al.
2017). The rapid and strategic development of highly specific
antibody-based preventive and therapeutic interventions has
the potential to transform the course of an epidemic loss
(Mavalankar et al. 2008). Passive administration of antibodies
has the potential for a near-immediate onset of action, com-
pared with vaccines that require weeks to months to induce
protective immune effects (Freitas et al. 2018). Further, mAbs
can work via different mechanisms i.e. by direct neutralization
of target antigen and also by indirect effector mechanisms
such as antibody-dependent cell-mediated cytotoxicity
(ADCC), complement-dependent cytotoxicity (CDC) and
phagocytosis, wherein, mAbs bind to infected cells and po-
tentially clear the reservoirs (Hey 2015) (Fig. 4).

Antibody-based therapeutics has better success expectancy
in viral diseases like CHIK where the virus is less divergent.
CHIKV constitutes of a single serotype with four different
genetic lineages or genotypes, West African, East/Central/
South African (ECSA) and Asian and Indian Ocean lineage
(IOL) (Volk et al. 2010). These different lineages are classified
based on the sequence of the E1 gene (Erasmus et al. 2016;
Volk et al. 2010). CHIKV is a highly conserved virus as com-
pared with the other highly variable viruses like HIV, influen-
za and hepatitis. The envelope sequences of different CHIKV
lineages are 95–99.9% conserved (Erasmus et al. 2016), and
this genetic-conserved nature of the envelope makes it an at-
tractive target for neutralizing antibodies. NAbs isolated
against one lineage virus might be highly effective for other
lineage viruses. Neutralizing antibodies in chikungunya viral
infection mainly targets two sites. The first site is receptor
binding site on the viral envelope where nAbs bind to and
blocks the viral fusion to the host cell membrane and another
site is to prevent post–receptor binding conformational chang-
es (Jin and Simmons 2019).

The CHIKV binds to the host cell via its envelope glyco-
protein and enters via receptor-mediated endocytosis followed

by pH-mediated fusion with the host cell membrane. The en-
velope glycoprotein is a trimer of heterodimers of E1 and E2
(Akahata et al. 2010). Both E1 and E2 participate complemen-
tarily in CHIKV cell entry. The E2 is mainly responsible for
cell attachment, and E1 helps in fusion and promotes viral
membrane fusion within acidified endosomes to release
CHIKV nucleocapsid into the host cell cytosol. The E2 gly-
coprotein is found to be the major target of neutralizing anti-
bodies in naturally acquired immunity in CHIKV infected
patients with cleared viremia (Kam et al. 2012b). The mature
E2 protein forms 3 immunoglobulin-like fold structure and is
made up of three domains: domainA at the N terminus located
in the center of the protein, domain C at the C terminus spotted
close to the viral membrane and domain B at the tip promi-
nently exposed on the viral surface. These domains are prin-
ciple sites on CHIK viral surface for interaction with host
target cells. These three domains are interconnected by beta-
ribbon. Recent studies have shown that CHIKVenters into the
host cells through two different mechanisms i.e. one by gly-
cosaminoglycans (GAGs) dependent via domain B and other
GAG-independent mechanism via domain A. These studies
give us a clue that domain B and A could be a promising target
for developing neutralizing antibody-based therapeutics
(Weber et al. 2017). Several monoclonal antibodies targeting
E2 domain have been isolated, and their therapeutic efficien-
cies have been tested in different animal modes. A detailed
description of these mAbs has been discussed in review (Jin
and Simmons 2019) and Table 1. Based on alanine scanning
mutagenesis and escape mutation studies, the important resi-
dues on domain A and domain B of E2 subunit are identified

Virus neutralization

Generation of anti-viral oxidants 

Antibody-dependent 

cell cytotoxicity

High risk population

Reduced tissue damage

Fig. 4 Summary of immune regulatory mechanisms of monoclonal
antibody: the Y-shaped represent the antibody. The antibody can neutralize
the virus envelope proteins; generate antioxidants that can clear viruses;
generate immune regulation beneficial for high-risk population like preg-
nant women, children, old and immunocompromised persons; reduce tis-
sue damage; and generate virus clearance through antibody-dependent cel-
lular toxicity
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for binding to different antibodies. A representative binding
interaction of one of the neutralizing antibodies has been
shown in Fig. 5 a, b.

The E2 domain of CHIKV is conserved among different
CHIKV lineage viruses and also among other alphaviruses i.e.
ONNV,MAYV, RRVand SFV. Based on amino acid sequence
similarity, MAYV is 60%, ONNV is 86% and SFV and RRV
are 57.6% identical to CHIKV (Fox et al. 2015; Kim et al.
2019). Passive transfer of broadly neutralizingmAbs targeting
E2 domain CHIKV has shown in vivo protection in mice
infected with CHIKV and other related alphaviruses. These
antigenic conserved targets in the alphavirus B domain can
potentially serve as a magic bullet for effective MAb therapies
against CHIKV and other alphaviruses. This could also pro-
vide great insight into a reverse vaccinology strategy to design
and develop vaccine targeting multiple alphaviruses of public
health concern.

In addition, the basic feature of CHIKV that makes it an
attractive target for antibody-based therapeutics is the pres-
ence of a high number of average envelope functional spikes
(70–80) on the viral surface. As the number of functional
envelope spikes on the viral surface increases, its infectivity
increases and susceptibility to neutralizing antibodies also

increases and the reverse is also true. The common example
of this mechanism is human immunodeficiency viruses (HIV)
where average numbers of functional spikes are 10–15 per
virion that makes HIV less efficient in the transmission pro-
cess (Schiller and Chackerian 2014). In natural infection, only
10–20% of the infected individuals develop neutralizing anti-
bodies, and these antibodies have high degree of somatic hy-
per mutations and poly reactivity/auto reactivity to host
proteins (Kumar et al. 2018; Liu et al. 2015; Patil et al.
2016) due to low density of the epitope spacing
(Schiller and Chackerian 2014). Induction of such anti-
bodies by vaccination is nearly impractical task. In the
case of CHIKV infection, > 80% of the infected individ-
uals develop neutralizing antibodies with less diverse
somatic hypermutations. Researchers have used virus
immune evade strategy for vaccine development of hu-
man papillomavirus (HPV). Virus-like particles (VLPs)–
based vaccine for HPV is the most successful example
of this. Vaccination with HPV VLPs induces a robust
neutralizing immune response (Safaeian et al. 2013).
Similar strategies are under evaluation in CHIKV to
explore the role of high-density envelope spikes to de-
velop therapeutic interventions.

Fig. 5 aA ribbon trace of heterodimer of E1/E2 in trimeric conformation
is shown with E1 in yellow and E2 in multiple color distinguishing do-
main A (DA) in teal, domain B (DB) in brown, domain C (DC) in ma-
genta and the anchor in cyan color. The side chains of critical residues
identified for binding to different mAbs are shown as space-filled forms
and color-coded as red (residues in E2-DA) and blue (residues in E2-DB).
A representative binding of antibody CHK-265 to the E2-DB is shown as
surface representation. Each monomer of trimer can bind one such anti-
body that is removed for clarity. Figures are adopted based on PDB ID

5ANY. b A ribbon trace of a single heterodimer of E1/E2 is shown with
E1 in yellow and E2 in multiple color distinguishing domain A (DA) in
teal, domain B (DB) in brown, domain C (DC) in magenta and the anchor
in cyan color. The side chains of critical residues identified for binding to
different mAbs are shown as space-filled forms and color-coded as red
(residues in E2-DA) and blue (residues in E2-DB). A representative bind-
ing of antibody CHK-265 to the E2-DB is shown as surface representa-
tion. Figure is adopted based on PDB ID 5ANY

Appl Microbiol Biotechnol (2020) 104:3209–3228 3217



Antibody-based therapeutic approaches and future
prospects

CHIKV has been reported to cause massive outbreaks of acute
and chronic arthritis in humans. As of now, there is no specific
treatment or vaccines available for CHIKV manifestation.
Several potential small molecule–based antiviral therapeutic op-
tions are still in early examination stages (Parashar and Cherian
2014). Hence, the development of therapeutic and prophylactic
strategies is an intimate and immediate need as a way to bridge
the gap until effective vaccine or alternatives therapeutic options
are available for treatment. It has been widely demonstrated that
passive vaccination is an appropriate preventive and therapeutic
option. In many viral diseases, hyperimmune human IgG is
effectively used as a standard prevention therapy, for example,
varicella-zoster and hepatitis B virus (Couderc et al. 2009).
Additionally, these mAbs can be potentially used as a reagent
for development of alternative rapid, low cost and affordable
diagnostics for CHIKV infection as compared with the high-
cost PCR based methods. A lateral flow assay utilizing mAbs
targeting the E1 protein has been developed for diagnosis of
acute CHIKV infection (Yap et al. 2010).

In vitro and in vivo studies conducted using polyvalent
human immunoglobulins from convalescent patients have
demonstrated prophylactic and therapeutic efficacy from le-
thal CHIKV infections in new born mice. Similarly, purified
neutralizing polyclonal antibodies from monkeys immunized
with VLPs protected mice from the high-dose challenge of
CHIKV (Akahata et al. 2010). Animal studies conducted on
anti-CHIKV nAbs have shown that these nAbs can be poten-
tially used both as therapeutically and prophylactically
(Clayton 2016; Fric et al. 2013). It is well-known fact that
CHIKV causes more severe disease in high-risk populations
such as pregnant women, elderly patients, immune-
compromised and patients with other underlying medical con-
ditions. The prophylactic approach can be recommended in
such high-risk groups (Fric et al. 2013; Tharmarajah et al.
2017). Recent reports on immunoglobulin (IVIg) therapeutics
in human patients have shown hope for the path of antibody-
based therapeutics and prophylactics. The prophylactic use of
these antibodies might be useful in targeting restricted popu-
lations at high risk of complications like newborns especially
born from viremic mother, pregnant women, heavily immune-
compromised individuals, elderly individuals with pre-
existing medical complications and individuals with pre-
existing arthritis. Such tailor-made immunotherapy has appli-
cability and potential as alternatives in outbreak situations.
The therapeutic use of these antibody-based regimens will
also be useful in patients infected with CHIKV or CHIKV
with other comorbidities such as serious involvement of neu-
rological complication and skin manifestations. There are
studies that clearly demonstrate the effectiveness of IVIg as
therapeutics (Couderc et al. 2009).

However, the prophylactic approach can be used as short
term prevention strategy in CHIKV endemic areas to reduce
the spread of disease. The major drawbacks of the prophylac-
tic approach are that it requires multiple administrations; how-
ever, it can be used for specific periods in endemic areas where
the probability of spreading of the disease is very high.

In a study by Scott et al. (2017), two patients infected with
severe chikungunya encephalitis were treated with immuno-
globulin (IVIg) (at a dose of 400 mg/kg/day for 5 days). A
significant neurological improvement was observed in pa-
tients on fourth day of IVIg infusion, with complete recovery
of the encephalitis (Scott et al. 2017). A similar report has
recently been published by Fernandes et al. (2019) on the
complete recovery of CHIKV-infected and presenting atypical
dermatological disease after treatment with intravenous anti-
biotic and immunoglobulin therapy (Fernandes et al. 2019).
The intravenous immunoglobulin (IVIg) therapy has also
shown similar success results with other arboviruses (West
Nile Virus) associated disease in human subjects (Hamdan
et al. 2002). The success of IVIg in these studies validates
the potential future use of anti-CHIKV-specific neutralizing
antibodies as an excellent therapeutic and safe option for
treating CHIKV-infected patients presenting atypical derma-
tological and neurological forms of the disease (Fernandes
et al. 2019). A study was conducted on similar lines with
purified IgGs from donors in the convalescent phase of
CHIKV infection (CHIKVIg). The IgGs were purified from
the patients exhibiting immunoreactivity in CHIKV IgG
ELISA and neutralization assay. These purified CHIKVIg
were used as pre- and post-exposure prophylaxis in immuno-
compromised adult mice and immunocompetent mice neo-
nates and has shown protection against CHIKV chal-
lenge. The CHIKVIg treatment restricts the viral infec-
tion to the liver and prevents central nervous system
(CNS) infection, which is the major cause of neurolog-
ical manifestations (Couderc et al. 2009).

The potential effect of immunoglobulins/mAbs as prophy-
laxis is an effective medical intervention for reducing the se-
verity of fatal events especially during birth of neonates from
viremic mothers (Couderc and Lecuit 2015; Gerardin et al.
2008). An open Phase I/II nonrandomized trial (CHIKIVIG-
01) has been started to evaluate the safety and preliminarily
assess the efficacy of anti-CHIKV hyperimmune human intra-
venous immunoglobulins as an intervention in children from
viremic mothers for fatal events (Cardona-Correa et al. 2017)
(https://clinicaltrials.gov/ct2/show/record/NCT02230163).

More recently, a combination of a disease-modifying anti-
rheumatic drug (CTLA4-Ig) and an anti-CHIKV neutralizing
human monoclonal antibody was used as therapeutics in acute
CHIKV infection and arthritis in a C57BL/6 mouse model. A
complete reduction in foot swelling and elimination of the virus
was observed within a few days of treatment. Thus, a combi-
nation of anti-inflammatory immunomodulators along with
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antibody-based antiviral therapeutics may serve as a model for
treating humanswith arthritis caused byCHIKVor other related
arbovirus. The immunomodulatory CTLA4-Ig blocks Tcell co-
stimulation and also have immunomodulatory effects on
antigen-presenting cells (APCs) and provides greater impetus
for treatment of viral diseases (Miner et al. 2017).

Animal models in CHIKV therapy

Animal models play important role in research and develop-
ment for the approval of biologics license applications for
mAbs, vaccines and antiviral (Fig. 6). It is primarily necessary
that these agents are tested in animal models, as preclinical
animal testing is mandatory before the approval from by the
US Food and Drug Administration (FDA) or European
Agency for the Evaluation of Medicinal Products (EMEA).

The isolation of several monoclonal antibodies has in-
creased the need to evaluate the efficacy and potency of
mAbs in preclinical animal models. The availability of the
experimental animal models such as mice and non-human
primates to study CHIKV pathogenesis and disease progres-
sion have assisted testing of monoclonal antibodies for its
therapeutics and prophylactic efficiency. Several groups have
shown the use of these animal models for both prophylactic
and therapeutic studies of mAbs testing (Haese et al. 2016).

For CHIKV mAbs, even though non-human primates
(NHP) are the best models to test the efficacy of mAbs, few
studies are conducted in NHP so far. Besides, the higher cost
of NHP animal models poses major bottleneck of using this
model in low- and middle-income countries (LMIC) where
the CHIKV disease is endemic.Wild typemouse more closely
recapitulates the human condition of chronic persistent

infection of CHIKV, but the CHIKV persistence is less under-
stood and the research in these areas is in the nascent stage.
Immunocompromised/immunodeficient mice models are
available for preliminary evaluation of mAbs as prophylactic
or therapeutic interventions, though it is plausible that these
mice are deficient of specific host immune components.
Nevertheless, with a plethora of availability of immunological
reagents in mice, it is easier and doable to readily test the
mAbs efficacy in these mice. Presently, CHIKV research is
understudied in the endemic LMIC areas; future research
using these mice models will pave the way for the develop-
ment of safe and robust mAb as CHIKV antiviral agent
(Herrero et al. 2016).

Use of wild type mice

C57BL/6 J mice are highly susceptible to CHIKV infection
and studied for arthritis model (Gardner et al. 2010). Jin et al.
have used this mice model to test the neutralizing Abs (Nabs)
against CHIKV-induced arthritis and infection (Jin et al.
2015). Inoculation of CHIKV into the footpad of wild type
C57BL/6 mouse results in localized swelling, arthritis and
fasciitis within foot and ankle; the development of these signs
and symptoms aids in the evaluation of mAbs as antivirals. Pal
et al. have shown that pre-treatment of mice with CHIKV
mAbs completely protects the mice from the development of
joint swelling (Pal et al. 2013). Other groups have also shown
the therapeutics effects of CHIKV monoclonals in wild type
mice (Broeckel et al. 2017; Fox et al. 2019). Using C57BL/6 J
mice, the efficacy of human C9 mAb was checked against
CHIKV infection-induced viremia and arthritis (Selvarajah
et al. 2013).

Mice
Monkey

Immunodeficient Mice

Different animal models to evaluate 
CHIKV mAbs

Human Clinical Trial

Sample evaluation

Fig. 6 Graphical representation
of in vivo mouse model for
CHIKV mAb evaluation: Mice,
non-human primates and immu-
nodeficient mice are used to
measure prophylactic or thera-
peutic potential of CHIKVmAbs.
The promising mAbs could be
used then for clinical trials in
human
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Use of immunocompromised mice

The immunocompromised mice such as neonatal mice,
IFN-α/β receptor (IFNAR) knockout mice, AG129 mice de-
ficient of interferon-alpha/beta/gamma receptor null (Type II
Interferon) are highly susceptible models for CHIKV infec-
tions and show severe disease form (Couderc et al. 2008;
Ziegler et al. 2008). The virus replicates in these mice with
high titers and show symptoms similar to as observed in
humans infected with CHIKV. Hence, the immunocompro-
mised and/or immunodeficient mice are widely used for
mAbs efficacy testing against CHIKV lethal and sub-lethal
infection (Fong et al. 2014; Pal et al. 2013; Smith et al.
2015). Fric et al. have isolated and tested CHIKV mAbs
5F10 and 8B10 efficacy in vivo in AGR mice (Fric et al.
2013); whereas Lee et al. have used AGR129 immuno-
compromised mice for epitope mapping of CHIKV mAbs
5F10 and 8B10 and to determine the infectivity of CHIKV
neutralization-escape mutants (Lee et al. 2011). In some stud-
ies, researchers have also used RAG2 −/− I IFNAR1 −/−mice
for measuring the prophylactic effect of mAbs against CHIKV
infection. In these studies, the mice were pre-treated with
CHIK mAbs and upon infection were found to be protected
as compared with control mice showing lethal infection (Goh
et al. 2013; Hawman et al. 2013). Both RAG1−/− and RAG2
−/− mice, deficient of B and T cells, show persistent infection
to CHIKV, which is a hallmark of CHIKVinfection in humans
with chronic joint pain. Prophylactic treatment of CHIKV
mAbs in these mice has prevented the establishment of per-
sistent CHIKV infection, whereas with therapeutic interven-
tion showed efficacy to affected tissues (Hawman et al. 2013).

Use of non-human primates

NHP are excellent models to study CHIKV pathogenesis and
preclinical testing of vaccines and therapeutics because they
are naturally infected with CHIKV and show symptoms sim-
ilar to human CHIKV infection. Furthermore, they are phylo-
genetically more homologous to humans than rodents. The
first study of CHIKV using NHP was demonstrated by Ross;
his group found that, when rhesus macaques were inoculated
with CHIKV infected human sera, the macaques developed
neutralizing antibodies (Ross 1956). Many studies in the NHP
model are confined to understanding the fundamental science
of CHIKV disease progression, immune response and testing
of vaccines. Pal et al. has tested a combination of humanized
mAbs CHK-152 and CHK-166 in rhesus macaques as post-
exposure therapeutic to CHIKV infection (Pal et al. 2014). In
previous reports, these mAbs were protective against CHIKV
using an Ifnar−/− mice (Pal et al. 2013). This study provides
an insight of viral dissemination from the point of infection to
different organs. An engineered mAb SVIR001, which
mimics neutralizing anti-CHIKV human mAb 4 N12, have

shown to reduced joint inflammation and virus clearance in
CHIKV infected rhesus macaque model (Broeckel et al.
2017).

Challenges associated with chikungunya therapeutic
developments

Challenges of using nAbs for CHIKV and future expectancy

Viruses can escape neutralizing antibody responses by under-
going genetic mutations that abolish antigen specificity and
antigen–antibody binding or by indirect immune evasion strat-
egies such as cell-to-cell transmission. These escapemutations
are more frequent in RNA viruses. Lack of proofreading and
repair mechanisms is responsible for the emergence of escape
mutants under selective immune pressure (Drake and Holland
1999; Holland et al. 1982). The presence of RNA as a virtual
genome in CHIKV puts the virus under scan of possible nu-
cleotide sequence modification in selective pressure condi-
tions like antibody therapy, antivirals etc. (Holland et al.
1982). Arboviruses are less prone to these changes due to their
survival fitness and require replication in two taxonomically
different hosts (Coffey et al. 2008; Lee et al. 2011). A number
of neutralization-escape mutants have been reported for the
alphavirus including CHIKV, Venezuelan equine encephalitis
virus (VEE) (Johnson et al. 1990), sindbis virus (Stec et al.
1986) and RRV (Lee et al. 2011; Vrati et al. 1988). CHIKV is
less likely to undergo genome modification, as evidenced by
high nucleotide sequence conservation.

The use of combination of neutralizingmAbs targeting two
different epitopes or by developing bispecific antibodies
(Gardner et al. 2010; Jin et al. 2015) controls immune escape
especially when administrated during the acute phase of viral
infection, when viral load is very high and chances of emer-
gence of resistant viral variant is very high (Kumar et al. 2018;
Muller et al. 2009). In vitro studies have reported that escape
mutants can be generated under selective pressure of mAbs
(Gal-Tanamy et al. 2008; Lee et al. 2011). Although the pro-
portion of these escape mutants is very low, these minor es-
cape generates quasi-species and gets amplified under selec-
tive pressure (Kumar et al. 2018; Lee et al. 2011).

Presently high cost of antibody-based therapeutics inter-
vention makes it difficult and challenging to target and protect
a significant portion of the population infected with acute
CHIKV. Recent advancement in gene transfer methods like
adeno-associated virus (Balazs et al. 2014; Johnson et al.
2009) or DNA/RNA–based delivery methods (Kose et al.
2019; Pardi et al. 2017) has enabled injection to recipients
with vectors encoding antibody gene sequences for rapid
in vivo production of recombinant antibodies. Vector or
nucleic acid coded for human antibodies has shown favorable
effects in small animal models (Duperret et al. 2018;
Muthumani et al. 2016). These approaches preclude the need
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for the complex manufacturing processes inherent in produc-
tion and quality control of large amounts of recombinant
monoclonal antibodies. The nucleic acid encoded antibodies
can be manufactured speedily at much reduced cost than the
equivalent protein therapeutics. This approach could revolu-
tionize the feasibility of the widespread use of human Ab
therapy and prophylaxis for emerging and re-emerging viral
diseases like CHIK. Recent study conducted by Kose et al.
(2019) on therapeutic efficiency of an infused nanoparticle
encoding mRNA of CHIKV antibody with virus neutralizing
activity has shown equivalent potency in protecting immuno-
compromised and immunocompetent mice, compared with
the corresponding purified IgG form of the mAb (Kose et al.
2019). These studies provide a future expectancy for passive
immunization or treatment of humans by administration of
these nanoparticle based nucleic acid formulations encoding
anti-CHIKVantibodies.

CHIKV has also been reported to exhibit cell to cell mode
of transmission and escapes nAbs. The virus hides in different
niche areas (reservoirs) of organs and tissues where extracel-
lular antibodies cannot access these hidden reservoirs. The
viral escape and reactivation happens as soon as the titer of
nAbs drop extracellularly (Fric et al. 2013; Lee et al. 2011).
The cell to cell transmission phenomenon is more common in
the enveloped virus, which uses budding and exocytosis for
release (Mothes et al. 2010).

Despite the protective role of neutralizing antibodies, there
are not many studies on ADE that is a major concern in some
of the flavivirus infections like dengue where suboptimal con-
centration of neutralizing antibodies has shown more severity
of disease with subsequent infection with other serotypes
(Halstead 2014; Langerak et al. 2019). Antibody-dependent
enhancement (ADE) occurs when non-neutralizing or sub-
neutralizing concentration of antibodies facilitates the virus
to interact with host cell surface receptors and promotes entry
into the target susceptible cells favoring viral replication (Lum
et al. 2018). One of the key challenges associated with mAb
therapeutic is the risk of ADE that aggravates the symptoms.
The risk of ADE is associated with secondary infection caused
by a heterologous or closely related virus from the same genus
or family. Although the ADE phenomena is completely un-
derstood, it might arise as the viruses from the same or related
family share some common epitopes. ADE is one of the most
serious obstacles in therapeutic mAb development (Sun et al.
2017). Although one possible advantage of CHIKV is that it is
a single viral serotype disease (Jin and Simmons 2019).
However, ADE concern cannot be completely neglected es-
pecially with the possibility of the emergence of new quasi-
species harboring mutations or co-infection/re-infection with
other related alphaviruses. ADE has been observed in other
viruses like influenza virus (Ochiai et al. 1992), rabies virus
(King et al. 1984; Porterfield 1981), dengue virus (Morens
and Halstead 1990), RRV (Lidbury and Mahalingam 2000),

marburg virus (Nakayama et al. 2011) and HIV (Robinson Jr.
et al. 1988). Until recently, among alphaviruses, virus en-
hancement was documented only in RRV infections. Recent
studies conducted on in vitro and in vivo model systems has
demonstrated enhanced infection of CHIKV in the presence of
sub-neutralizing levels of anti-CHIKV antibodies obtained
from CHIKV-infected patients or animals by extrinsic and
intrinsic enhancement pathways. In extrinsic pathways, the
virus binding and entry increases in the host cell without fa-
cilitating the active viral replication. Whereas, in intrinsic
pathway, virus binding and entry along with active viral rep-
lication is accompanied by the alterations of host im-
mune responses (Lum et al. 2018).The other alternative
way to overcome concerns related to Fc-mediated pro-
cesses of full length antibodies is to use single-chain variable
fragments (Duperret et al. 2018) and single-domain antibodies
(Mothes et al. 2010), as these are devoid of Fc portion of
conventional antibodies however retaining the capacity of vi-
ral neutralization in absence of Fc portion (Duperret et al.
2018; Selvarajah et al. 2013).

The other critical limitations associated with antibody-
based therapeutics for viral disease is the timing and frequency
of therapeutic antibody administration. The antibody therapy
works best if it is administrated early during acute phase of
infection when viral load is very high. Administration of ex-
ogenous antibodies once an infection is established is of less
use. Early diagnostics of viral diseases can make antibody-
based therapeutics more for practical use (Parashar and
Cherian 2014; Srinivasan et al. 2016).

Antibodies can be administrated as prophylactic measures
during an epidemic to prevent deaths and the spread of dis-
ease. Administration of these antibodies can provide immedi-
ate immunity and can prevent the severity of the epidemic.
The main challenge with prophylactic administration of these
antibodies is that serum half-life of these antibodies is around
10–14 days, so repeated dosing will be required in an extend-
ed epidemic (Parashar and Cherian 2014). Recently, engineer-
ing of antibodies for their extended half-life has overcome
these challenges. The engineered antibodies have their serum
half-life extended up to several weeks (Booth et al.
2018). One such known example is the use of
engineered antibodies with an extended half-life (up to
70 days) for respiratory syncytial virus (RSV) disease. The
single dose of this antibody was found to be effective and
protective against RSV for the duration of a typical 5-month
season (Domachowske et al. 2018).

Challenges associated with vaccine development strategies

The ultimate goal for viral vaccine development is to design
an effective vaccine candidate that can potentially elicit broad-
ly neutralizing antibodies that can neutralize most strains of a
virus. These broadly neutralizing antibodies function by
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binding to conserved receptor binding sites or domains, gly-
cans, stem regions or trimer and dimer contacts of the
envelope glycoprotein (Corti and Lanzavecchia 2013;
Fox et al. 2015).

Antibody enhancement and other limitations associated
with antibodies as therapeutic advocates the need for careful
vaccine design and extensive pre-clinical trials before
launching a vaccine. This also necessitates the careful selec-
tion of sites where these clinical trials are to be done (geo-
graphic location and outbreak predictions) to avoid undesired
effects in anti-CHIKV vaccine design (Lum et al. 2018).
Antibody induction through vaccination, enhancing or neu-
tralizing will depend on numerous factors such as possible
future infection with closely related viruses, the virus strain
(serotype or genotype), virus titer and concentrations, con-
served epitopes specificities, isotypes and FcRs-binding affin-
ities of the antibodies (Boonnak et al. 2008; Hohdatsu et al.
1994; Lum et al. 2018; Midgley et al. 2012; Takada and
Kawaoka 2003). Infants born to mothers infected with
CHIKV or related virus during their pregnancy may suffer
from disease severity due to the low levels of maternal-
acquired anti-CHIKV antibody escape mutants (Ng et al.
2014). Co-infection of related viruses (ZIKA and dengue)
can cause more severe disease complications in endemic areas
with the possibility of ADE. The pre-existing of ZIKV infec-
tion followed by CHIKV infection or ZIKV-CHIKV co-infec-
tion increases the incidence of neurological complications
(Hermanns et al. 2018; Rothan et al. 2018).

The secondary infections in these endemic areas could
probably be a major factor responsible for potentiating ADE
response that, in turn, might be an important factor for
the severity of subsequent arbovirus infection (Fernandes
et al. 2019; Kam et al. 2015). This alarms the need for surveil-
lance studies in alpha virus endemic areas before introducing a
new vaccine.

A number of vaccine candidates are tested in animal
models including non-human primate model and are in phase
1 and 2 studies (Hallengard et al. 2014). The protection me-
diated by these vaccine candidates is primarily due to humoral
immune response. The further development of these vaccine
candidates for the future depends on technical and economic
measures that may pose obstacles for the development of safe
and effective vaccines (Metz et al. 2013; Piper et al. 2013).
CHIKVoutbreak usually occurs sporadically and is unpredict-
able and leads to challenges for planning and execution of
large phase 2 and 3 randomized controlled trials (RCTs).
Identification of long-lasting markets for CHIKV vaccine is
a challenge for investing commercial in firms because of the
low fatality rate and its epidemic patterns (Rezza 2015; Rezza
and Weaver 2019).

Elderly patients are more prone to infections, and vaccina-
tion in this subgroup is challenging due to immune senes-
cence, which reduces the number of circulating immune cells

like antigen-presenting cells (APCs), phagocytosis, naïve B
and T cells and toll-like receptor signaling pathways. Recent
study conducted on VLP-based vaccine showing 100% pro-
tection in adult mice surprisingly exacerbated the CHIKV
infection in aged mice (Arevalo et al. 2019). This study gives
us a clue that introduction of vaccines in different subsets of
populations needs to be evaluated before the introduction.

Conclusions

Chikungunya virus is transmitted by mosquitoes and in recent
years has emerged and reemerged into the new global terri-
tories, posing significant threat to global health and heavy
economic burden on national health care system. The
CHIKV infection causes severe arthritis from acute stage of
severe joint inflammation to chronic debilitating and persis-
tent joint infection and other complications such as severe
myocarditis and encephalitis. There is an urgent need for the
development of alternate bio-therapeutics countermeasures to
emerging viral infections to which no licensed vaccines or
anti-viral drugs are available. Various potential small
molecule–based antiviral therapeutic options are still in early
examination stages. Development of vaccines and antibody-
based therapeutics is associated with various limitations and
challenges. Few vaccine candidates are tested in animal
models including non-human primatemodel and have reached
phase 1 and 2 studies. Passive transfer of antibodies in animal
models has shown protection against lethal CHIKV infection.
However, future expectancy from therapeutic options required
a close monitoring of chikungunya natural infection.
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