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Abstract

Background—Better understanding and prediction of PD progression could improve disease 

management and clinical trial design. We aimed to use longitudinal clinical, molecular, and 

genetic data to develop predictive models, compare potential biomarkers, and identify novel 

predictors for motor progression in PD. We also sought to assess the use of these models in the 

design of treatment trials in PD.

Methods—A Bayesian multivariate predictive inference platform was applied to data from the 

Parkinson’s Progression Markers Initiative (PPMI) study (NCT01141023). We used genetic data 

and baseline molecular and clinical variables from PD patients and healthy controls to construct an 

ensemble of models to predict the annualised rate of the Movement Disorder Society-Unified 

Parkinson’s Disease Rating Scale parts II and III combined. We tested our overall explanatory 

power, as assessed by the coefficient of determination (R2), and replicated novel findings in an 

independent clinical cohort of PD patients from the Longitudinal and Biomarker Study in PD 

(LABS-PD; NCT00605163). The potential utility of these models for clinical trial design was 
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quantified by comparing simulated randomized placebo-controlled trials within the out-of sample 

LABS-PD cohort.

Findings—A total of 117 controls and 312 PD cases were available for analysis. Our model 

ensemble exhibited strong performance in-cohort (5-fold cross-validated R2=41%, 95% CI: 35% – 

47%) and significant, though reduced, performance out-of-cohort (R2=9%, 95% CI: 4% – 16%). 

Individual predictive features identified from PPMI data were confirmed in the LABS-PD cohort 

of 317 PD patients. These included significant replication of higher baseline motor score, male 

sex, and increased age, as well as a novel PD-specific epistatic interaction all indicative of faster 

motor progression. Genetic variation was the most useful predictive marker of motor progression 

(2.9%, 95%CI: 1.5–4.3%). CSF biomarkers at baseline showed a more modest (0.3%; 95%CI: 

0.1–0.5%), but still significant effect on motor progression prediction. The simulations (n=5000) 

showed that incorporating the predicted rates of motor progression into the final models of 

treatment effect reduced the variability in the study outcome allowing significant differences to be 

detected at sample sizes up to 20% smaller than in naïve trials.

Interpretation—Our model ensemble confirmed established and identified novel predictors of 

PD motor progression. Improving existing prognostic models through machine learning 

approaches should benefit trial design and evaluation, as well as clinical disease monitoring and 

treatment.

Funding—Michael J. Fox Foundation for Parkinson’s Research and National Institute of 

Neurological Disorders and Stroke (1P20NS092529-01).

Introduction

Parkinson’s disease (PD) is a chronic, debilitating neurodegenerative disorder characterized 

clinically by progressive motor dysfunction and various non-motor features 1. There is 

substantial heterogeneity in the presentation of these symptoms and the rates of their 

progression among PD patients, making it difficult for care-providers to give accurate 

prognoses to patients and challenging for researchers to develop drugs to modify the course 

of disease 2. Increasing evidence supports a complex interplay between genetic, biological, 

and molecular abnormalities of the disease explaining this heterogeneity between patients. 

Understanding the etiologic and physiological factors that contribute to this variability in the 

evolution of PD symptoms is therefore a high priority area of PD research 2. The 

Parkinson’s Progression Markers Initiative (PPMI) study was initiated with the support of 

the Michael J. Fox Foundation for Parkinson’s Research to address this research gap by 

providing a uniquely comprehensive set of longitudinal clinical, imaging, and bio-sample 

data from de novo PD patients and controls.

Previous analyses of PD progression data have generally focused on investigating the 

individual associations of predictive features such as age, sex, baseline scores, clinical 

subtypes and varied potential biomarkers, as opposed to developing comprehensive 

multivariable prognostic models 3–5. There have been exceptions, however, including 

logistic regression and Bayesian classification models to predict cognitive impairment in 

PD6,7, backwards selection models to predict negative outcomes (e.g. postural instability, 

dementia or death)8, and machine-learning random survival forests to predict time to 
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initiation of symptomatic treatment9. However, models that predict the rate of change of 

motor scores assessed using the Movement Disorder Society-Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS), instead of specific clinical events, remain elusive, despite that 

changes in this rating scale score and its subcomponents serve as the primary endpoint in 

many clinical trials of PD medications 10. Here, we used a novel Bayesian machine-learning 

platform, Reverse Engineering and Forward Simulation (REFSTM), with the PPMI 

compendia to identify an ensemble of predictive models, instead of a single best model, of 

the rate of motor progression.

This analysis is differentiated from previous studies not only in the outcome studied, but also 

in the scope and complexity of the predictive relationships that are explored by examining 

the entire complement of available genetic, molecular and clinical variables11–14. In 

particular, REFS allows for the detection of higher order interactions across these different 

data types and, consequently, identification of subpopulation-specific effects. This allows the 

crucial distinction between modifiers that are specific to PD cases from those that are more 

generally related to natural aging or other risk factors.

Taken together, these features permit three complementary objectives for this study. (1) The 

construction of clinically useful predictive models to identify PD patients at risk of rapid 

disease motor progression. (2) A comparison of the predictive utility of different types of 

potential biomarkers of motor progression. (3) The identification of novel progression 

markers for subsequent validation in an independent test sample (LABS-PD, N=317), which, 

notably, uncovered a significant epistatic genetic association to disease progression upon 

replication. We also demonstrate the utility of these models in designing PD clinical trials 

that aim to test potential disease-modifying therapies.

Materials and Methods

Study Population

Data and study documentation used in the preparation of this article were obtained from the 

PPMI database (www.ppmi-info.org/data) through the PPMI@LONI data portal December 

28th 2015, and all numbers reported in this document are current as of that date. Data 

collection procedures have been documented previously15 and are described further in 

supplemental methods.

Outcome Modeling

The MDS-UPDRS (and the original UPDRS) has been widely used for assessing the 

severity of motor and non-motor symptoms in PD patients, and extensively tested for its 

clinimetric properties16. In addition, it is responsive to therapeutic interventions, making it 

the standard scale for regulatory agencies. Here, the outcome studied is the annualized rate 

of change in the combined MDS-UPDRS Parts II (Motor Experiences of Daily Living) & III 

(Motor Examination) scores. The combination of UPDRS Parts II and III is a commonly 

used endpoint in PD clinical trials testing interventions to improve motor function17–19, is 

highly correlated with Hoehn & Yahr stage, and appears to be the most reliable and 

responsive prognostic measures of disease activity at baseline and of disease progression in 
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early PD20. Furthermore, the motor components of the scale are convertible when measured 

using the UPDRS or MDS-UPDRS, whereas transformation of Parts I and IV are not 

possible16.

Rates of progression were estimated for each patient with at least two years of follow-up, 

including at minimum 3 MDS-UPDRS exams. Because treatment initiation may have a 

profound, if variable, effect on disease course, progression rates were estimated separately 

for treated and untreated periods. Individual untreated and treated progression rates were 

estimated from a linear mixed-effects model of the assessment scores using the R package 

lme421.

Genotyping

To avoid over-fitting and reduce collinearity among predictors, the ImmunoChip SNP set 

used for the study was further pruned (after QC described supplemental methods) based on a 

priori knowledge and linkage disequilibrium. 53 SNPs with established relationships to PD 

or PD-related traits were identified from the NHGRI GWAS catalog 22 and DisGenNet 23 

and retained as potential predictors (Supplemental Table S2.a). Linkage disequilibrium (LD) 

pruning was applied to the remaining SNPs and identified a set of 17,403 uncorrelated 

SNPs. A set of 10 principal components was identified from the SNP data for evaluation of 

population associations.

Statistical Analysis and REFS™ Modeling Approach

Modeling was conducted using GNS Healthcare’s REFS™ platform. The predictive 

ensemble, consisting of 128 generalized linear models, was constructed using Markov Chain 

Monte Carlo sampling of the full Bayesian posterior distribution of models, given the 

available data; i.e. P(model|data) 11–14.

When the number of potential predictors exceeds the number of observations in a study, 

attempts to identify a single “best” model will inevitably lead to over-fitting; thus, our 

approach identifies an ensemble of models, each scored by both its goodness of fit to the 

observed data and its complexity. This approach allows the incorporation of prior knowledge 

regarding the different types of data (e.g. genetic, imaging, or molecular), including the 

expected relative contribution of each type into the final models. Therefore, genome-wide 

examination of large numbers of lower-resolution genotype variables is possible without 

overwhelming the signal of the fewer, though potentially more directly informative, 

molecular markers. This approach is well suited to small sample-high dimensionality 

datasets such as used here, when gradient-based learning runs into problems due to the 

Tanner-Donoho phase boundary.24

The 128 constituent models within the ensemble explored combinations of the available 

parameters, including linear additive and quadratic terms, as well as up to third-order 

interactions to accommodate non-linear effects within different population strata (for 

example treated versus untreated). To prevent over-fitting, the complexity (i.e. the number of 

terms) for each model in the ensemble was penalized by specifying a maximum entropy 

prior over the number of unique predictors selected per given variable class (see 

Supplemental methods for additional detail).
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Modeling Results, Predictive Performance, and Variable Importance

The prospective predictive performance for each ensemble was estimated using internal five-

fold cross-validation of PPMI samples, using Pearson R2 (predicted vs. observed 

progression rates) and root mean squared errors (Supplemental table S6). Stratified R2 

values were calculated according to disease and treatment status and by follow-up time to 

assess the model performance across different subpopulations.

The composition of the ensembles is summarized by counting the number of times each 

predictor is selected into one of the 128 constituent models. A high selection frequency for a 

given predictor represents an increased probability of a true predictive association with the 

outcome 13. High confidence predictors, defined as those appearing in >5% in the 

constituent models of an ensemble, were evaluated to assess their relative importance 

towards prediction of the outcome through leave-one-out cross-validation (supplemental 

methods). Variable importance was calculated by determining the percent increase in mean 

squared error (MSE) of the predictions excluding the variable of interest over the MSE of 

the full ensemble, calculated from the leave-one-out predictions. Confidence intervals for 

variable importance were derived from a paired t-test comparing the MSE from the reduced 

and full ensembles.

Independent Model Validation and Variable Replication in LABS-PD

The predictive ensemble developed from the PPMI dataset was independently validated in 

the Longitudinal and Biomarker Study in PD (LABS-PD), which includes demographic, 

clinical, genetic, and dopamine transporter (DAT) imaging data in a cohort of 380 de novo 
PD subjects followed over 7 years25. 317 PD cases with clinical data and genotyping were 

available for the validation study. While the data available in the LABS-PD cohort allowed 

for validation of many key predictors, most importantly the SNP results, the unavailability of 

key predictors (including CSF biomarker data) and differences and data collection required 

imputation and harmonization of certain variables which is described in detail in the 

supplement (Supplemental methods, Supplemental Table S5).

Ensemble Prediction Evaluation

The predictive ensembles were applied to the assembled set of LABS-PD predictors and the 

Pearson R2 was calculated in the full replication sample and stratified by SWEDD and 

treatment status, and by follow-up time. Clinical and genetic features identified at greater 

than 5% ensemble frequency were tested in the LABS-PD dataset in both univariate and 

multivariate linear regression models (including model-specific significant clinical 

predictors). Novel findings were considered to significantly replicate if a one-sided test in 

the independent LABS-PD cohort exceeded an alpha level of 0.05 after Bonferroni 

correction for the number of novel features examined.

Complexity, cost, and success rates of clinical trials depend, in part, on the size of the 

population necessary to detect the sought-after treatment effect. The potential utility of these 

models for clinical trial design was quantified by comparing simulated randomized placebo-

controlled trials within the out-of sample LABS-PD cohort with the MDS-UPDRS part II 

and III motor score as the primary outcome (Supplemental methods).
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Role of the Funding Source

The study sponsors are listed in the acknowledgments section and played no role in the 

design, collection, analysis or interpretation of data, the writing of the manuscript or the 

decision to submit for publication.

Results

A total of 117 controls and 312 PD cases with complete genetic, molecular and 2+ years of 

longitudinal data were available for analysis of motor progression (Supplemental Table S1). 

As expected, the mean (±standard deviation) rate of motor progression was significantly 

higher (i.e. more severe) among PD cases compared to controls (5.05 ± 3.3 vs. −0.14 ± 0.64 

points/year, p = < 2e-16), with modest but significant reductions in progression rates 

observed during treatment periods with symptomatic therapy among PD cases (Table S1).

A total of 17,499 features were included as potential predictors in the models. These 

included 53 a priori selected PD-related single nucleotide polymorphism (SNPs); 17,403 

LD-pruned SNPs from across the genome; 7 cerebrospinal fluid (CSF) protein biomarkers; 8 

DaTscan imaging variables; 10 genetic principal components; and 18 clinical and 

demographic variables. The included variables are described in more detail in Supplemental 

Tables S2.a and S2.b, and the Supplemental methods.

The final REFS ensemble is summarized as a reduced set of weighted constituent models 

including most of the important predictors identified from the full ensemble (N=12 weighted 

models; Supplemental Table S3) that optimally approximates the full ensemble of 128 total 

unweighted constituent models 26.

Internal and External Model Validation

The predictive ensemble explained a significant percentage of the observed variation in 

motor progression in 5-fold cross-validation across the full PPMI sample (Table 1). 

Predictive accuracy was greater among PD cases compared to controls (R2=27% vs. 1%). 

Within cases, a significant proportion of variability was explained by the model predictors in 

both patients in the earlier stage of disease (defined as < 5 years since initial PD diagnosis, 

[R2=29%]), and later-stage (≥ 5 years since initial PD diagnosis, [R2=19%]), and in both 

untreated and treated cases (R2=19% and 5%, respectively). Progression was not 

significantly predicted among controls, a group which had minimal variability in 

progression.

External validation of the predictive ensemble in the LABS-PD dataset overall showed 

reduced but significant R2 (9%; 95% CI=4–16%), despite substantial differences in the 

collection of progression data and the lack of data for several key predictors, including CSF 

biomarkers (imputed data was used, see supplemental methods for details). Evaluation of the 

strata-specific R2 shows significant prediction in all but the earlier-stage group (which 

included only 15 patients), and highest accuracy in the untreated cases.
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Ensemble Summarization

Complete summarization of all identified features is provided in supplemental table S4. The 

ensemble models were primarily composed of expected and previously established markers 

of disease progression. Higher baseline motor score and PD status were predictive of faster 

rates of motor progression in all of the ensemble models, either as a main effect or in 

interaction terms, while SWEDD status (Scans without evidence of dopaminergic deficit) 

and presence of PD treatment suggested slower progression in all models (Table S4). Sex 

(defined as genetically confirmed sex, which was consistent with gender for all participants) 

was also an important predictive feature, appearing in >90% of the ensemble models (either 

by itself or interacting with PD status), with women progressing more slowly then men. 

Interactions were also observed, with many features having varied effects on progression 

between PD cases and controls (Table S4). An interaction between SWEDD status and the 

use of PD treatments was observed in 100% of the models. As described above, SWEDD 

cases and PD patients receiving treatment, independently showed slower disease progression 

(−3.1 points/year and −3.2 points/year respectively). However, when SWEDD patients 

received treatment, they demonstrated 8.3 points faster progression of motor symptoms 

compared to the rest of the study sample, suggesting detrimental effects of dopaminergic 

treatments in this population.

Genetic variants were also selected by the models, but with lower frequency than the clinical 

features mentioned (Table S4). The most frequently observed genetic signals, rs17710829 

and rs9298897, appearing in 11.7% and 5.4% of models, respectively, demonstrated a novel 

PD case-only epistatic interaction in 4% of the models, with the combination of rare alleles 

leading to faster disease progression.

Comparison of Variable Importance of Potential Disease Markers

Shown in Figure 1, the relative contribution of the set of imaging, CSF, and genetic markers 

varied greatly. As a set, genetic variation showed the greatest importance (Figure 1) in the 

prediction of rate of motor progression (2.9%, 95%CI: 1.5–4.3%). The two SNPs selected 

most frequently by the ensemble, rs17710829 and rs9298897, both have significant effects 

on model predictions as well. CSF biomarkers at baseline showed a more modest (0.3%; 

95%CI: 0.1–0.5%), but still significant effect on motor progression prediction, with CSF 

alpha-synuclein levels primarily driving the CSF effect (0.14%; 95%CI: 0.1 – 0.3%). 

Imaging data did not show a significant effect on motor progression prediction.

Independent Replication of Candidate PD Progression Biomarkers in LABS-PD

In order to accurately assess the significance and magnitude of the effect of specific features 

identified in the model ensembles an independent test set (LABS-PD) was used. Several 

features appearing at high frequency in the ensemble showed similar effects in the LABS-

PD cohort. Baseline motor score (beta=0.04, p=9e-6) and age (beta=0.05, p=3e-7) were both 

strongly associated with rate of motor progression. Sex also showed a significant effect on 

motor progression, with women progressing at a slower rate than men (beta=−0.45, 

p=0.009).
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Treatment, SWEDD status, and the identified genetic principal components, features that 

had substantial differences in distribution between cohorts (Supplemental table S5), as well 

as their interacting terms, were not replicated. While the sex by treatment interaction term 

identified in the PPMI sample showed nominal association (beta=−2.4, p=0.023), it was not 

significant after accounting for multiple comparisons. In contrast, the novel epistatic 

interaction between the SNPs rs9298897 and rs17710829 demonstrated a significant 

association with a consistent direction in the LABS-PD sample (beta=1.2, p=0.011; Figure 

2).

Predictive Utility of Model Ensemble in an Independent Sample

The true observed motor scores (median, −/+ 95% confidence intervals) over the follow-up 

period (which began between 3 and 4 years after baseline enrollment) for the predicted slow, 

moderate, and fast tertiles are shown in Figure 3. Although the actual rates of progression in 

the LABS-PD cohort tended to be slower overall than their predicted rates, the ordering was 

consistent, with significant separation in median motor scores observed between the slowest 

and fastest predicted progression groups across all time points. The moderate progression 

group also shows significant separation from the fast progression group. The slow and 

moderate groups were not as strongly differentiated, showing significant separation only in 

year 6.

Simulations (N=5000) show that incorporating the predicted rates of motor progression into 

the final models of treatment effect reduces the variability in the study outcome allowing 

significant differences to be detected at samples sizes up to 20% smaller than in naïve trials. 

The reduced set of weighted constituent models (Supplemental Table S3), incorporating far 

fewer features, resulted in nearly equivalent sample reduction of 19%.

Discussion

Using a hypothesis-free machine learning ensemble approach suitable for large-scale 

multivariate modeling, we have developed predictive models of motor symptom progression 

in early-stage Parkinson’s disease cases and age- and gender-matched controls. We have 

further identified the relative contribution of individual patient factors and sets of factors, 

and replicated several specific associations in an independent PD cohort, including a novel 

epistatic interaction. While previous progression modeling efforts have often focused on 

specific binary clinical outcomes (such as initiation of dopaminergic treatment or 

development of MCI), we used linear mixed effects models to estimate the continuous 

treated and untreated rates of clinical progression for each individual. Looking at strata-

specific model performance, the predictive accuracy of the models was unsurprisingly 

greater among the PD cases, as there was very little variability in motor symptoms over time 

in the controls. Drug-naïve progression was similarly modeled more accurately than treated 

progression both in and out of sample, potentially due to heterogeneity in treatment 

regimens among those receiving PD medications. Additionally, it is well-recognized that 

there is large inter-individual variability in response to anti-Parkinsonian treatments, with 

this variability becoming more prominent over time as disease progresses 27,28.
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While a substantial drop-off in the amount of variability explained was observed in the 

LABS-PD test set, this was expected, as several predictors were unavailable in LABS-PD 

(including CSF biomarkers and the baseline SCOPA exam). The required conversion of 

UPDRS to MDS-UPDRS scores for the outcome data also likely introduced significant 

variability. Furthermore, among cases, predictive accuracy for motor progression was greater 

in the earlier stages of disease among the PPMI cohort. In contrast, prediction in later-stage 

patients was only significant in the LABS-PD validation cohort. These discrepancies in the 

accuracy of predictions were likely due to differences in the composition of cohorts, as the 

large majority of the sample in LABS-PD (95%) was followed for longer than 5 years as 

opposed to a minority in PPMI (19%). As the models assume a linear trend in progression, 

another explanation may be that progression in later disease stages is associated with the 

same factors as early-stage, but the relationships are non-linear over time 4,28. Although 

these limitations in comparability between the test and training cohorts resulted in reduced 

(but still significant) R2, they also provide an important demonstration of the robustness of 

the ensemble modeling to diverse cohorts and data missingness. We can see that despite the 

differences from the training sample, the models demonstrate an unequivocal ability to 

prospectively differentiate between patients in the test set who would manifest slow or 

moderate progression and those whose condition would deteriorate more rapidly (Figure 3).

Variable importance measures determined using leave-one-out cross validation provided 

insight into the comparative predictive value of three different general types of potential 

predictive markers or tests available to clinicians (i.e. genetic variation, CSF biomarkers, and 

DaTscan imaging). The relatively limited prognostic utility of the DaTscan imaging data 

was in contrast to a previous study showing association between baseline imaging measures 

and various long-term PD outcomes 29. As our study is focused on early-stage PD 

progression, as opposed to long-term outcomes, this is intriguingly suggestive of distinctions 

between the factors determining disease progression at different disease stages. Of the CSF 

biomarkers, alpha synuclein levels, which have previously been inversely associated with 

motor symptom severity30, were the most common predictor of motor progression, with 

higher levels similarly predictive of slower progression.

Examination of the implicated features available for study in the LABS-PD cohort replicated 

a majority of clinical features, including sex, which showed women having a slower rate of 

decline in both cohorts. Sex differences are consistently observed in PD, most notably in 

prevalence, with men being more commonly affected, but also in age of onset and disease 

presentation 31. An interaction between sex and treatment was also observed, but only 

reached nominal significance in the replication cohort. Treatment and SWEDD status, both 

as main effects and in interaction, failed to replicate, likely as a consequence of the 

significant differences in prevalence of each factor in the two cohorts.

An interaction between two SNPs identified at high frequency in the motor progression 

ensemble was replicated in the LABS-PD cohort. As shown in Figure 2, cases who carry 

minor alleles for both SNPs have on average a substantially faster rate of motor decline in 

both the LABS-PD (1.2 points/per year faster) and PPMI (2.4 points/year). Neither SNP was 

among the a priori selected PD-related SNPS identified from GWAS, but intriguingly, 

rs9298897 is located in the fifth intron of the gene leucine rich repeat and Ig domain 
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containing 2 (LINGO2). LINGO2 and its paralog LINGO1 encode for type I leucine-rich 

transmembrane proteins exclusively expressed in the central nervous system32,33. Like 

LRRK2, which is also of the leucine-rich repeat protein family and is the greatest known 

genetic contributor to PD, LINGO1 and LINGO2 are thought to function in the regulation of 

cell signaling related to neuronal survival and growth as well as glial function34–37. In 

experimental models of PD, increased expression of LINGO-1 were found in animal models 

of PD after parkinsonism-inducing neurotoxic lesions, while the absence or inhibition of 

LINGO-1 resulted in increased dopamine neuron protection35. Polymorphisms at these 

genes have been previously implicated in risk of PD and essential tremor (ET)38 but these 

findings have not been conclusive 39. The interacting SNP rs17710829 is located in an 

intergenic region on 2q14.1. The nearest gene dipeptidyl peptidase like 10 (DPP10) has not 

been linked to neurodegenerative disease in GWAS or other studies of genetic variation, 

however abnormal expression of the encoded protein, DPP10, has been observed in 

Alzheimer’s disease and other neurodegenerative diseases 40. Additional replication of this 

finding is warranted, as the functional link between these two genes is unclear, but further 

understanding of this interaction may lead to important mechanistic insights in the disease 

process.

Despite stringent sample inclusion criteria, robust data pre-processing, and penalization of 

model complexity via Bayesian ensemble inference, the generality of findings reported here 

are subject to several limitations associated with PPMI and LABS-PD study designs. The 

PPMI profiles used to develop the models are principally restricted to short-term follow-up 

after enrollment (median < 4 years), which may limit predictive accuracy when evaluated 

over longer periods of disease progression. Notably, in the LABS-PD cohort with average 

follow-up times exceeding 6 years, we see slower overall rates of progression (Supplemental 

Table S5) with a narrower range (Figure 2) suggestive of a potential plateau or other non-

linear treads in progression. Additional characterization of the natural disease trajectories for 

each assessment domain, including more sophisticated incorporation of site and treatment 

effects may refine the clinically reliable window for linear rate model predictions beyond 5 

years 28,41–43. Independent validation and variable replication findings reported herein may 

be additionally biased by variation in follow-up time distribution, distinct outcome 

assessment tools, and missing covariates between discovery and validation cohorts.

In summary, this analysis highlights the ability of ensemble modeling to capture the complex 

interplay of clinical, genetic, and molecular predictors of the highly heterogeneous PD 

progression phenotype. Bayesian model inference using REFS identified a combination of 

established and novel patient factors predictive of PD motor progression, particularly in the 

earlier stages of disease. The ability of the Bayesian model selection process to integrate 

genetic data with CSF-based biomarkers is of notable clinical relevance, as these data 

classes showed the greatest predictive impact in our models. Further, the quantification of 

the comparative predictive importance of the different data types, particularly the limited 

predictive utility of the DaTscan imaging in early-stage progression, provides guidance to 

the effective deployment of clinical and research resources in longitudinal patient 

evaluations.
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The ability of the ensembles to prospectively identify patients most likely to have rapid 

progression of symptoms at the earliest stage of the disease has immediate significance 

towards enabling more effective trial recruitment and clinical disease management. The 

identification and independent confirmation of predictive factors also provides potential 

mechanistic insight into the disease process. Identification of a PD-specific novel genetic 

interaction between an intronic LINGO2 (9p21.1) SNP rs9298897 and the 2q14.1 variant 

rs17710829 was made possible through the multi-dimensional, hypothesis-free 

methodologies implemented here. Taken together these results advance the goal of 

establishing validated biomarkers of PD progression rate and improving existing prognostic 

models to the benefit of trial design and evaluation, as well as clinical disease monitoring 

and treatment.
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Glossary

Bayesian machine learning
Statistical methods focused on making explicit the prior assumptions about the model or the 

data that are used to build the model

REFS
Bayesian machine-learning platform, Reverse Engineering and Forward Simulation (REFS), 

used to construct an ensemble of regularized generalized linear models. As applied here, 

REFS takes into account model complexity and model composition in terms of variable 

classes (i.e. demographic, clinical, genetic) and class sizes, effectively incorporating 

multiple testing correction into the model fitting step.

Ensemble
a set of models, each individually scored by its goodness of fit to the observed data. By 

combining predictions from each of constituent models, the ensemble incorporates the 

natural heterogeneity in the predictor-outcomes relationships and reduces overfitting.

Compressed Ensemble
To aid interpretation, the full ensemble, which can include hundreds of constituent models, 

can be compressed by clustering similar constituent models to provide a reduced set of 

representative models. The models in the reduced set are weighted to indicate the proportion 

of the full ensemble represented by each.
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Variable Importance
a measure of the usefulness of a given predictor (or set of predictors) to predicting an 

outcome based on the reduction of predictive accuracy (here quantified by change in mean 

squared error) when the predictor is removed from the ensemble.
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Research in context

Evidence before this study

We searched PubMed for articles including the terms “Parkinson’s progression”, 

“Parkinson’s prognostic”, or “Parkinson’s predictive” up until December 15, 2016. We 

examined both studies that conducted purely associative analyses as well as those that 

presented prognostic models, focusing on models that included some combination of 

additional molecular, genetic, or imaging data in addition to baseline clinical assessments 

and demographics. While several studies were found that quantify associations to motor 

progression and predictive models for given clinical event such as onset of dementia or 

initiation of treatment, we did not identify models simultaneously incorporating broad 

genetic, molecular and imaging data predictive of the rate of change of motor score.

Added value of this study

Use of a Bayesian machine learning method enabled us to examine complex interactions 

across data types, resulting in the identification and replication of a novel gene by gene 

interaction. The ensemble framework also allowed for comparison of the relative 

importance of different disease markers toward predicting disease progression. Through 

simulations we show that these predictive models have the potential to reduce cost and 

increase the efficiency of clinical trials.

Implications of all the available evidence

The results of this study demonstrate the benefits of a unified analysis incorporating the 

full complement of data types, increasingly becoming available in large longitudinal 

disease cohorts such as PPMI.
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Fig. 1. Variable importance of model predictors in motor progression
The relative contribution to the overall explanatory power for individual and/or sets of 

features is shown. The variable importance of the feature(s) is expressed as a percent 

increase in the mean squared error in leave-one-out cross-validation with each feature 

plotted in descending order of importance. Mean and 95% confidence intervals are 

indicated. The dashed blue line represents the full model without excluding any features.
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Fig. 2. Replication of PD-specific SNP interaction affecting motor progression rates
Stratified plots of Motor progression rates vs. rs17710829 and rs9298897 genotypes for PD 

cases in PPMI (upper panels) and LABS-PD (lower panels). Note, dominant genetic 

modeling (combing the TC and CC genotypes) was used for rs17710829 due to its low 

minor allele frequency (C allele frequency=6%) while the more common rs9298897 (G 

allele frequency =35%) was modeled additively.
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Fig. 3. 
LABS-PD Motor Scores by Predicted Progression Group. Median (95% CI) MDS-UPDRS 

motor scores parts II and III, beginning with the first follow-up exam (starting at either 3 or 

4 years after baseline) are shown for cases predicted to be slow, moderate or fast progressors 

at study baseline.
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Table 1

Proportion of variance explained by model in internal cross-validation (PPMI) and external validation data set 

(LABS-PD). The given R2 values describe the proportion of variance in the true rate of disease progression 

explained in a given stratum for both cohorts.

Strata

Motor Progression

PPMI LABS-PD

N R2 (95% CI) N R2 (95% CI)

All 639 41% (35 – 47%) 317 9% (4 – 16%)

PD Cases1 522 27% (21 – 34%) 317 9% (4 – 16%)

Controls 117 1% (0 – 7%) 0 -

Untreated2 296 19% (11 – 27%) 27 15% (3e−5 - 45%)

Treated3 226 5% (1 – 12%) 290 11% (5 – 18%)

non-SWEDD 490 26% (20 – 33%) 312 11% (5 – 18%)

SWEDD 32 26% (4 – 53%) 5 -

Earlier stage4 421 29% (22 – 36%) 15 0% (0 – 49%)

Later stage5 101 19% (7– 34%) 302 10% (5 – 18%)

1
Cases who contributed both treated and untreated time are included twice

2
progression rates in calculated for the time prior to symptomatic PD treatment

3
progression rates calculated for the time in which the participant was receiving symptomatic treatment.

4
participants with < 5 years of follow-up time since initial diagnosis of PD

5
participants with ≥ 5 years of follow-up time since initial diagnosis of PD

LABS-PD: Longitudinal and Biomarker Study in Parkinson’s disease; PD: Parkinson’s disease; PPMI: Parkinson’s Progression Marker Initiative; 
SWEDD: Scans without evidence of dopaminergic deficit
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