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Abstract
Functional data methods are often applied to longitudinal data as they provide a more

flexible way to capture dependence across repeated observations. However, there is

no formal testing procedure to determine if functional methods are actually necessary.

We propose a goodness-of-fit test for comparing parametric covariance functions

against general nonparametric alternatives for both irregularly observed longitudi-

nal data and densely observed functional data. We consider a smoothing-based test

statistic and approximate its null distribution using a bootstrap procedure. We focus

on testing a quadratic polynomial covariance induced by a linear mixed effects model

and the method can be used to test any smooth parametric covariance function. Per-

formance and versatility of the proposed test is illustrated through a simulation study

and three data applications.

KEYWORDS
functional data analysis, functional principal components analysis, hypothesis testing, linear mixed effects

models, longitudinal data analysis

1 INTRODUCTION

Functional data have become increasingly common in fields

such as medicine, agriculture, and economics. Functional data

usually consist of high frequency observations collected at

regular intervals, see Ramsay and Silverman (2002, 2005) for

an overview of methods and applications. By comparison,

longitudinal data typically consist of repeated observations

collected at a few time points varying across subjects. In

recent years, functional data methods have been success-

fully extended and applied to longitudinal data (James et al.,

2000; Yao et al., 2005). While these methods are more flexi-

ble, their estimation and interpretation are more cumbersome

than longitudinal methods and require more sampling units

or observations for accurate and reliable estimates. Thus, it is
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natural to question if such flexibility is truly necessary. This

article focuses on comparing longitudinal data methods with

functional data methods. For example, we consider the case of

testing if a simple linear mixed effects model is sufficient for

longitudinal data or if a more complex functional data model

is required.

This work is motivated by the CD4 cell count dataset from

the Multicenter AIDS Cohort Study (Kaslow et al., 1987).

CD4 count is a key indicator for AIDS disease progression,

and understanding its behavior over time is critical for moni-

toring HIV+ patients. The dataset is highly sparse, with 5 to

11 irregularly-spaced observations per subject. CD4 counts

have been extensively analyzed using longitudinal data meth-

ods, e.g., semiparametric and linear random effects models

(Taylor et al., 1994; Zeger and Diggle, 1994; Fan and Zhang,
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2000). Recently, functional data methods have also been

applied to this data (Yao et al., 2005; Goldsmith et al., 2013;

Xiao et al., 2018). While the nonparametric functional data

methods are highly flexible and better adapt to subject-specific

patterns, they are more difficult to implement and interpret

compared to the parametric approaches. Therefore it is of

interest to test whether the simpler longitudinal methods are

sufficient for the data. To the authors’ best knowledge, no

formal testing procedure exists for this application.

The inherent difference between functional and tradi-

tional longitudinal data methods is in the correlation model

between repeated observations. For functional methods, the

covariance within a subject is assumed to be smooth with

an unknown nonparametric form. The covariance can be esti-

mated by smoothing the sample covariance (Besse and Ram-

say, 1986; Yao et al., 2005; Xiao et al., 2018) or constructing

a reduced rank approximation by estimating basis functions

from smoothed sample curves (James et al., 2000; Peng and

Paul, 2009). In contrast, longitudinal data approaches typi-

cally assume a simple parametric covariance structure with

a few parameters, such as autoregressive or exponential (see

Diggle et al. (2002) for an overview), or induced by a random

effects model (Laird and Ware, 1982).

Existing work on testing parametric versus nonparamet-

ric functions is limited to density and regression functions

for the response variable, but has been extended to settings

such as semiparametric and functional models; see González-

Manteiga and Crujeiras (2013) for a recent review. Hardle

and Mammen (1993) propose a smoothing-based goodness-

of-fit statistic for regression functions, derive the asymptotic

normal distribution, and develop a “wild” bootstrap algo-

rithm for finite samples. Comparisons have also been applied

to functional regression for model diagnostics and evalu-

ating assumptions (Chiou and Muller, 2007; Bucher et al.,

2011) and testing functional coefficients (Swihart et al., 2014;

McLean et al., 2015; Kong et al., 2016). The proposed method

is an extension of smoothing-based methods to test the form

of the covariance function.

For high-dimensional multivariate data, where observa-

tion points are regular and balanced (same for all subjects), a

number of methods exist to test an identity or spherical covari-

ance matrix against an unstructured alternative (Ledoit and

Wolf, 2002; Bai et al., 2009). Recently, Zhong et al. (2017)

developed a general goodness-of-fit test that can be applied to

many common parametric covariances. However, these meth-

ods are ill-suited for the comparison between functional and

longitudinal data models because they (a) fail to account for

the underlying smoothness of the process and (b) require data

observed at fixed time points for all subjects, i.e., a (fixed)
common design The CD4 dataset has an irregular design

where time points differ for each subject, so cannot be tested

with these approaches. Note that the random design, where

observed time points are independent between and within the

subjects, is a special case of the irregular design. Common or

random designs are typically assumed in theoretical studies of

functional data (Cai and Yuan, 2011).

The objective of this article is to develop a testing proce-

dure for comparing parametric longitudinal versus nonpara-

metric functional data covariance models applied to repeated

measured data with irregular and/or highly frequent sampling

design. Note that longitudinal data with only a few repeated

measurements per subject with a regular sampling design is

not within the scope of this article. Selecting an adequate

covariance model is critical, because model misspecification

can bias estimation and inference, while an unnecessarily

complex model can slow computation and interfere with

model interpretation. We propose a goodness-of-fit test based

on the difference between the estimated parametric and non-

parametric covariances, inspired by Hardle and Mammen

(1993). Compared to Zhong et al. (2017) for high-dimensional

multivariate data, our test statistic can be evaluated using a

more flexible modeling approach that accounts for general

designs and exploits the underlying smoothness of repeated

observations. However, deriving the distribution of the test

statistic is challenging and we use bootstrapping to approxi-

mate the null distribution. To demonstrate performance and

versatility of the proposed test, we present a simulation study

and three data applications.

The remainder of this article is organized as follows.

Section 2 presents the statistical model and hypothesis test,

Section 3 details the proposed test, and Section 4 describes

our implementation. Section 5 outlines extensions to general

smooth covariance functions. Section 6 presents a simula-

tion study. Section 7 details three applications to diffusion

tensor imaging, child growth, and CD4 cell count. Finally,

Section 8 summarizes the article and discusses limitations of

the proposed test.

2 STATISTICAL FRAMEWORK

Consider functional or longitudinal data {(𝑡𝑖𝑗 , 𝑌𝑖𝑗) ∈  ×ℝ ∶
𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚𝑖} where 𝑖 denotes the subject index,

𝑗 denotes the visit index, and 𝑌𝑖𝑗 is the measurement for the

𝑖-th subject at time 𝑡𝑖𝑗 . Here, 𝑛 is the number of subjects and

𝑚𝑖 the number of observations for the 𝑖-th subject, which can

vary across subjects. Assume that  = [𝑎, 𝑏] is a closed and

compact domain. Data are often observed with noise, so we

posit the model

𝑌𝑖𝑗 = 𝜇(𝑡𝑖𝑗) +𝑋𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 . (1)

Here 𝜇(𝑡) is a smooth mean function, 𝑋𝑖 is a zero-mean Gaus-

sian random function independent between subjects, and 𝜖𝑖𝑗
is Gaussian white noise independently and identically dis-

tributed with zero mean and variance 𝜎2, independent of 𝑋𝑖.
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Let (𝑡, 𝑡′) = 𝐶𝑜𝑣{𝑋𝑖(𝑡), 𝑋𝑖(𝑡′)} be the covariance function of

𝑋𝑖. Assume that  is a smooth, positive semidefinite bivariate

function defined on  2.

We are interested in the form of the covariance, and would

like to test the hypothesis that  has a known parametric form

against a general alternative. Motivated by the CD4 dataset,

which has previously been fit with a linear random inter-

cept and slope model, we focus on the quadratic polynomial

function

0(𝑡, 𝑡′) = 𝜎20 + 𝜎01(𝑡 + 𝑡′) + 𝜎21 𝑡𝑡
′, (2)

where (𝜎20 , 𝜎01, 𝜎
2
1 ) are unknown parameters. Because this

covariance is induced by the linear random effects model

𝑋𝑖(𝑡) = 𝑏0𝑖 + 𝑏1𝑖𝑡, where 𝒃𝑖 = (𝑏0𝑖, 𝑏1𝑖)𝑇 are random effects

with zero mean and 𝑉 𝑎𝑟(𝑏𝑖0) = 𝜎20 , 𝑉 𝑎𝑟(𝑏𝑖1) = 𝜎21 , and

𝐶𝑜𝑣(𝑏𝑖0, 𝑏𝑖1) = 𝜎01, testing 0 is equivalent to testing if

a linear random (or mixed) effects model is sufficient for

the data. Note that this is a specific case of the general

linear random effects model 𝑋𝑖(𝑡) =
∑𝐾

𝑘=1 𝑏𝑖𝑘𝜙𝑘(𝑡) for ran-

dom effects 𝑏𝑖𝑘 with zero mean and variance 𝜎2
𝑘

and known

functions 𝜙𝑘(𝑡), which has covariance function 0(𝑡, 𝑡′) =∑𝐾
𝑘=1 𝜎

2
𝑘
𝜙𝑘(𝑡)𝜙𝑘(𝑡′) + 2

∑
𝑘<𝑘′ 𝜎𝑘𝑘′𝜙𝑘(𝑡)𝜙𝑘′ (𝑡′), where 𝜎𝑘𝑘′ =

𝐶𝑜𝑣(𝑏𝑖𝑘, 𝑏𝑖𝑘′ ). While we focus on (2), the proposed test can

be easily adapted for the more general random effects case

or any smooth parametric covariance with finite parameters,

as discussed in Section 5. Ideally, scientific or expert knowl-

edge about the underlying process should guide the choice of

0. If such information is unavailable, a commonly used and

interpretable structure would be preferred.

Formally, the hypothesis test can be written as

𝐻0 ∶ (𝑡, 𝑡′) = 0(𝑡, 𝑡′) versus 𝐻𝐴 ∶ (𝑡, 𝑡′) ≠ 0(𝑡, 𝑡′). (3)

Under the null hypothesis, the covariance has a specific para-

metric form with finite parameters. Under the alternative

hypothesis, the covariance function is assumed only to be

smooth and positive semidefinite. This flexibility may better

capture heterogeneity across subjects but is hard to estimate

and interpret compared to a parametric model. Therefore, it is

desirable to test goodness-of-fit for these two types of mod-

els. In the following section, we propose a distance-based

goodness-of-fit test for (3) that can be applied to functional

data with either a dense common or sparse irregular sampling

design.

3 SMOOTHING-BASED TEST

We propose a test statistic based on the distance between the

covariance functions estimated under the null and alternative

hypotheses, respectively. In the remainder of this section, we

describe covariance estimation under the null and alternative

hypotheses, and then introduce our test statistic. The smooth

mean 𝜇(𝑡) can be estimated non-parametrically with spline

smoothing (Ruppert et al., 2003; Wood, 2003), allowing us

to consider only the de-meaned data 𝑌𝑖𝑗 = 𝑌𝑖𝑗 − 𝜇(𝑡𝑖𝑗) for

modeling 𝑋𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 . See Section 4 for details.

3.1 Null model
Under the null hypothesis,  = 0 is a quadratic polynomial

covariance, corresponding to

𝑋𝑖(𝑡) = 𝑏0𝑖 + 𝑏1𝑖𝑡

(𝑏𝑖0, 𝑏1𝑖)𝑇 ∼ 𝑁

(
𝟎,𝑽0 =

[
𝜎20 𝜎01
𝜎01 𝜎21

])
.

(4)

Here, 𝑋𝑖(𝑡) is a linear random effects model with subject-

specific random intercepts and slopes, 𝑏0𝑖 and 𝑏1𝑖, respec-

tively. Let 𝒀𝑖 be the 𝑚𝑖-length vector of de-meaned observa-

tions for the 𝑖-th subject observed at times 𝒕𝑖 = (𝑡𝑖1,… , 𝑡𝑖𝑚𝑖
)𝑇 ,

and 𝑽𝑖 = [𝟏, 𝒕𝑖]𝑽0[𝟏, 𝒕𝑖]𝑇 + 𝜎2𝑰𝑚𝑖
be the corresponding

covariance matrix, where 𝟏 is a 𝑚𝑖-length vector of ones and

𝑰𝑚𝑖
is a 𝑚𝑖 × 𝑚𝑖 identity matrix. Then the unknown param-

eters in model (4) can be estimated by maximizing the log-

likelihood 𝓁(𝑽0, 𝜎2|𝒀𝑖, 𝒕𝑖) = ∑𝑛
𝑖=1 −

1
2 (log |𝑽𝑖| + 𝒀 𝑇

𝑖
𝑽 −1
𝑖

𝒀𝑖),
where |𝑽𝑖| is the determinant of the matrix 𝑽𝑖, using an

expectation-maximization (EM) or Newton–Raphson algo-

rithm, as outlined in Lindstrom and Bates (1988).

3.2 Alternative model
Under the alternative hypothesis, the covariance function has

a smooth, nonparametric form. Approximate 𝐴 by smooth-

ing the sample covariance using tensor product regression

splines as (𝑡, 𝑡′) =
∑𝐻

ℎ,𝓁=1 𝜃ℎ𝓁𝐵ℎ(𝑡)𝐵𝓁(𝑡′), where {𝐵ℎ(𝑡) ∶
ℎ = 1, 2,… ,𝐻} are a sequence of cubic B-spline basis func-

tions defined over  and 𝜃ℎ𝓁 are coefficients estimated by

minimizing the least squares expression

𝑛∑
𝑖=1

∑
1≤𝑗≠𝑗′≤𝑚𝑖

{
𝑌𝑖𝑗𝑌𝑖𝑗′ −

𝐻∑
ℎ,𝓁=1

𝜃ℎ𝓁𝐵ℎ(𝑡𝑖𝑗)𝐵𝓁(𝑡𝑖𝑗′ )

}2

, (5)

under the natural symmetry constraint that 𝜃ℎ𝓁 = 𝜃𝓁ℎ.

Denote the estimated alternative covariance as ̂𝐴(𝑡, 𝑡′) =∑𝐻
ℎ,𝓁=1 𝜃ℎ𝓁𝐵ℎ(𝑡)𝐵𝓁(𝑡′).

The measurement error, 𝜎2, in equation (1) can be esti-

mated following Yao et al. (2005) and Goldsmith et al. (2013)

by averaging the distance between the diagonals of the raw

sample covariance, i.e., 𝑌 2
𝑖𝑗

for 1 ≤ 𝑗 ≤ 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑛, and

̂𝐴. To mitigate boundary effects, only the middle 50% of 
is considered (Staniswalis and Lee, 1998; Yao et al., 2005).

2 CHEN ET AL.564
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3.3 Test statistic
Using the estimated null and alternative covariances, ̂0 and

̂𝐴, the proposed test statistic is the Hilbert–Schmidt norm

distance

𝑇𝑛 = ||̂𝐴 −̂0||𝐻𝑆, (6)

where ||𝑓 ||𝐻𝑆 =
√

∫ ∫ 𝑓 (𝑡, 𝑡′)2𝑑𝑡𝑑𝑡′ for bivariate func-

tion 𝑓 and ̂0 is the smoothed null covariance estimate

using tensor-product B-splines. That is, replace 𝑌𝑖𝑗𝑌𝑖𝑗′ with

̂0(𝑡𝑖𝑗 , 𝑡𝑖𝑗′ ) in the least squares expression (5) to estimate

𝜃0,ℎ𝑙 = 𝜃0,𝑙ℎ so ̂0(𝑡, 𝑡′) =
∑𝐻

ℎ,𝓁=1 𝜃0,ℎ𝑙𝐵ℎ(𝑡)𝐵𝓁(𝑡′). Using

the smoothed null eliminates the bias from nonparametric

function estimation and is common practice for nonparamet-

ric regression tests; see, e.g., Hardle and Mammen (1993). A

large 𝑇𝑛 indicates that the null parametric covariance approx-

imates the true covariance poorly. The null distribution of 𝑇𝑛
is difficult to derive as estimation of the alternative is based on

second moments of the observed responses. Moreover, even

in settings where the null distribution of distance-based test

statistic is available, Hardle and Mammen (1993) show that

the test statistic converges slowly and recommends bootstrap-

ping instead. In the next section, we propose a wild bootstrap

algorithm (Wu, 1996) for the null distribution of 𝑇𝑛 following

Hardle and Mammen (1993). Note that one may also consider

an empirical version of the proposed test statistic evaluated at

the paired time points (see Web Appendix A for an example);

we focus on (6) throughout this article.

3.4 Approximate null distribution of 𝑻𝒏 via a
wild bootstrap
Denote the 𝑙-th bootstrap sample as {𝑌 (𝑙)

𝑖𝑗
∶ 𝑖 = 1,… , 𝑛, 𝑗 =

1,… , 𝑚𝑖, 𝑡𝑖𝑗 ∈  }, where 𝑌
(𝑙)
𝑖𝑗

= 𝜇(𝑡𝑖𝑗) + 𝑋
(𝑙)
𝑖
(𝑡𝑖𝑗) + 𝜖

(𝑙)
𝑖𝑗

for

the original time points 𝑡𝑖𝑗 . Let 𝜇(𝑡) be the estimated smooth

mean function,𝑋
(𝑙)
𝑖
(𝑡𝑖𝑗) be subject trajectories generated from

the estimated null model in (4), and 𝜖
(𝑙)
𝑖𝑗

be simulated residuals

using the estimated measurement error in Section 3.2. The test

statistic, 𝑇
(𝑙)
𝑛 , can be calculated from the resulting bootstrap

sample, and the process is repeated to obtain an approxima-

tion of the null distribution of 𝑇𝑛. If the observed statistic is

large compared to the null approximation, then reject𝐻0. This

“wild” bootstrap procedure (Wu, 1986) is outlined in Algo-

rithm 1 and is valid in the regression function setting (Hardle

and Mammen, 1993).

4 IMPLEMENTATION

First, estimate the smooth mean 𝜇(𝑡) using thin plate regres-

sion splines (Wood, 2003) using the gam function in the R

Algorithm 1 Parametric bootstrap for null distribution of 𝑇𝑛
1: for 𝑙 ∈ {1,… , 𝐿} do
2: Generate 𝑋

(𝑙)
𝑖
(𝑡𝑖𝑗) = 𝑏

(𝑙)
0𝑖 + 𝑏

(𝑙)
1𝑖 𝑡𝑖𝑗 from (𝑏(𝑙)

𝑖0 , 𝑏
(𝑙)
1𝑖 )

𝑇 ∼
𝑁(𝟎,𝑽0) for 𝑖 ∈ {1,… , 𝑛}, where 𝑽0 is the estimated

parameter matrix under the null hypothesis in (4).

3: Sample 𝜖
(𝑙)
𝑖𝑗

∼ 𝑁(0, 𝜎2) for 𝑖 ∈ {1,… , 𝑛} and 𝑗 ∈
{1,… , 𝑚𝑖}, where 𝜎2 is the measurement error esti-

mated under the alternative model in Section 3.2.

4: Define the 𝑙-th bootstrap dataset as 𝑌
(𝑙)
𝑖𝑗

= 𝜇(𝑡𝑖𝑗) +
𝑋

(𝑙)
𝑖
(𝑡𝑖𝑗) + 𝜖

(𝑙)
𝑖𝑗

.

5: Estimate and subtract the mean function for the boot-

strap data, 𝜇(𝑙)(𝑡).
6: Fit the 𝑙-th bootstrap dataset with model (4) and esti-

mate ̂(𝑙)0 .

7: Fit the 𝑙-th bootstrap dataset with model (5) and calcu-

late ̂(𝑙)
𝐴

.

8: Calculate the test statistic 𝑇
(𝑙)
𝑛 = ||̂(𝑙)

𝐴
−̂(𝑙)0 ||𝐻𝑆 .

9: end for
10: Calculate 𝑝-value= 𝐿−1∑𝐿

𝑙=1 𝕀(𝑇
(𝑙)
𝑛 > 𝑇𝑛), where 𝕀 is an

indicator function with value 1 if the condition is true, and

0 otherwise.

package mgcv (Wood, 2017), and subtract from the data. The

null model in (4) is a standard random effects model that

can be estimated using the lme function in the R package

nlme (Pinheiro et al., 2017). For the least squares expression

in (5) to smooth the alternative and null covariance esti-

mates, we use 𝐻 = 10 cubic B-splines per axis with equally-

spaced interior knots. The choice of 10 B-splines balances

performance and computational speed, see Web Appendix B

for a sensitivity study. While the number of splines needs

only be sufficiently large, additional splines may be needed

if the data is known or observed to be highly wiggly. Cross-

validation or Aikaike information criterion (AIC) may be used

for a formal selection (see Wood (2003) for discussion).

5 EXTENSIONS

5.1 Smooth covariance
Any smooth parametric covariance function can be tested

using the proposed procedure, with modification to the null

model and bootstrap algorithm. For example, consider the

stationary Gaussian or quadratic exponential covariance func-

tion 0(𝑡, 𝑡′) = 𝜃𝑒−ℎ
2∕𝛿2 , where ℎ = |𝑡 − 𝑡′|, and (𝜃, 𝛿) are

parameters to be estimated. The null model can be estimated

using likelihood-based methods, and bootstrap data gener-

ated as 𝒀
(𝑙)
𝑖

= 𝝁𝑖 + 𝑽
(𝑙) 12
0𝑖 𝒛 + 𝝐

(𝑙)
𝑖

, where 𝝁𝑖 is the estimated

mean vector of length 𝑚𝑖, 𝑽
(𝑙)
0𝑖 is the estimated null covari-

ance matrix defined by (𝜃, 𝛿), 𝑿
1
2 is the square root matrix

CHEN ET AL. 3565
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where 𝑿
1
2𝑿

1
2 = 𝑿, 𝒛 is an 𝑚𝑖-length vector of independent

samples from a standard normal distribution, and 𝝐
(𝑙)
𝑖

is an

independent vector of residuals from 𝑁(0, 𝜎2).

6 SIMULATION STUDY

We conduct a simulation study to evaluate performance of

the proposed bootstrap test and two competing methods,

described in Section 6.1, for testing the hypothesis in (3) that

the covariance has a quadratic polynomial form. Data are

generated as

𝑌𝑖𝑗 = 𝜇(𝑡𝑖𝑗) +𝑋𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗

𝑋𝑖(𝑡𝑖𝑗) = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + Δ𝑧𝑖(𝑡𝑖𝑗),
(7)

for 𝑖 = 1,… , 𝑛 subjects and 𝑗 = 1,… , 𝑚𝑖 observations per

subject. The scalar, Δ, controls the magnitude of deviation

from the null model. The mean, 𝜇(𝑡), is set to 0 and the resid-

uals are distributed 𝜖𝑖𝑗 ∼ 𝑁(0, 1), independent of𝑋𝑖. Random

intercepts and slopes are sampled from a bivariate normal

distribution with zero mean, 𝑉 𝑎𝑟(𝑏𝑖0) = 𝑉 𝑎𝑟(𝑏𝑖1) = 1 and

𝐶𝑜𝑣(𝑏𝑖0, 𝑏𝑖1) = −0.5, independent of the non-linear function

𝑧𝑖, defined below. The 𝑡𝑖𝑗 are observed on a grid of 80 equally

spaced points in [−1, 1]. If 𝑚𝑖 = 80, the subject is observed at

all points and if 𝑚𝑖 < 80, observed time points are uniformly

sampled for each subject from the 80 possible points. Tuning

parameters are selected as described in Section 4. Consider a

factorial combination of the following factors:

(1) Observations per subject (𝑚𝑖 = 𝑚): (a) 𝑚 = 80, (b) 𝑚 =
40, (c) 𝑚 = 20, (d) 𝑚 = 10

(2) Deviation from the null model:
(a) Quadratic: 𝑧𝑖(𝑡) = 𝑏2𝑖𝑡

2, 𝑏2𝑖 ∼ 𝑁(0, 1)
(b) Trigonometric: 𝑧𝑖(𝑡) =

∑2
𝑘=1 𝜉𝑖𝑘𝜓𝑘(𝑡),

{𝜓1(𝑡), 𝜓2(𝑡)} = {sin(2𝜋𝑡), sin(4𝜋𝑡)},
𝜉𝑖𝑘 ∼ 𝑁(0, 𝜆𝑘), 𝜆1 = 𝜆2 = 1.

For each factor combination, we use𝐿 = 1000 bootstrap sam-

ples per dataset and consider 𝑛 = 100 and 500 subjects, and

𝑛 = 50 for the 𝑚 = 80 setting only. Performance is evaluated

in terms of the empirical type I error rate (size) for nominal

levels 𝛼 = 0.05 and 0.10 based on 5000 simulated datasets,

and power at the 𝛼 = 0.05 level with 1000 simulated datasets.

Results are presented in terms of deviation from the null,

defined as Δ2 ∫ 𝑉 𝑎𝑟{𝑧𝑖(𝑡)}∕𝑉 𝑎𝑟{𝑋𝑖(𝑡)}𝑑𝑡.

6.1 Competing methods
As discussed in Section 1, we are unaware of any existing

methods for testing covariance that can be applied to all func-

tional or longitudinal data settings. In this subsection, we

describe two testing methods that can be applied to specific

scenarios of the hypothesis test in (3).

6.1.1 Direct test
Consider the case where covariance under the alternative

hypothesis has a known, parametric form so the null model

for 𝑋𝑖 is nested within the alternative model. In essence, test

if a more complex covariance better explains the data than the

null covariance. For the quadratic polynomial covariance, an

alternative may be𝐴(𝑡, 𝑡′) = 𝜎20 +𝜎01(𝑡+ 𝑡
′)+𝜎21 𝑡𝑡

′ +𝜎22 𝑡
2𝑡′2.

Then the alternative model can be written as

𝑋𝑖(𝑡𝑖𝑗) = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝑏2𝑖𝑡
2
𝑖𝑗

𝒃𝑖 = (𝑏0𝑖, 𝑏1𝑖, 𝑏2𝑖)𝑇 ∼ 𝑁

⎛⎜⎜⎝𝟎,
⎡⎢⎢⎣
𝜎20 𝜎01 0
𝜎01 𝜎21 0
0 0 𝜎22

⎤⎥⎥⎦
⎞⎟⎟⎠ .

(8)

Note that this is the model for the quadratic deviation setting in

the simulation study. Like the null model, (8) can be estimated

using the lme function in the R package nlme (Pinheiro, et al.,

2017). The hypothesis test is equivalent to testing if 𝑏2𝑖 = 0,

or 𝐻0 ∶ (𝑡, 𝑡′) = 0(𝑡, 𝑡′) ⇔ 𝜎22 = 0 versus 𝐻𝐴 ∶ (𝑡, 𝑡′) ≠
0(𝑡, 𝑡′) ⇔ 𝜎22 > 0.

Testing zero-value variance components is a non-standard

problem because the null hypothesis is on the boundary of the

parameter space. Self and Liang (1987) derive the asymptotic

null distribution of the likelihood ratio test (LRT) for this set-

ting as a mixture of chi-squared distributions. Crainiceanu and

Ruppert (2004) derive the exact finite sample null distribution

for the (R)LRT of mixed models with one random effect, and

Greven et al. (2008) extend this approach to models with mul-

tiple random effects using pseudolikelihood. Because of the

limited sample size in our simulation study, we use the finite

sample null distribution from Greven et al. (2008), which can

be preformed efficiently using the exactRLRT function in the

R package RLRsim (Schiepl and Bolker, 2016).

6.1.2 Multivariate test
The Zhong et al. (2017) test for high-dimensional multivariate

data can be applied to functional data with a common design.

Consider a repeated measures model 𝒀𝑖 = 𝝁+ 𝝐𝑖, where 𝒀𝑖 =
(𝑌𝑖1,… , 𝑌𝑖𝑚)𝑇 is a vector of responses, 𝝁 is a mean vector of

length 𝑚, and residuals are distributed 𝝐𝑖 ∼ 𝑁(𝟎,𝑮). Denote

𝜽0 as the parameter vector defining the covariance matrix

under the null hypothesis, 𝑮0. Let 𝑮𝐴 be the alternative

unstructured covariance.

Based on the squared-Frobenius distance between the null

and alternative covariances, 𝛿(𝜽0) = 𝑡𝑟(𝑮𝐴 − 𝑮0)2, Zhong

et al. (2017) propose the test statistic Λ𝑛 = 𝑇𝑛 − 𝐽𝑛3, where

𝑇𝑛 is an unbiased estimator for 𝛿(𝜽0) and 𝐽𝑛 adjusts for

errors in the estimation of 𝜽0. The hypothesis test in (3)
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can be conducted by testing if Λ𝑛 is significantly larger

than 0. With some assumptions on the covariance struc-

ture, the asymptotic normal and fixed sample weighted-chi

square null distributions can be determined for any paramet-

ric covariance, and we provide derivations for the quadratic

polynomial covariance in Web Appendix C. In our simula-

tion study, the multivariate test can only be applied to the

dense 𝑚 = 80 case, and we use 10,000 samples to approx-

imate the fixed sample null distribution. In Web Appendix

D, we also consider performance of the multivariate test

in less-ideal settings with small 𝑚 and unequally-spaced

data.

6.1.3 Limitations of the competing methods
While both competitors utilize test statistics with known

null distributions, these tests only apply to limited scenar-

ios. The direct test applies when the alternative is known,

parametric, and a superset of the null model. The multi-
variate test only applies to data with a common design and

assumes an unstructured covariance that does not account

for smoothness. Thus, the bootstrap test is expected to be

more powerful than the multivariate test for testing functional

data.

6.2 Simulation results
Table 1 reports the empirical type I error rates for all three

methods. As the multivariate test requires a common sam-

pling design, it can only be applied to the 𝑚 = 80 setting.

We report only the fixed-sample weighted chi-squared dis-

tribution; results for the asymptotic normal distribution were

similar and are presented in Web Appendix D. All three meth-

ods have empirical levels close to the nominal levels, although

both the bootstrap and direct tests can be slightly conservative

for several settings.

Figure 1 presents simulation results for the quadratic and

trigonometric deviations from the null, by number of obser-

vations per subject, 𝑚. For all methods, power increases with

sample size, particularly as data are more densely sampled

and the covariance is better estimated. As expected, power

depends on how closely the true model matches the specific

alternative assumed by the test. The bootstrap test outper-

forms the multivariate test for all settings because of the

more specific form of its alternative, and has higher power

than the direct test when the direct test has misspecified the

alternative (trigonometric deviation). Conversely, the direct
test has higher power when the parametric alternative is cor-

rectly specified (quadratic deviation). Both the bootstrap and

multivariate tests are better able to detect the trigonometric

deviation because the covariance more obviously deviates

from the null model. Overall, the bootstrap test performs well

in most settings, except when the dataset is small and devia-

tion from the null is small. For example, when 𝑛 = 100 and

𝑚 = 10, the test is underpowered for the quadratic deviation

when signal size is small.

In terms of computational speed, the bootstrap test is,

unsurprisingly, significantly slower than the competitor meth-

ods. A personal laptop with a 2.9 GHz processor took 1–7 min

to run a single iteration, compared to 1 and 0.2 s for the direct
and multivariate tests, respectively, for the null model with

100 subjects. Reducing the density of inputted data or 𝐿 num-

ber of bootstrap samples can decrease computational time,

with some loss of power.

7 APPLICATIONS

7.1 Diffusion tensor imaging
We first consider a dataset of diffusion tensor imaging (DTI)

of intracranial white matter microstructure with dense, com-

mon sampling design for a group of normal and multiple

sclerosis patients. Images of the white matter are depicted

with tract profiles shown in Figure 2 and available in the R
package refund (Goldsmith et al., 2016); see Reich et al.

(2010) for study details. Goldsmith et al. (2011) consider

this dataset for modeling multiple sclerosis disease status,

concluding that inclusion of the tract profile as a functional

TABLE 1 Estimated type I error rates for the bootstrap, direct, and multivariate tests at the nominal 𝛼 = 0.05 and 0.10 levels based on

5000 datasets, by number of subjects (𝑛) and observations per subject (𝑚). The standard error was 0.003 and 0.004 for 𝛼 = 0.05 and 𝛼 = 0.10,

respectively. The multivariate test is applicable for only the dense 𝑚 = 80 setting.

Bootstrap Direct Multivariate
𝒏 𝒎 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟏𝟎 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟏𝟎 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟏𝟎
100 10 0.059 0.126 0.044 0.086 n/a n/a

20 0.045 0.105 0.049 0.098 n/a n/a

40 0.042 0.093 0.049 0.102 n/a n/a

80 0.042 0.091 0.045 0.096 0.053 0.103

500 10 0.047 0.105 0.049 0.096 n/a n/a

20 0.050 0.103 0.049 0.096 n/a n/a

40 0.050 0.100 0.043 0.090 n/a n/a

80 0.044 0.093 0.046 0.096 0.053 0.105
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FIGURE 1 Power under the quadratic (top) and trigonometric (bottom) deviations from the null, by number of observations per subject, 𝑚. Shown

are: bootstrap test (solid), multivariate test (long and short-dash), and direct test (long-dash), for 𝑛 = 50 (light gray), 𝑛 = 100 (dark gray), and 𝑛 = 500
(black) subjects. The multivariate test is not applicable when 𝑚 < 80.

predictor improves model performance compared to a subject-

specific average of the profile. Note that a subject-specific

average is equivalent to the subject-specific intercept in the

null model in (4). We evaluate this conclusion formally by

testing if a quadratic polynomial covariance is sufficient for

modeling the tract profiles, using the bootstrap, multivariate,

and direct tests.

We focus on the baseline tract profiles of the corpus callo-

sum (CCA), associated with cognitive function, for multiple

sclerosis patients, observed on a dense, regular grid of 93

points. After removing subjects with missing observations,

the dataset has profiles from 99 subjects, for a total of 9207

observations. Tuning parameters are selected as described in

Section 4. The observed test statistic for the bootstrap test is

𝑇𝑛 = 0.071 corresponding to 𝑝 < 0.001. The direct test yields

an RLRT statistic of 1160.6 corresponding to 𝑝 < 1 × 10−16.

The multivariate test yields an observed test statistic of Λ𝑛 =
0.058, corresponding to 𝑝 < 0.001 for both the weighted chi-

squared and asymptotic normal distributions. All three tests

support the conclusion that a quadratic polynomial covariance

is inadequate for the data, and that a functional method should

be used.

7.2 Child growth measurements

Next, consider the CONTENTS child growth dataset from

Lima, Peru (Xiao et al., 2018). The dataset contains irreg-

ularly sampled height measurements for 215 children cov-

ering 0 to 729 days after birth, for a total of 8839 obser-

vations (20–50 observations per subject, observed at dif-

ferent time points), shown in Figure 2. Subject trajectories

predicted using functional principal components analysis,

shown in Xiao et al. (2018), exhibit curvature not captured

by a linear parametric model, suggesting that a functional

approach is necessary for the data. We consider this obser-

vation formally by testing the quadratic polynomial covari-

ance for the growth data using the bootstrap and direct
tests.

The observed test statistic for the bootstrap test is

𝑇𝑛 = 494.13, corresponding to 𝑝 = 0.031, while the

RLRT statistic from the direct test is 2205.8, correspond-

ing to 𝑝 < 0.001. Both tests indicate that the para-

metric quadratic polynomial covariance is not sufficient

for the data, and a functional approach should be used

instead.
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FIGURE 2 (left) Diffusion tensor imaging (DTI) of corpus callosum (CCA) baseline tract profiles from 99 multiple sclerosis patients. (middle)

Height measurements (cm) for 215 children from 0 to 729 days after birth. (right) Log-transformed CD4 cell counts from 208 subjects for −18 to 52

months since seroconversion. On each plot, three example trajectories are highlighted in black.

7.3 CD4 count data
Last, we consider the motivating example of CD4 cell counts

described in Section 1 by conducting a formal test of the

quadratic polynomial covariance using the bootstrap and

direct tests. The dataset is available in the R package refund
(Goldsmith et al., 2016) and includes cell counts from −18 to

52 months since seroconversion; we log-transform the counts

to stabilize variability. We consider only subjects with at

least 5 observations and who have log-transformed cell counts

greater than 4, for a total of 1402 observations from 208

subjects (5–11 observations per subject). The cleaned and

log-transformed data are shown in Figure 2.

Because data are sparser than the settings considered in

the full study, we conduct a small simulation study to check

the size and power of the tests. Simulated data are generated

as 𝑌𝑖𝑗 = 𝑋𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 , where 𝑋𝑖(𝑡𝑖𝑗) is defined below, 𝑡𝑖𝑗 are

the time points in the original dataset, and 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2),
where 𝜎2 is the estimated error variance under the alterna-

tive model. The random function 𝑋𝑖(𝑡) is generated from a

multivariate normal distribution with zero-mean and covari-

ance  = (1 − 𝛿)̂0 + 𝛿̂𝐴 + 𝑟1, where ̂0 and ̂𝐴 are the

estimated covariance matrices from the null and alternative

model, respectively, 𝛿 ∈ [0, 1] controls the contribution of

the null and alternative covariances, and 1 is the matrix

generated from the first three eigenfunctions and eigenvalues

of (̂𝐴 − ̂0), with magnitude controlled by 𝑟 ≥ 0. Note that

when 𝛿 = 𝑟 = 0,  is the null covariance, and when 𝛿 = 1 and

𝑟 = 0,  is the alternative covariance. To show how power

changes with deviation from the null model, let 𝛿 = 1 when

𝑟 > 0. Since the bootstrap test is likely to be underpowered

due to sparsity of the data, we also simulate data with double

the number of subjects or double the observations per sub-

ject. Additional subjects were generated using the same set

of observed time points, while additional observations were

added by uniformly sampling from the non-observed time

points for each subject.

TABLE 2 Estimated type I error rates for the bootstrap and direct
tests at the nominal 𝛼 = 0.05 and 0.10 levels based on 5000 datasets,

for data based on the standard CD4 dataset, dataset with double the

number of subjects, and dataset with double the observations per

subject. The standard error was 0.003 and 0.004 for 𝛼 = 0.05 and

𝛼 = 0.10, respectively.

Bootstrap Direct
𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟏𝟎 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟏𝟎

Standard dataset 0.057 0.113 0.046 0.010

Double subjects 0.056 0.108 0.047 0.095

Double observations 0.046 0.101 0.050 0.100
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FIGURE 3 Power for the bootstrap (black) and direct (gray) tests for data based on the standard CD4 dataset (solid), dataset with double the

number of subjects (short dash), and dataset with double the observations per subject (long dash). The vertical dashed line indicates the effective

power of the tests, where data is simulated directly from the estimated alternative covariance (𝛿 = 1, 𝑟 = 0). From left to right, the settings for (𝛿, 𝑟)
are (0, 0), (0.5, 0), (1, 0), (1, 1), (1, 2), and (1, 3).

Table 2 gives the empirical type I error rates based on 5000

simulated datasets, and Figure 3 shows the power from 1000

datasets, for the bootstrap and direct tests. The bootstrap test

is underpowered for the true CD4 dataset due to small sam-

ple size, and doubling the number observations per subject

resolves this problem.

The observed test statistic for the bootstrap test is 𝑇𝑛 =
5.025 corresponding to 𝑝 = 0.100, while the direct test yields

an RLRT statistic of 2.704 corresponding to 𝑝 = 0.0428.

While only the direct test indicates that the quadratic poly-

nomial covariance is not sufficient for the data, Figure 3

shows that the bootstrap test is underpowered, suggesting that

a more complex covariance may still be necessary for the

data.

8 CONCLUDING REMARKS

In this article, we propose a smoothing-based goodness-of-fit

test of covariance for functional data. We focus on the specific

case of testing a quadratic polynomial covariance induced by

a linear random intercept and slope model, as motivated by

a dataset of CD4 cell counts used to monitor HIV+ patients.

Our proposed method can be used to formally test a linear

random (or mixed) effects model against a typical functional

data approach, and fills a gap in the testing of longitudinal

and functional data methods. The proposed bootstrap test can

be applied to functional data with either dense common or

irregular sampling design, and performs well in simulation

studies. Limitations of the method are (a) slow computational

speed, and (b) low power for very small datasets with small

deviation from the null.
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