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The generation of neural network dynamics relies on the interactions between the intrinsic
and synaptic properties of their neural components. Moreover, neuromodulators allow net-
works to change these properties and adjust their activity to specific challenges. Endoge-
nous continuous (“tonic”) neuromodulation can regulate and sometimes be indispensible
for networks to produce basal activity.This seems to be the case for the inspiratory rhythm
generator located in the pre-Bötzinger complex (preBötC).This neural network is necessary
and sufficient for generating inspiratory rhythms. The preBötC produces normal respira-
tory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping
under hypoxic conditions after a reconfiguration process. The reconfiguration leading to
gasping generation involves changes of synaptic and intrinsic properties that can be medi-
ated by several neuromodulators. Over the past years, it has been shown that endogenous
continuous neuromodulation of the preBötC may involve the continuous action of amines
and peptides on extrasynaptic receptors. I will summarize the findings supporting the role
of endogenous continuous neuromodulation in the generation and regulation of different
inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve
extrasynaptic receptors along with evidence of glial modulation of preBötC activity.
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INTRODUCTION
Neural network activity relies on the interactions between intrinsic
and synaptic properties (Ramirez et al., 2004; Marder and Bucher,
2007; Peña, 2009). Here, I will consider “synaptic properties” as
those provided by fast neurotransmission among neurons and
“neuromodulation” as the slower changes in cellular and synap-
tic properties mediated by metabotropic receptors (Katz, 1998).
Neuromodulators regulate the activity of networks, allowing their
adaptation to different demands or even conditioning their basal
activity (Katz, 1998; Tryba et al., 2006; Peña, 2009). This issue
has been studied in the inspiratory rhythm generator, the pre-
Bötzinger complex (preBötC), which generates the inspiratory
commands that control the diaphragm (Smith et al., 1991; Feld-
man and Del Negro, 2006; Schwarzacher et al., 2011). Breathing
is eliminated by lesioning or inactivating the preBötC (Ramirez
et al., 1998; Wenninger et al., 2004), whereas the isolated preBötC
is still able to generate the inspiratory rhythms in a brainstem
slice preparation (Smith et al., 1991; Lieske et al., 2000; Peña
et al., 2008; Armstrong et al., 2010) or even in preBötC islands
(Ramírez-Jarquín et al., 2012).

In slices, the preBötC generates three distinct activity patterns
that correspond to distinct forms of breathing: normal respiratory
activity (eupnea), sighs, and gasps (Lieske et al., 2000). Gasping
is generated during hypoxia as a “last-resort” respiratory effort
to autoresuscitate (Gozal et al., 2002; Fewell et al., 2007; Zavala-
Tecuapetla et al., 2008). Interestingly, babies that die from SIDS
have a reduction in gasping generation and inefficient autoresus-
citation (Poets et al., 1999; Sridhar et al., 2003). The preBötC con-
tains several types of neurons, including expiratory, inspiratory,

and postinspiratory neurons (Lieske et al., 2000) that interact
through fast synaptic transmission (Greer et al., 1991; Funk et al.,
1993; Shao and Feldman, 1997; Ren and Greer, 2006) to produce
the inspiratory rhythms. Among the inspiratory preBötC neu-
rons, a group of respiratory pacemaker neurons has been detected
that plays a major role in rhythm generation (Thoby-Brisson and
Ramirez, 2001; Peña et al., 2004; Del Negro et al., 2005; Peña and
Aguileta, 2007). Characterization of these neurons revealed at least
two types (Thoby-Brisson and Ramirez, 2001; Peña et al., 2004; Del
Negro et al., 2005; Peña and Aguileta, 2007; Peña, 2008), one that
generates bursts via a Ca2+-activated cationic current (I CAN) and
the other that relies on the persistent Na+ current (I NaP; Peña
et al., 2004; Del Negro et al., 2005; Peña and Aguileta, 2007; Peña,
2008). Both types of pacemakers need to be inhibited to abol-
ish rhythmogenesis under normoxia, both in vitro and in vivo
(Peña et al., 2004; Peña and Ramirez, 2005; Tryba et al., 2006).
In contrast, during hypoxic conditions, gasping generation criti-
cally relies on the activity of I NaP-dependent (hypoxia-resistant)
pacemaker neurons (Peña et al., 2004; Tryba et al., 2006; Peña
and Aguileta, 2007). In addition to these mechanisms, the specific
contribution of intrinsic and synaptic properties to rhythmoge-
nesis depends on the neuromodulatory context. When applied
exogenously, several neuromodulators modify the generation of
the rhythmic activity by the preBötC (Doi and Ramirez, 2008).
Moreover, several of these neuromodulators maintain a continu-
ous endogenous modulation that, in some cases, is indispensable
for rhythm generation (Peña and Ramirez, 2002, 2004; Tryba et al.,
2006; Viemari et al., 2011; Ramírez-Jarquín et al., 2012). This con-
tinuous modulation, synonymous with “tonic neuromodulation,”
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is maintained by continuous release of neuromodulators, mainly
from tonic active neurons and glial cells (Hülsmann et al., 2000;
Ptak et al., 2009).

CONTINUOUS (“TONIC”) NEUROMODULATION OF THE preBötC
The actions of different neuromodulators on the inspiratory
rhythm generator, including amines and peptides, were recently
reviewed (Ballanyi, 2004; Peña and García, 2006; Doi and Ramirez,
2008; Peña, 2009). Therefore, I will focus on the evidence of
endogenous continuous neuromodulations of the preBötC. In the
CNS, several neuromodulators can be continuously released and
act both at synaptic and extrasynaptic levels to regulate network
function (Vizi et al., 2010). Extrasynaptic transmission was origi-
nally discovered for several monoamines that regulate the release
of other neuromodulators and neurotransmitters despite the lack
of synaptic contact between the two terminals (Vizi et al., 2010).
In fact, the majority of monoaminergic and peptidergic neurons
fail to make synaptic contacts and instead, they act on extrasynap-
tic receptors (Descarries and Mechawar, 2000; Vizi et al., 2010).
Such neuromodulators are preferentially, but not exclusively, accu-
mulated in large, dense-core vesicles, and they require a strong
depolarization or high frequency stimulation to be released (Tor-
realba and Carrasco, 2004; De-Miguel and Trueta, 2005; Vizi et al.,
2010). The fact that several neuromodulators, such as serotonin
and adenosine, have been detected in the extracellular space of the
preBötC by means of microdialysis (Richter et al., 1999), which
detects neurotransmitters and neuromodulators that escaped the
synaptic cleft (Peña and Tapia, 1999, 2000), suggests that they
can reach extrasynaptic receptors and continuously modulate the
preBötC. The extracellular concentration of these neuromodula-
tors changes depending on the state of the network (i.e., hypoxia;
Richter et al., 1999; Hehre et al., 2008) indicating that such con-
tinuous modulation adjusts the preBötC activity to fit particular
demands. Next, I will present a catalog of neuromodulators that
maintain a continuous neuromodulation of the preBötC, and dis-
cuss the possible involvement of extrasynaptic receptors or glial
cells in this modulation. It is important to consider that respiratory
rhythmogenesis is studied in a variety of experimental conditions
ranging from behaving animals to preBötC islands (Ramírez-
Jarquín et al., 2012). Thus, in most cases, the pharmacological
manipulations could affect different respiratory circuits besides
the preBötC (Zavala-Tecuapetla et al., 2008; Ramírez-Jarquín et al.,
2012).

ADENOSINE
Adenosine is an inhibitory neuromodulator of the preBötC
(Schmidt et al., 1995; Herlenius and Lagercrantz, 1999; Wilken
et al., 2000; Huxtable et al., 2009) that can be directly released
from neurons and glia or that can be extracellularly produced by
the degradation of released ATP (Martín et al., 2007; Cunha, 2008;
Zwicker et al., 2011). Ambient adenosine can exert its effects by
diffusing far away from the release sites (Cunha, 2008; Vizi et al.,
2010). An adenosinergic continuous modulation of the preBötC
of mice has been evidenced by blocking adenosine-receptors with
the non-selective, adenosine-receptor antagonist aminophylline
(Wilken et al., 2000), which increases the frequency and amplitude
of inspiratory rhythm in slices. This effect is similar to blocking

the type 1 (A1) adenosine-receptor in rats with the specific antago-
nist DPCPX (Huxtable et al., 2009) These increases have also been
observed in the brainstem-spinal cord preparation (also called the
“en bloc”) of rats (Herlenius and Lagercrantz, 1999) and in cats
in vivo (Schmidt et al., 1995), where levels of adenosine increase
in hypoxia (Richter et al., 1999), contributing to the respiratory
depression observed during this condition. In fact, blocking A1-
receptors attenuates hypoxia-induced breathing in the en bloc of
rats (Kawai et al., 1995). Thus, it has been suggested that adenosine
antagonists can be useful for the treatment of several respiratory
dysfunctions (Mathew, 2011).

ATP
ATP excites the preBötC in vitro in rats (Huxtable et al., 2009;
Zwicker et al., 2011) through the activation of P2Y-receptors
(Lorier et al., 2007; Huxtable et al., 2009). Interestingly, blockade
of endogenous activation of P2-receptors with suramin reduced
inspiratory frequency in the slice preparation, while Cu2+, an
allosteric modulator of purinergic receptors, produced the oppo-
site effect (Lorier et al., 2007, 2008). ATP is released during
hypoxia, and blocking its tonic action on P2-receptors increases
the hypoxia-induced slowing of the respiratory rhythm, suggest-
ing that ATP is involved in maintaining respiration in hypoxia in
rats (Gourine et al., 2005). Interestingly, the excitatory effect of
exogenous ATP on the preBötC is precluded when glial cells are
inhibited (Huxtable et al., 2009).

ACETYLCHOLINE
Acetylcholine (ACh) is another neuromodulator that tonically reg-
ulates preBötC activity in rats and mice (Shao and Feldman, 2009).
Application of the acetylcholinesterase inhibitor physostigmine
increases the frequency of rhythmic respiratory activity in the slice
preparation involving the type-3-muscarinic and α4β2-nicotinic
receptors in rats and mice, respectively (Shao and Feldman, 2005;
Shao et al., 2008). Similarly, blockade of muscarinic-receptors
with atropine reduces the amplitude and frequency of the respira-
tory rhythm in the en bloc from mice (Coddou et al., 2009). In the
lamprey en bloc,physostigmine increases the respiratory frequency,
while the nicotinic antagonists D-tubocurarine or bungarotoxin
reduces it (Mutolo et al., 2011).

NORADRENALINE
Pre-Bötzinger complex activity is modulated by endogenous nora-
drenaline released from the A5, A6, A1C1, and A2C2 nuclei in rats
and mice (Hilaire et al., 2004; Viemari, 2008). This continuous
modulation involves activation of α-2-adrenoreceptors, since its
blockade with yohimbine, piperoxane, or phentolamine decreases
respiratory frequency in the en bloc in rats and mice (Errchidi
et al., 1990; Zanella et al., 2006; Fujii and Arata, 2010) and abol-
ishes gasping generation in slices from mice (Viemari et al., 2011).
Accordingly, decreasing the extracellular noradrenaline concen-
tration with pargyline, desipramine, or tyrosine increases the
frequency of the rhythm, while methyltyrosine, an inhibitor of
noradrenaline biosynthesis, increases the en bloc respiratory fre-
quency in rats and mice (Errchidi et al., 1990; Zanella et al.,
2006). There is some evidence of a continuous modulation of the
preBötC by histamine and dopamine. Thus, the histamine-type-
1-receptor antagonist, pyrilamine, reduces the en bloc respiratory
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frequency and attenuates respiratory depression in hypoxia in mice
(Dutschmann et al., 2003), while the dopamine-type-1-receptor
antagonist SCH-23390 slows the respiratory rhythm of cats in vivo
(Lalley, 2004, 2005).

SEROTONIN
The preBötC is modulated by 5-hydroxytryptamine (5-HT),which
produces an excitatory effect mediated by 5-HT2-receptors and
an inhibitory effect mediated by 5-HT1-receptors (Schwarzacher
et al., 2002). The main source of 5-HT is the raphe nuclei
(Richerson, 2004), whose projections can or cannot make synap-
tic contacts with their targets throughout the brain (Kosofsky
and Molliver, 1987). In the preBötC, increasing the extracellu-
lar concentration of 5-HT with 5-HT-uptake inhibitors leads to
an increase of respiratory activity in the en bloc from rats (Di
Pasquale et al., 1994). In contrast, blocking 5-HT-receptors with
the non-specific antagonist methysergide abolishes rhythmoge-
nesis in the en bloc and in slices from rats (Di Pasquale et al.,
1994; Ptak et al., 2009). In these preparations, excitation of raphe
neurons increases the frequency of the respiratory rhythm medi-
ated by the activation of 5-HT2-receptors (Al-Zubaidy et al.,
1996; Ptak et al., 2009). Accordingly, blocking either 5-HT2B-
receptors (Günther et al., 2006), 5-HT2C-receptors (Ptak et al.,
2009), or 5-HT2A receptors (Peña and Ramirez, 2002; Ptak et al.,
2009) reduces the respiratory rhythm frequency and its regularity
in slices from rats and mice. Such findings have been corrobo-
rated for 5-HT2A- and 5-HT2C-receptors in situ in rats (Ptak
et al., 2009). Interestingly, low micromolar concentrations of 5-
HT induce bursting activity in non-bursting preBötC neurons
(Ptak et al., 2009), while blockade of 5-HT2A receptors abolishes
the intrinsic bursting of the INaP-dependent (hypoxia-resistant)
pacemaker neurons (Peña and Ramirez, 2002; Tryba et al., 2006).
Consequently, blockade of 5-HT2A receptors inhibits gasping gen-
eration in slices from mice (Tryba et al., 2006) and in situ in rats
(Bale and Solomon, 2010). These findings may have clinical rel-
evance, since it has been hypothesized that a deficiency of the
medullary 5-HT network is a potential cause of SIDS (Kinney
et al., 2001).

PEPTIDES
Several neuropeptides may exert a continuous regulation of the
preBötC. Neuropeptides are typical non-synaptic transmitters,
which are released extrasynaptically (Torrealba and Carrasco,
2004; Wotjak et al., 2008). Blocking the endogenous activation
of the opioid-receptors with naloxone increases the respiratory
output in cats (Lawson et al., 1979) and reduces hypoxia-induced
respiratory depression in rats (Schlenker and Inamdar, 1995). In
mice, blocking endogenous activation of somatostatin-receptors
increases the respiratory rhythm frequency and reduces its regu-
larity, both in slices and in vivo (Ramírez-Jarquín et al., 2012).
Moreover, blockade of somatostatin-receptors, specifically sub-
type 2, prevents the reconfiguration of the preBötC during hypoxia
in vitro and reduces gasping generation and autoresuscitation
in vivo (Ramírez-Jarquín et al., 2012). In contrast, substance-P
maintains an excitatory continuous modulation on the preBötC
in rats and mice (Ptak et al., 2009; Doi and Ramirez, 2010).
Blockade of the substance-P receptor (NK1) with SR 140333 or

spantide inhibits rhythmogenesis in vitro and in situ in mice
and rats, respectively (Telgkamp et al., 2002; Ptak et al., 2009).
Interestingly, in mice, inhibition of respiratory activity with NK1
antagonists has no significant respiratory effect when the levels
of 5-HT or noradrenaline are increased by stimulating the raphe
magnus or locus coeruleus, respectively (Doi and Ramirez, 2010),
indicating that the action of substance-P might be influenced
by the neuromodulatory state of the network (Doi and Ramirez,
2010).

POSSIBLE REGULATION OF THE preBötC BY GABA AND GLUTAMATE
ACTING ON EXTRASYNAPTIC RECEPTORS
Glutamatergic and GABAergic neurons were thought to release
their transmitters exclusively at synapses, where they mediate the
classical “fast synaptic transmission” (Vizi et al., 2010). How-
ever, it has been shown that ambient GABA and glutamate
can also tonically activate high-affinity, extrasynaptic receptors,
suggesting their spill-over from synaptic boutons, mediating a
slower synaptic transmission (Semyanov et al., 2004; Farrant and
Nusser, 2005; Aghajanian, 2009). Extrasynaptic GABAA inhibi-
tion can modulate the generation of hippocampal fast rhythms
(Scanziani, 2000; Towers et al., 2004; Mann and Mody, 2010;
Papatheodoropoulos and Koniaris, 2011), and it is likely that
such modulation also occurs in the preBötC, where increas-
ing the extracellular concentration of GABA, by inhibiting its
uptake with nipecotic acid, decreases the respiratory frequency
(Ren and Greer, 2006). The presence of delta-subunit-containing-
GABAA-receptors, which are mainly extrasynaptic (Nusser et al.,
1998; Adkins et al., 2001; Brown et al., 2002) suggests a tonic
GABAergic control of the preBötC. For instance, the application
of the GABAA-receptor agonist THIP, which preferentially acti-
vates extrasynaptic GABAA-receptors containing delta-subunits
(Nusser et al., 1998; Adkins et al., 2001; Brown et al., 2002), hyper-
polarizes respiratory neurons and reduces the frequency of the res-
piratory rhythm (Shao and Feldman, 1997). Neurosteroids, which
also target delta-containing, extrasynaptic GABAA-receptors (Stell
et al., 2003; Belelli and Lambert, 2005; Scimemi et al., 2006), mod-
ulate GABAA-receptor-mediated hyperpolarization of respiratory
neurons and the inhibition of rhythmogenesis in slices (Ren and
Greer, 2006).

Ambient glutamate can also activate extrasynaptic, NR2B-
subunit-containing, NMDA-receptors and modulate neural net-
work activity (Lambe and Aghajanian, 2006, 2007; Aghajanian,
2009). It is likely that extrasynaptic, NMDA-receptor-mediated
excitation is also present in the preBötC, where inhibition of gluta-
mate uptake with dihydrokainate increases rhythmogenesis (Greer
et al., 1991; Funk et al., 1993). Dihydrokainate can also restore
rhythmogenesis in substance-P-depleted slices, in which capsaicin
abolishes rhythm generation (Morgado-Valle and Feldman, 2004).
Similarly, releasing NMDA-receptors from their Mg2+-blockade
restores rhythmogenesis in slices where the rhythm is abolished
by AMPA-receptor blockade (Morgado-Valle and Feldman, 2007).
This evidence supports the notion that a tone of extracellular
glutamate can participate in rhythmogenesis. Furthermore, the
presence of the NR2B-receptor has been extensively documented
in the preBötC (Watanabe et al., 1994; Paarmann et al., 2000, 2005;
Liu and Wong-Riley, 2010).
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GLIAL MODULATION OF THE preBötC
Glial cells are integral functional elements of neural networks,
since it is argued that they can respond to and regulate neu-
ronal activity (Araque and Navarrete, 2010). The respiratory
network is not an exception (Gourine et al., 2010). Glial cells
can sense preBötC activity, and a portion of them display a
phase-locked rhythmic activity (Schnell et al., 2011). More-
over, glial cells are essential for rhythmogenesis, since both
fluoroacetate, which selectively blocks the glial Krebs cycle,
and methionine-sulfoximine, which blocks glutamine synthetase
(Hülsmann et al., 2000; Young et al., 2005; Huxtable et al.,
2010), inhibit rhythmic respiratory burst activity in slices. In
these conditions, addition of isocitrate or glutamine restores
the rhythmic network activity (Hülsmann et al., 2000). Accord-
ingly, methionine-sulfoximine-treated pups displayed a reduced
breathing frequency and a reduced responsiveness to hypercap-
nia (Young et al., 2005). Moreover, glial cells are required not
only for maintaining rhythm generation but also for the response
of the preBötC to neuromodulators or to metabolic demands
(Gourine et al., 2010). For instance, fluoroacetate and methionine-
sulfoximine reduce preBötC responsiveness to ATP (Huxtable
et al., 2010), and preBötC glial cells can respond to preBötC
neuromodulators including 5-HT and substance-P (Härtel et al.,
2009).

I conclude that continuous neuromodulation exerts a powerful
influence on the preBötC; to the extent that, in some cases, it is nec-
essary for rhythm generation. Continuous neuromodulation tunes
the excitability of the preBötC to respond to different demands and
also determines the weight of specific neuronal types or specific
synaptic interactions in the generation of network dynamics. This
property could allow the preBötC to adopt an infinite number of
conformations based on the same circuit (neural units and con-
nections). Moreover, the evidence that one neuromodulation is
determined by tonic control exerted by other neuromodulators,
supports the notion that the intrinsic and synaptic properties of
the preBötC are not fixed, but can change in a state-dependent
manner. The levels of modulation in the preBötC would deter-
mine the availability of neural properties (intrinsic, synaptic, or
both) that can participate in network dynamics or are susceptible
to subsequent neuromodulation.
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