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A B S T R A C T   

Toxoplasma gondii is a neurotropic single–celled zoonotic parasite that can infect human beings and animals. 
Infection with T. gondii is usually asymptomatic in immune–competent individual, however, it can cause 
symptomatic and life–threatening conditions in immunocompromised individuals and in developing foetuses. 
Although the mechanisms that allow T. gondii to persist in host cells are poorly understood, studies in animal 
models have greatly improved our understanding of Toxoplasma–host cell interaction and how this interaction 
modulates parasite proliferation and development, host immune response and virulence of the parasite. T. gondii 
is capable of recruiting the host endoplasmic reticulum (ER), suggesting it may influence the host ER function. 
Herein, we provide an overview of T. gondii infection and the role of host ER during stressed conditions. 
Furthermore, we highlight studies that explore T. gondii’s interaction with the host ER. We delve into how this 
interaction activates the unfolded protein response (UPR) and ER stress-mediated apoptosis. Additionally, we 
examine how T. gondii exploits these pathways to its advantage.   

Introduction 

Toxoplasma gondii is a widespread obligatory intracellular parasite 
that infects many vertebrate animal hosts and humans (Jones et al., 
2014; Meng et al., 2013; Parlog et al., 2015). In general, infections 
caused by T. gondii are usually asymptomatic that result in a benign 
self–limiting disease in immunocompetent hosts (Robben et al., 2002); 
however, in chronic immunocompromised individuals, in particular HIV 
patients, T. gondii can cause severe and fatal tissue damage (Niedelman 
et al., 2012; Robben et al., 2002). Again, infection acquired during 
pregnancy can cause severe damage to the foetus, such as long–term 
disabling sequelae, stillbirths or foetal death (Montoya and Liesenfeld, 
2004). Due to its preference for neural cells, Toxoplasma infection is 
responsible for neurological manifestations or acute brain damage. Chief 
among them is the toxoplasmosis encephalitis (TE) (An et al., 2018; 
Petersen, 2007; Wan et al., 2015). 

Despite its well–characterized sexual life cycle and broad geographic 
range resulting in a rich genetic diversity (Su et al., 2012), the parasite 
strains of T. gondii comprise mainly of three genotypes, namely, Types I, 
II and III strains which vary substantially in virulence (Howe and Sibley, 

1995; Saeij et al., 2005; Sibley and Boothroyd, 1992). Type I variants are 
more likely to be associated with severe toxoplasmic retinochoroiditis 
(Grigg et al., 2001), whereas the unconventional genotypes usually 
result in acute toxoplasmosis in healthy individuals (Bossi and Bricaire, 
2004; Hosseini et al., 2018). Type I clonal types are highly lethal to 
out–bred mice (LD100 = 1), whereas types II and III strains are signif-
icantly less virulent with LD50 ≥ 103 and LD50 ≥ 105, respectively 
(Saeij et al., 2005; Sibley and Boothroyd, 1992). The genotype Chinese 1 
(ToxoDB#9) is dominant among the ten types identified in China. It is 
quite different from the clonal lineages reported in the other continents 
of the world (Cheng et al., 2017). 

T. gondii invasion, parasitophorous vacuole formation and host cell 
interactions 

Like other obligate intracellular parasites, T. gondii actively pene-
trates all nucleated cells and divides within a parasitophorous vacuole 
formed shortly after invasion, bordered by a membrane (PVM) (Peng 
et al., 2011). T. gondii tachyzoite is the invasive stage that spreads both 
in the intermediate and final hosts during the acute stage of infection 
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(Al-Malki, 2021). The membrane of the parasite is covered with several 
glycosylphosphatidylinositol (GPI)–anchored surface antigens, named 
SAG (surface antigens). SAG1 protein recognizes sulphated pro-
teoglycans on the host cell and serves as attachment ligand (Grimwood 
and Smith, 1992; He et al., 2002; Mineoand Kasper, 1994). The apical 
end of tachyzoites contain specialized secretory organelles which 
mediate host attachment, penetration and parasitophorous vacuole 
formation. These organelles include as micronemes (MICs), rhoptries 
(ROPs) and dense granule proteins (GRAs) (Fig. 1) (Boothroyd and 
Dubremetz, 2008; Dubremetz et al., 1998). Micronemes and rhoptry 
neck proteins (RONs) are involved in attachment and invasion, and 
particularly mediate the formation of the moving junction (MJ), a 
ring–like structure, where the parasite and host membranes are posi-
tioned in close proximity during invasion (Besteiro et al., 2011; Boot-
hroyd and Dubremetz, 2008; Shen and Sibley, 2012). T. gondii’s own 
actin–myosin motor drives parasite invasion which is independent of the 
host cytoskeleton (Sibley, 2011). Following the formation of the moving 
junction, the parasite releases the rhoptry bulb proteins (ROPs) into the 
host cell cytosol and invaginates the host cell membrane leading to the 
formation of the parasitophorous vacuole (PV) (phagosome) (Travier 
et al., 2008). The dense granule proteins (GRAs) secreted after PV for-
mation and are continually secreted into the PV during tachyzoite 
replication (Fig. 2) (Craver and Knoll, 2007; Sibley, 2011). The para-
sitophorous vacuole is a special membrane that protect parasite from 
degradation via the endocytic pathway. It contains an intravacuolar 
tubular network (IVN) connecting parasites bordered by the para-
sitophorous vacuole membrane (PVM). The IVN and GRAs are thought 
to participate in nutrient acquisition and maintain PV structure during 
parasite replication (Craver and Knoll, 2007; Dubremetz et al., 1993; 
Sibley, 2011; Travier et al., 2008). 

As a very successful intracellular parasite, T. gondii can invade most 
nucleated cells, including immune cells, and rapidly replicate within the 
PV. The parasite’s secretory proteins modulate host cell signalling 
pathways to enable nutrient acquisition for their growth and survival 
(Hakimi et al., 2017). Furthermore, several parasite proteins located on 
the PVM have been demonstrated to recruit and interact with host 

organelles, such as endoplasmic reticulum (ER) (Goldszmid et al., 2009; 
Sinai et al., 1997) mitochondria (Blank et al., 2021; Pernas et al., 2018) 
and the Golgi apparatus (Deffieu et al., 2019). 

The host ER and unfolded protein response 

To gain insights into the impacts of T. gondii–host ER interaction on 
both ER and host cells during infection, it is imperative to understand 
the functions of the ER. The ER is an intracellular organelle or a network 
of tubules and flattened sacs that plays a major role in the biosynthesis, 
production, and transport of cellular organic molecules, such as pro-
teins, carbohydrates, and lipids, and also involved in the storage of 
calcium and calcium signalling (Braakman and Hebert, 2013; Rapoport, 
2007; Reid and Nicchitta, 2015; Westrate et al., 2015). Moreover, the ER 
is the main site of peptide loading for antigen presentation by major 
histocompatibility complex (MHC) molecules (Roy et al., 2006). An 
important feature of the ER is the folding of secretory and membrane 
proteins that takes place within the ER of all eukaryotic species 
(Schröder, 2006). Efficient protein folding is accelerated by calcium 
dependent ER–resident protein folding chaperones. One of the best 
characterized ER–resident chaperone proteins is GRP–78/BiP (Bind-
ing–immunoglobulin Protein) (Adams et al., 2019). 

Despite the efficient ER protein folding capability, cellular distur-
bances such as infections, metabolic alterations, calcium efflux, reactive 
oxygen species (ROS), gene mutations and protein aggregates can 
compromise the ER homeostasis. These cellular alterations cause a 
build–up of significant amounts of misfolded proteins and/or unfolded 
proteins within the ER. This phenomenon leads to endoplasmic reticu-
lum stress (Zhang and Kaufman, 2008). In response to the stress, cells 
then trigger a cellular adaptive mechanism called the unfolded protein 
response (UPR), thereby activating ER stress sensors to restore ER ho-
meostasis and reduce protein load (Bravo et al., 2013; Liu and Kaufman, 
2003). 

In mammalian cells, the main ER–localized transmembrane signal-
ling proteins or stress sensors involved in the activation of UPR include 
activating transcription factor 6 (ATF6), protein kinase R (PRK)–like ER 

Fig. 1. Representation of a T. gondii tachyzoite illustrating the internal structures and secretory organelles. Adapted from Blader et al. (2015).  

O. Cudjoe et al.                                                                                                                                                                                                                                 



Current Research in Microbial Sciences 6 (2024) 100223

3

kinase (PERK), and inositol-requiring protein 1 (IRE1)–α (Schröder and 
Kaufman, 2005; Zhang and Kaufman, 2008). GRP–78 binds to luminal 
portion of these transmembrane proteins and inhibits their activation in 
normal cells (Bertolotti et al., 2000). An increase in the synthesis of 
proteins or build–up of misfolded proteins inside the ER lumen recruits 
GRP–78 from the transmembrane proteins and bind to these proteins. 
This process promotes transmembrane protein phosphorylation and 
activation of UPR leading to the production of target genes involved in 
ER-associated protein degradation (ERAD) and protein folding (Berto-
lotti et al., 2000; Rutkowski and Kaufman, 2004) (Fig. 3). 

In addition to the robust and well–coordinated activation of the 
signal transducers in response to ER stress, UPR can initiate adaptive 
mechanisms to activate host immune response via inflammatory path-
ways involving nuclear factor kappa–light–chain–enhancer of activated 
B cells (NF–κB) and mitogen activated protein kinase (MAPK) family 
proteins c–Jun NH2–terminal kinase (JNK) to restore cellular homeo-
stasis (Fig. 4) (Amen et al., 2019; Sprenkle et al., 2017). 

The primary aim of UPR is to alleviate ER stress; however, persistent 
activation or chronic ER stress can initiate apoptotic cell death via the 
apoptosis pathways (Oyadomari et al., 2002). Continuous activation of 
PERK and ATF6 upregulates C/EBP–homologous protein (CHOP), which 
promotes cell death (Novoa et al., 2001; Yoshida et al., 2000). The 
interaction between IRE1α and TRAF2 activates apoptosis signal-
–regulating kinase (ASK–1), activating JNK, p38, and mitochon-
dria/Apaf1–dependent caspases (Almanza et al., 2019; Nishitoh et al., 
2002). Furthermore, TRAF2 activates caspase 12, a pro–death protease 
located on the ER membrane, which in turn activates caspase 9. Caspase 
9 activates caspase 3, which ultimately leads to cell death (Liu and 
Kaufman, 2003). IRE1α activation allows the RNase domain to cleave 
microRNA (miR)–17, causing apoptosis via IL–1 production and 

caspase–1β activation. (Lerner et al., 2012). 
Taken together, UPR plays a critical function in cell survival regu-

lation. It is the function of the UPR to restore homeostasis within the ER 
lumen, however, unremitted ER stress could lead to inflammation 
which, if left untreated, can lead to apoptosis. 

T. gondii secretory proteins and host cell endoplasmic reticulum interaction 

The non–fusogenic parasitophorous vacuole provides a conducive 
environment for parasite growth, replication, and evasion of host im-
mune response, whilst the permeability of the PVM allows for the 
acquisition of certain molecules and nutrients since T. gondii is auxo-
trophic (Coppens, 2014; de Souza and Attias, 2015; Paredes-Santos 
et al., 2018). Morphological observations have demonstrated that host 
cell endoplasmic reticulum interacts with T. gondii PV and PVM (de Melo 
et al., 1992; Håkansson et al., 2001; Sinai et al., 1997), indicating that it 
may impact the function of the ER. Unlike the mitochondria, fewer 
studies have identified some secretory proteins involved the PV and host 
ER association. However, such intimate interaction remains enigmatic. 
For example, Ma and collaborators demonstrated an interaction be-
tween T. gondii FLAG–tagged GRA6 protein and human influenza hem-
agglutinin (HA)–tagged calcium modulating cyclophilin ligand 
(CAMLG, an ER anchoring protein that regulates Ca2+ permeability and 
signal response generation) via co–immunoprecipitation (Ma et al., 
2014). Using indirect immunofluorescence technique, Lin et al. 
observed the localization of GRA1 in the ER of ER–GRA1–RAW264.7 
cells (Lin et al., 2010). In addition, interactions between GRA3 as well as 
GRA5 proteins and CAMLG of host cell ER were observed in HeLa and 
Neuro2a cells using immunoblotting and yeast–two hybridization assay, 
respectively (Ahn et al., 2006; Kim et al., 2008; Obed et al., 2022). A 

Fig. 2. Invasion/entry of the tachyzoite of T. gondii into the host cell. T. gondii re–orientates and aligns its apical pole with the membrane of the host cell. The apical 
end of the microneme secretes microneme proteins (MIC adhesins), which enables attachment to host cell glycosaminoglycans (GAGs). Together with micronemes, 
RON proteins form a moving junction that progresses along the parasite. This moving junction is crucial for the PV’s firm anchorage to the cytoskeleton of the host 
cell, as well as the acquisition of host proteins that are incorporated into the PVM. Rhoptry proteins (ROP) play a critical role in the PVM formation, while the dense 
granule proteins (GRA) are released after PV formation and allow the PV to become functional. Adapted from Mercier and Cesbron-Delauw (2012). 

O. Cudjoe et al.                                                                                                                                                                                                                                 



Current Research in Microbial Sciences 6 (2024) 100223

4

previous study also suggested that GRA3 protein, located on the PVM, 
possesses a cytoplasmic dilysine (KKXX) ER–retrieval motif which me-
diates its association with the endoplasmic reticulum (Henriquez et al., 
2005). The Rhoptry protein (ROP2) of T. gondii contains both mito-
chondria and ER–target domains, which are released into the host–cell 
cytosol and become phosphorylated (Carey et al., 2004; Sinai and 
Joiner, 2001). A direct interaction between ROP 18 and reticulon 1–C (a 
neuroendocrine-specific protein (NSP) localized on the ER membrane) 
was demonstrated by yeast two–hybrid technique and GST pulldown 
assay (Hosseini et al., 2018). Again, yeast two–hybrid assay revealed 
that ROP18 targets ATF6β via its interaction with the N–terminal 
portion (Yamamoto et al., 2011). Immunofluorescence results showed 
the restriction of GRA15 to the ER, specifically bound to stimulator of 
interferon genes (STING) (Wang et al., 2019). 

T. gondii activates UPR and ER–Stress mediated apoptosis 

Due to the interaction between Toxoplasma and ER, T. gondii infec-
tion results in perturbation in proper protein folding and assembly 
within the ER which in turn activates UPR sensor proteins with the main 
aim of restoring intracellular ER homeostasis. However, unremitted UPR 
promotes inflammation and ultimately activates ER–stress mediated 
apoptosis via the activation of CHOP, JNK, caspase 12 and caspase 3 
(Nakagawa et al., 2000; Shore et al., 2011; Sprenkle et al., 2017; Urano 
et al., 2000). GRA15II activates NF–κB signalling pathway via phos-
phorylation of IκBα and upregulate the production of inflammatory 

cytokines, leading to Th–1 type immune response (Rosowski et al., 
2011). GRA15 from type II strains (GRA15II) induces host innate im-
mune response via cGAS/STING signalling pathway. GRA15 promotes 
STING activation which in turn interacts with TBK1 kinase which 
phosphorylates IRF3/IRF7 to trigger the transcription of interferon 
(IFN) involved in innate immune response. The loss of T. gondii GRA15II 
resulted in an elevated parasite burden in the spleen of infection with the 
wild type (Wang et al., 2019). In dendritic cells, T. gondii infection in-
duces IRE1α activation which results in activation of XBP1s which 
promotes the production of IL–6 and IL12–p40 pro–inflammatory cy-
tokines. In addition, IRE1α activation promoted MHC class I antigen 
presentation to control toxoplasma infection (Poncet et al., 2021). Pre-
vious studies identified several PV and PVM proteins that are capable of 
inducing apoptosis in infected cells via the ER–stress pathways. 
TgCtwh3 and RH strains activate apoptosis signal pathways in C17.2 
cells which upregulates CHOP, cleaved caspase–12, and p–JNK (Zhou 
et al., 2015). GRA3Wh6 promoted ER–stress induced neuronal cell 
apoptosis via the PERK signalling pathway (Obed et al., 2022). GRA15II 
upregulated ER stress and ER stress apoptosis–related proteins in 
choriocarcinoma JEG–3 cells via the IRE1α signalling pathway (Wei 
et al., 2018). Wang and collaborators also demonstrated that T. gondii 
excreted–secreted antigens (ESA) induce neural stem cell (NSC) 
apoptosis via the ER stress Signaling pathway by activating caspase–12, 
CHOP and JNK (Wang et al., 2014). Furthermore, rhoptry protein (ROP 
18–RH) elevated the expression levels of apoptosis associated proteins, 
cleaved caspase–12, cleaved caspase–3, and CHOP in neuro2A cells via 

Fig. 3. Unfolded Protein Response. The dissociation of BiP/ GRP78 away from the ER transmembrane signalling stress sensors triggers PERK, ATF6 and IRE–1α 
activation in response to ER stress. PERK, a type I transmembrane protein, handles the immediate ER stress response through its signalling pathway. Dimerization of 
PERK activates cytosolic kinase and trans-autophosphorylates eukaryotic translation-initiation factor 2α (eIF2α), inhibiting protein syntheses. However, phos-
phorylation of eIF2α (eIF2α-P) selectively increases ribosome translation downstream, leading to the translation of other mRNA subunits, including ATF4, which 
initiates an antioxidant response and regulates ER homeostasis. ATF6 is a 90 kDa type II ER transmembrane protein with a carboxyl terminus acting as an intra-
luminal sensor and an amino terminus acting as a bZIP transcription factor. Recruitment of GRP–78 from the luminal domain allows ATF6 to translocate from the 
endoplasmic reticulum to the Golgi apparatus, where it is cleaved by specialized enzymes (site–1 and site–2 proteases(SIP/S2P)) to release ATF6 cytosolic fragment, 
which increases gene production for ER-associated protein degradation (ERAD) and folding chaperones. IRE-1α is a type I transmembrane signal activator protein 
similar to PERK. It possesses both kinase and site–specific endoribonuclease (RNase) activity. ER stress causes IRE1 to dimerize, activate its kinase domain, and 
catalyzes the excision of a 26-base intron from the mRNA encoding the X–box binding protein 1 (XBP-1), regulating genes involved in ERAD and protein folding. 
Adapted from Sprenkle et al. (2017). 

O. Cudjoe et al.                                                                                                                                                                                                                                 



Current Research in Microbial Sciences 6 (2024) 100223

5

the ER–stress pathway (Wan et al., 2015). Phosphorylation of RTN1–C 
by ROP18 of type 1 strain activates ERS by inhibiting histone deacety-
lase activity and subsequently induces apoptosis in Neuro2a cells(An 
et al., 2018). 

How T. gondii modulates UPR and immune response 

The pathogenicity of any pathogen is mediated by establishing a 
balance between evasion and modulation of host immune response, as 
activation of either proinflammatory or anti–inflammatory responses 
can lead to parasite degradation and clearance, or parasite proliferation 
and ultimately cause cell death, respectively. Several intracellular 
pathogens and viruses alike can hijack the host ER and modulate 
downstream immune responses and specific arms of the UPR indepen-
dently of the other pathways to promote parasite survival and replica-
tion (Bettigole and Glimcher, 2015; Echavarría-Consuegra et al., 2021; 
Smith, 2018). For example, chikungunya virus targets the PERK 
pathway and inhibits the phosphorylation of eIF2α to maintain viral 
protein translation and to circumvent CHOP–induced apoptosis of the 
host cells (Rathore et al., 2013). Likewise, Toxoplasma may be able to 
influence important host cell activities such as antigen presentation and 
apoptosis suppression by recruiting host organelles to the PV (Coppens 
and Romano, 2018). For example, T. gondii ROP I8 (Type 1) interaction 
with ATF6β transcription factor leads to the phosphorylation of ATF6β 
and compromises CD8+ T cell immune activation and function in 

dendritic cells, thus prevent antigen presentation for immune clearance 
(Yamamoto et al., 2011). Poncet and collaborators demonstrated that 
bone marrow derived dendritic cells infected with live Toxoplasma 
parasites led to suppression of CHOP and the ATF6 pathway (Poncet 
et al., 2021). Infection with T. gondii results in the activation and sub-
sequent degradation of IκB, which in turn activates NF–κB signalling 
pathway, however, it inhibits of NF–κB activity (Shapira et al., 2005, 
2002). Du and collaborators showed that ROP18 phosphorylates and 
degrades NF–κB p65. Degradation of p65 inhibits its translocation to the 
nucleus and subsequent termination of the NF–κB pathway, thus 
supressing the inflammatory cytokine expression levels (Du et al., 2014). 
Toxoplasma modifies the shape of infected cells by interacting with 
IRE1–filamin A, which leads to cytoskeletal remodelling and a hyper-
migratory phenotype that facilitates parasite propagation across many 
organs of the infected host (Augusto et al., 2020). 

Concluding remarks and future directions 

Toxoplasma gondii can invade all nucleated cell types and can cause 
severe diseases especially in immune–compromised patients and neo-
nates. T. gondii secretes proteins which interacts with several organelles 
within the infected cell and manipulate many signalling pathways to 
achieve persistence within the host cells. Despite many advances in the 
research of ROP and GRA proteins of T. gondii and their interaction with 
host cell organelles, only a few have studied the parasite’s interaction 

Fig. 4. Apoptosis and Inflammatory Signal Pathways Associated with Unremitted ER Stress and UPR. Chronic ERS triggers both inflammatory and apoptotic 
pathways of the UPR. IRE–1α and PERK both trigger UPR–mediated inflammation and apoptosis. Dimerization of PERK phosphorylates eIF2α which attenuates global 
mRNA translation. However, downstream signalling increases the expression of inflammatory genes. Furthermore, the activation of CHOP by p–eIF2α can also 
initiate inflammation and apoptosis. Prolonged IRE–1α activation recruits (TNF–α)–receptor–associated factor 2 (TRAF2) and MAP kinase (MAPKKK) (ASK1), causing 
downstream signalling activation of NF–κB and JNK which upregulate the transcription of inflammatory genes. PERK upregulates CHOP to promote host cell 
apoptosis. The formation of IRE–1α and TRAF2 complex induces apoptosis via caspase activation. Adapted from Sprenkle et al. (2017). 
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with host cell endoplasmic reticulum. So far, studies that focused on the 
interaction between T. gondii and host ER not only did they show that 
such interaction was necessary for nutrient acquisition and growth of 
parasite within the cell, but also demonstrated that this interaction can 
activate UPR and subsequently initiate apoptotic cell death via apoptotic 
signalling pathways. T. gondii, however, has developed strategies to 
co–opt UPR–mediated inflammation and apoptosis to promote parasite 
survival and dissemination. Therefore, further studies can identify other 
secretory proteins that interaction with the ER and whether such in-
teractions have significant impacts on host cell immune response and 
induce apoptosis via ER–stress pathway. 
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