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Abstract
We report the carbon (δ13C) and oxygen (δ18O) isotope records of three modern Tridacna
derasa shells from Ishigaki-jima, southwestern Japan. The high-resolution δ13C profiles of

samples from the inner shell layer on cross-sections fall within similar narrow ranges and

display no regular variations or trends, such as an ontogenetic trend or abrupt short-term

drops likely to be related to reproductive activity. This suggests that the calcification site of

this species is not likely affected by photosynthetic CO2 uptake or CO2 incorporation during

respiration. The δ18O profiles show distinct seasonal cycles. The intraspecific variability in

the δ18O values is small in parts of the shell precipitated in the adult stage, but is not negligi-

ble in the juvenile and senescent stages. The differences in the monthly and seasonally

resolved δ18O values among shells are less than 0.51‰ and 0.76‰, respectively. The shell

δ18O values are nearly identical or close to the δ18O values for aragonite precipitated in oxy-

gen isotope equilibrium with ambient seawater (δ18OEA). The largest differences between

the shell δ18O and δ18OEA values calculated from the monthly and seasonally resolved data

correspond to an overestimate of the seawater temperature by as much as 1.7°C and

2.3°C, respectively. However, these differences are smaller in the adult stage (<0.25‰)

than in the other stages. This small difference allows an accurate reconstruction of the sea-

water temperature with an error of <1.1°C. Consequently, we recommend that multiple shell

records be obtained because of the non-negligible intraspecific variations in their δ18O val-

ues. Growth banding, composed of alternating narrow white bands and wide light-grey

bands, is discernible on cross-sections of the inner shell layer. The δ18Oshell data indicate

that they were formed in winter and the other seasons, respectively.

Introduction
High-resolution paleoenvironmental records are required from various localities over the globe
to understand past climate dynamics and predict future climate change. Marine carbonate-
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secreting organisms, such as corals and mollusks, are sensitive to the ambient environment and
preserve various types of environmental information in their skeleton in the form of physical
(e.g., increment width) or geochemical variations [1–3]. Of these records, the oxygen isotope
ratios (δ18O) of biogenic carbonates has widely been used to reconstruct paleoenvironments
because it commonly reflects both sea-surface temperatures (SSTs) and the δ18O values of the
ambient seawater (δ18Osw) in which the carbonates were secreted [4–7]. Numerous paleoenvir-
onmental studies have investigated the biogenic carbonates of foraminifers [8, 9], corals [10–
14], mollusks [15–19], and brachiopods [20–24].

The tridacnids (Subfamily Tridacninae Lamarck, 1819 [25]) are some of the largest bivalves,
with shell length being up to 1 m at a maximum, in geological history and have been a promi-
nent member of Indo-Pacific coral reef communities since the Eocene [26]. All tridacnids live
in the euphotic zone and are associated with unicellular algal symbionts (zooxanthellae). This
association gives rise to unusually high calcification rates, attributed to light-enhanced calcifi-
cation [27, 28]. The tridacnids form dense aragonitic shells with annual lines and daily growth
bands in their inner shell layer [29, 30], which allow the reconstruction of paleoenvironmental
change, even on a subdaily time scale [31]. The isotopic data collected previously indicate that
tridacnids precipitate their shells in oxygen isotopie equilibrium with seawater [32, 33]. Patzöld
et al. (1991) [34] showed that the biogenic (daily growth banding) and geochemical (δ18O val-
ues) records in the inner shell layer are more suitable for paleoenvironmental reconstruction
than those of the outer shell layers or hinge, so the former have been used for paleoenviron-
mental studies [2, 30, 35–38]. Therefore, we also studied the isotopic records in the inner shell
layer.

However, some issues remain to be resolved when using tridacnid δ18O values as reliable
paleoenvironmental proxies. One of the most critical issues is that previous studies of tridacnid
δ18O values predominantly dealt with isotopic data from a single shell of a single taxon, so nei-
ther the inter- nor intraspecific variations were fully considered [2, 30, 35–37]. In this article,
we first report the intraspecific (= intershell) variations in carbon (δ13Cshell) and oxygen
(δ18Oshell) isotope ratios of samples from the inner shell layer on cross-sections of modern Tri-
dacna derasa (Röding, 1798) [39]. The studied materials were three shells collected from Ishi-
gaki-jima, Ryukyu Islands, southwestern Japan (Figs 1 and 2) [40]. We then compare the
δ18Oshell profiles of this species with each other and with oceanographic data around Ishigaki-
jima (Figs 3–6). In this way, we show the extent to which the δ18Oshell values of T. derasa reli-
ably record oceanographic conditions, especially SSTs.

Materials and Methods

Study site and climate regime
The Ryukyu Islands are located to the southwest of mainland Japan and are composed of sev-
eral tens of islands and islets (Fig 1A). These islands are arranged in a curved row, known as
the Ryukyu Island Arc. Most of the islands are rimmed by well-developed fringing coral reefs,
although they are located near the northern limit of the coral reef province in present-day
oceans.

Ishigaki-jima is located in the southwestern part of the Ryukyus (24°190–370N, 124°40–210E;
Fig 1A). The climate on the island is subtropical (Table 1). The monthly mean atmospheric
temperature measured at the Ishigaki Meteorological Observatory ranges measured at from
18.6°C (January) to 29.5°C (July), with an annual mean of 24.3°C. Semidiurnal tides are clearly
evident throughout the islands, with a maximal range of 1.9 m at spring tide and 1.0 m at neap
tide. The annual rainfall reaches 2100 mm, with rainy months in May–June and August–Octo-
ber. The prevailing wind is SSE in summer and NNW in winter. A monitoring record from the

Carbon and Oxygen Isotope Records from Tridacna derasa

PLOSONE | DOI:10.1371/journal.pone.0157659 June 21, 2016 2 / 19

Competing Interests: The authors have declared
that no competing interests exist.



sea surface at Ishigaki Port during 1998–2004 showed an average sea surface salinity (SSS) of
34.3, generally ranging from 33.6 to 35.0 and associated with short-term drops of<2 caused by
heavy rainfall [41]. The Integrated Global Ocean Services System (IGOSS) data (1° resolution
gridded data, centered at 24°300N and 124°300E) for 1993–2011 suggest that the SSTs varied
between 22.3°C and 31.2°C, with an annual mean of 26.5°C. The highest and lowest monthly
mean SSTs were 30.6°C in August and 22.6°C in February, respectively [42].

Tridacna derasa
There are currently eight described species within the genus Tridacna Bruguière, 1797 [43, 44].
They are among the most conspicuous marine invertebrates on coral reefs due to their large

Fig 1. Location andmap of the study site. (A) Study area in Ishigaki-jima (Ryukyu Islands). Bathymetric data are from ETOPO1
Global Model [40]. (B) Map of Ishigaki-jima.

doi:10.1371/journal.pone.0157659.g001
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size and brilliantly colored mantle that contains photosynthesizing symbionts [44]. Of these
species, T. derasa shells were examined in this study. Tridacna derasa, T. gigas, T. crocea, T.

Fig 2. Photographs of the studied Tridacna derasa shells. The shells (left valves) were cut vertically (pink
lines) along their maximum growth axes.

doi:10.1371/journal.pone.0157659.g002
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squamosa, and T.maxima are widely distributed in the Indian and Pacific Oceans, with the lat-
ter two extending their distribution into the Red Sea, whereas T. squamosina, T. rosewateri,
and T.mbalavuana have restricted distributions (Red Sea, Mauritius, and Fiji to Tonga, respec-
tively) [44]. Shell length of T. derasa reaches 50–60 cm. They live byssally anchored at a

Fig 3. δ13Cshell and δ18Oshell profiles of a Tridacna derasa shell (KTd-1). Pink line indicates the sampling
transect.

doi:10.1371/journal.pone.0157659.g003
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Fig 4. δ13Cshell and δ18Oshell profiles of a Tridacna derasa shell (KTd-4). Pink line indicates the sampling transect.

doi:10.1371/journal.pone.0157659.g004
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Fig 5. δ13Cshell and δ18Oshell profiles of a Tridacna derasa shell (KTd-5). Pink line indicates the sampling
transect.

doi:10.1371/journal.pone.0157659.g005
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Fig 6. Comparison of time series of sea surface temperature and δ18Oshell values for Tridacna derasa shells. (A) IGOSS SST data around
Ishigakiji-jima (1° resolution gridded data, centered at 24°300N and 124°300E) during the period 1993–2011. (B) Monthly resolved δ18Oshell profiles of
the KTd-1, KTd-4, and KTd-5 shells and equilibrium aragonite. (C) Seasonally resolved δ18Oshell profiles of the KTd-1, KTd-4, and KTd-5 shells and
equilibrium aragonite. Each error bars indicates ±1 standard error.

doi:10.1371/journal.pone.0157659.g006
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juvenile stage, but when approaching maturity their byssus glands atrophy, and the adult clams
take up unattached existence on coral rubble or hard packed sand [45]. Phylogenetic analyses
indicated that the divergent time was estimated to be ~10 Ma between T. derasa and T. gigas-T.
mbalavuana [44].

Materials
Three T. derasa shells, designated KTd-1, KTd-4, and KTd-5 (Fig 2), were collected in 1990
(KTd-4 and KTd-5) and 1998 (KTd-1) at the stage of fertilized egg and grown at a depth of 2 m
in a large culture pond at the Yaeyama Branch of the Okinawa Prefectural Fisheries Research
and Extension Center located at Kabira, Ishigaki-jima, Ryukyu Islands, southwestern Japan
(24°280N, 124°090E; Fig 1B). They were collected on 7 May 2011 (KTd-4 and KTd-5) and 12
May 2011 (KTd-1). The water temperature and salinity in the pond were roughly equivalent to
those of the outer ocean because the seawater was always pumped up from the outer ocean into
the pond. The shell height and length of KTd-1 were 25.8 cm and 40.4 cm, respectively, those
of KTd-4 were 26.6 cm and 41.7 cm, respectively, and those of KTd-5 were 25.3 cm and 38.3
cm, respectively. After the soft tissue was removed, a ~1 cm thick slab was cut vertically from
each shell along the maximum growth axis (Fig 2). The inner and outer shell layers were clearly
discernible on each slab. Carbonate samples for isotope analysis were manually obtained along
a roughly median line on the inner shell layer at ~0.5–0.7 mm intervals using drill bits with
diameters of 0.6 mm and 1.0 mm (Figs 3–5). The numbers of carbonate samples obtained from
KTd-1, KTd-4, and KTd-5 were 121, 163, and 149, respectively.

Isotope analysis
Stable isotope analyses of the shell aragonite were performed with a Thermo Scientific DeltaV
Advantage mass spectrometer, coupled with a ThermoQuest Kiel III Carbonate Device, at the
Graduate School of Science, Tohoku University, Sendai, Japan. The δ13Cshell and δ

18Oshell val-
ues were calibrated for the NBS-19 international standard relative to VPDB. The external preci-
sion (1σ) for the δ13C and δ18O analyses, based on replicate measurements of the laboratory
reference sample (JCt-1; [46]), were ±0.02‰ and ±0.04‰ (n = 112), respectively. The correla-
tions between the δ13Cshell and δ

18Oshell values were evaluated with a reduced major axis regres-
sion technique [47], the significance of which was examined statistically with a two-sided
Pearson test and a 95% confidence limit.

The distance domain δ18Oshell profiles clearly showing seasonal cycles were converted to
time series for better interpretation and comparison with those of aragonite precipitated in
oxygen isotope equilibrium with ambient seawater (equilibrium aragonite), because it is well
known that the aragonitic shells of tridacnids are generally precipitated in oxygen isotope equi-
librium with ambient seawater [30, 32]. The temporal resolution of the δ18Oshell values, repre-
sented by the number of isotope data per year, varied from ~19 days to ~4 months per sample.

Table 1. Climate in Ishigaki-jima.

Atmospheric temperature (°C)1 Sea surface temperature (°C)2 Rainfall (mm)1

Annual mean 24.3 26.4 2106.8

Mean monthly maximum 29.5 (July) 30.6 (August) 261.6 (August)

Mean monthly minimum 18.6 (January) 23.1 (February) 126.3 (December)

1 Data for 1981–2010 are from the Japan Meteorological Agency

2 Integrated Global Ocean Services System (IGOSS) data (1° resolution gridded data, centered at 24°300N and 124°300E) for 1994–2011.

doi:10.1371/journal.pone.0157659.t001
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Therefore, we converted the distance domain δ18Oshell profiles to time series with peak-to-peak
matching (i.e., annual maximum and minimum values in a year) with the equilibrium arago-
nite δ18O profiles using AnalySeries software [48]. The time for the data point of annual maxi-
mum and minimum δ18Oshell values were assigned to February and August, respectively. The
monthly and seasonally resolved shell δ18O profiles were then calculated on the assumption of
constant growth between each shell δ18O peak. The δ13Cshell time series were generated
simultaneously.

Results

δ13Cshell and δ18Oshell values
The δ13Cshell profiles of KTd-1, KTd-4, and KTd-5 showed no distinct cycles (Figs 3–5). The
δ13Cshell values for KTd-1, KTd-4, and KTd-5 ranged from 0.97‰ to 1.88‰ (average = 1.33‰,
σ (standard deviation) = 0.17‰), from 0.89‰ to 1.81‰ (average = 1.40‰, σ = 0.15‰), and
from 1.19‰ to 2.21‰ (average = 1.56‰, σ = 0.15‰), respectively (S1 Table).

The δ18Oshell profiles are characterized by a series of regular cycles of varying amplitudes
and frequencies. The numbers of cycles in the profiles of KTd-1, KTd-4, and KTd-5 are 10, 17,
and 16, respectively (Figs 3–5). The δ18Oshell values for KTd-1, KTd-4, and KTd-5 range from
–2.50‰ to –0.40‰ (average = –1.47‰, σ = 0.59‰), from –2.06‰ to –0.24‰ (average = –

1.26‰, σ = 0.51‰), and from –2.53‰ to –0.12‰ (average = –1.46‰, σ = 0.54‰), respectively
(S1 Table).

δ13CEA and δ18OEA values
We estimated the approximate ranges of the δ13C and δ18O values of equilibrium aragonite
(δ13CEA and δ18OEA, respectively) using previously published δ

13C values of dissolved inor-
ganic carbon (δ13CDIC) and δ

18Osw, respectively, of seawater samples collected around Oki-
nawa-jima [23] and Ishigaki-jima [41]. The δ13CDIC values at Kabira, where T. derasa grew,
were assumed to be 1.1‰–1.6‰. Because the pH of the surface seawater at Ishigaki-jima ran-
ged from 7.9 to 8.0, it was assumed that the δ13CHCO3

_ values for this seawater were ~0.2‰
greater than the δ13CDIC values [49–51]. Therefore, the δ

13CEA values calculated using the
δ13CDIC values (1.1‰–1.6‰) and the aragonite HCO3

–-enrichment factor (2.7 ± 0.6‰; [50])
should range from 3.4‰ to 5.1‰ at the T. derasa growth site.

The δ18OEA time series were calculated using the IGOSS SST data [42] and the monthly
average δ18Osw values at Ishigaki Port, ~14 km south of the T. derasa growth site, during the
period from December 1997 to May 2004, measured by Abe et al. (2009) [41] and based on the
following equation [52]:

103lnaaragonite�water ¼ ð18:45� 0:4Þ � 103=TðKÞ � ð32:45� 1:5Þ

The δ18Osw values [41] varied between 0.09‰ and 0.29‰, and showed clear seasonal cycles,
except for abrupt short-term drops (down to –0.30‰) during or just after heavy rainfall. The
monthly average δ18OEA values were calculated, and range from –0.31‰ to –2.16‰ (annual
mean of –1.18‰,), which demonstrated distinct seasonal cycles (Fig 6). The annual maximum
and minimum δ18OEA values were recorded in August and February, respectively.

Discussion

δ13Cshell values
Because T. derasa is a zooxanthellae (symbiont)-bearing giant clam, its metabolic activity is
expected to be closely related to organic carbon production by zooxanthellan photosynthesis,
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which is considered to show seasonal cycles corresponding to those of solar radiation. How-
ever, the δ13Cshell values show no seasonal cycles (Figs 3–5). This is true for the inner shell lay-
ers of not only T. derasa but also other tridacnids [35, 38, 53–55]. These indicates that such a
link is unlikely because only minor amounts of metabolic carbon are incorporated into the
bivalve shells as shown in non-zooxanthellate bivalves [56, 57].

The δ13Cshell values show no statistically significant ontogenetic trend. Previous studies have
shown the same results in the inner shell layers of other tridacnids [32, 35, 38, 55]. In contrast,
distinct ontogenetic decreases in δ13C values have been detected in some bivalves [58–60].
Based on the relationship between metabolic rate and body size, Lorrain et al. (2004) [60]
attributed this ontogenetic decrease to the increased incorporation of respiratory CO2 during
growth. As mollusks grow, more metabolic (= respiration-derived) CO2 becomes available to
them, whereas the amount required for shell formation decreases, resulting in the incorpo-
ration of more metabolic carbon (12C-enriched) into their shells. However, ontogenetic
increases in δ13C values are known from non-zooxanthellate and zooxanthellate (tridacnid)
bivalve shells, indicating that the model proposed by Lorrain et al. (2004) [60] may not be a
general model for all bivalves [19, 53].

The spawning periodMytilus edulis is reflected by more negative δ13Cshell values, although
the δ13CDIC is generally becoming more positive, which is explained by higher metabolic rates
just after spawning, as energy lost during spawning is restored [61]. Vander Putten et al. (2000)
[62] also reported these patterns in δ13Cshell values inM. edulis as being a result of increased
respiration associated with periods of higher food availability. However, no such negative
peaks have been found in the δ13C profiles of T. derasa or other tridacnid shells [32, 35, 38, 55].

It was shown that decadal variability of δ13CDIC values relating to phytoplankton productiv-
ity and large-scale ocean dynamics are possible causes of ontogenetic trends of δ13C values
from long-lived bivalve shells [63]. However, the three δ13Cshell profiles of T. derasa are not
long enough to discuss such relationships.

The relatively constant δ13Cshell values, characterized by the absence of seasonal cycles,
ontogenetic decreases, and abrupt short-term drops in δ13Cshell that are attributable to repro-
ductive activity, suggests that the calcification site of this species is not affected by CO2 uptake
resulting from photosynthesis or the incorporation of CO2 from respiration. This is common
in other tridacnid species [32, 35, 38, 55]. The δ13Cshell and δ

18Oshell values show weak or no
significant correlations (KTd-1, r = 0.37, p< 0.05; KTd-4, r = 0.09, p< 0.05; KTd-5, r = 0.32,
p< 0.05; Fig 7), suggesting that there is no kinetic effect [64] or a very weak one on isotope
fractionation during the precipitation of the carbonate-forming T. derasa shells.

The δ13Cshell values are 1.0‰–2.2‰ lower than the lowest δ13CEA values (3.4‰). At pres-
ent, we have no explanation why the δ13Cshell values are so low relative to the δ13CEA values.
Possible causative factors include the pH at the calcification site, as pH is known to affect the
δ13C and δ18O values of skeletal carbonates [51, 56, 65].

δ18O values
The δ18Oshell profiles are characterized by a series of regular seasonal cycles of varying amplitudes
and frequencies. The amplitude of the cycles in the δ18Oshell profiles ranges from 1.03‰ to 1.90‰
for KTd-1, from 1.19‰ to 1.73‰ for KTd-4, and from 1.16‰ to 2.04‰ for KTd-5. Because the
seasonal amplitude of the δ18Osw values is<0.2‰ (excluding the extremely low outliers recorded
during or just after short-term heavy rainfall), the contribution of δ18Osw to the δ

18Oshell variations
is less than<19%. Therefore, the cycles of the δ18Oshell profiles correspond predominantly to sea-
sonal changes in seawater temperature. δ18Oshell profiles characterized by distinct seasonal cycles
have previously been reported for the inner shell layers of tridacnids [30, 33–35, 37, 53, 54, 66].

Carbon and Oxygen Isotope Records from Tridacna derasa
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The aragonitic shells of tridacnids are known to be precipitated in oxygen isotope equilib-
rium with ambient seawater [30, 32]. However, the Δδ18O values, defined as the δ18Oshell values
minus the δ18OEA values, are not negligible, ranging from –0.25‰ to 0.00‰ (KTd-1; n = 11),
from –0.12‰ to 0.15‰ (KTd-4; n = 14), and from –0.38‰ to 0.00‰ (KTd-5; n = 11), if we
calculate them using the δ18Oshell and δ

18OEA values for the coolest and warmest months in the
monthly resolved data from the shell portion in which 12 or more samples for isotope analysis
were collected (Fig 6B). The differences are larger if calculated from the summer and winter
values using seasonally resolved data (KTd-1, –0.35‰ to 0.00‰, n = 21; KTd-4, –0.45‰ to
0.07‰, n = 28; KTd-5, –0.52‰ to 0.00‰, n = 29) (Fig 6C). These differences generally cause
the reconstructed seawater temperatures to be overestimated. The largest monthly and season-
ally resolved Δδ18O values correspond to differences of 1.7°C and 2.3°C, respectively. However,
the monthly time series for δ18Oshell agrees well with that for δ18OEA, except for the period
1995–1997 and the warmest months in 2000 for the KTd-5 profile (Fig 6C). The small differ-
ences (<0.25‰) between δ18Oshell and δ

18OEA for 1997–2006 allow the accurate reconstruction
of seawater temperatures, with an error of<1.1°C. Cross-plots of δ18Oshell versus δ

18OEA indi-
cate that these values are not completely identical, but correlate positively, with the slopes and
intercepts of the regression lines ranging from 0.95 to 1.06 and from –0.23 to –0.12, respec-
tively, and the cross-correlation coefficients ranging from 0.73 to 0.91 (p< 0.05) for all
monthly resolved data (Fig 8). If annual maximum and minimum δ18Oshell values (= δ18Oshell

values for the coolest and warmest months, respectively) are used, the slopes and intercepts of
the regression lines range from 0.99 to 1.05 and from –0.22 to –0.03, respectively, and the
cross-correlation coefficients are 0.91–0.97 (p< 0.05) (Fig 8). Taking into account the statisti-
cal errors (δ18OEA estimation and sampling errors), these results suggest that the seawater tem-
peratures reconstructed from the δ18Oshell values are largely the same as the actual
temperatures.

Fig 7. Cross-plots of δ13Cshell versus δ18Oshell for the studied Tridacna derasa shells. The δ13Cshell and δ18Oshell values show weak or no
significant correlations.

doi:10.1371/journal.pone.0157659.g007
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The intraspecific variability in the δ18Oshell values was relatively small in the period between
1997 and 2006 but relatively large in the periods between 1995 and 1997 (0.51‰ on monthly
data and 0.46‰ on seasonal data between KTd-4 and KTd-5) and between 2006 and 2009
(0.76‰ between KTd-1 and KTd-4/5) (Fig 6). These differences may be due, at least in part, to
different sampling resolutions and/or biological offsets in the juvenile and senescent stages of
shell growth, which have been reported in several studies (brachiopods [23, 24, 67, 68], mol-
lusks [69]). Therefore, the high (more than monthly) temporal resolution of the δ18Oshell values
in the adult stage of shell growth are most suitable for paleoenvironmental reconstructions
using T. derasa.

The shells of T. derasa (and other tridacnids) have potential advantages over the skeletal
carbonates of other organisms, such as brachiopods and corals, because they are precipitated
very close to oxygen isotope equilibrium with ambient seawater at least along the axis of maxi-
mum growth, which allows the δ18Oshell values from any part of the inner shell layer to be con-
verted directly to seawater temperature if the contribution of δ18Osw is negligible. The
secondary shell layer of brachiopod shells is believed to be precipitated in carbon and oxygen
isotope equilibrium with ambient seawater. However, recent investigations have shown that

Fig 8. Cross-plots of monthly resolved δ18Oshell versus δ18OEA for the studied Tridacna derasa shells. All monthly resolved data are shown in the
upper row. Annual maximum and minimum δ18Oshell values (= δ18Oshell values for the coolest and warmest months, respectively) are indicated in the
lower row. Black line is the regression line.

doi:10.1371/journal.pone.0157659.g008
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the δ13C and δ18O values of modern brachiopod shells may be partly or wholly outside the
range of those values for equilibrium calcite, which is attributed, at least in part, to kinetic and
metabolic isotope fractionation effects [22–24, 67, 68, 70–73] or unidentified chemical condi-
tions at the calcification sites [23]. It is well known that the δ13C and δ18O values of coral skele-
tons deviate significantly from those of equilibrium aragonite because of the effects of kinetic
and metabolic isotope fractionation [64]. Our study shows that the δ18Oshell values for the
adult growth stages of T. derasa shells, with little intraspecific variability, are in good agreement
with the δ18OEA values. This relationship can be used to generate high-resolution δ18Oshell time
series of seawater temperatures and δ18Osw in coral reef environments. It should also be noted
that the use of multiple shell samples provides a more reliable reconstruction of seawater tem-
peratures, with an error of<1.1°C.

Growth curves and growth lines
Seasonal variations in δ18Oshell allowed the construction of growth curves for the tridacnid
shells studied. A comparison of the δ18Oshell and δ

18OEA profiles indicated life spans of 10, 17,
and 16 years for KTd-1, KTd-4, and KTd-5, respectively (Fig 6). The annual rate of shell thick-
ening defined as a distance between annual δ18Oshell maxima (= seawater temperature min-
ima), which was measured perpendicular to growth lines/bands, was 5.0–15.5 mm/year during
the juvenile to adult stages, and decreased to 1.0–7.2 mm/year during the senescent stage. The
growth curves representing shell thickening (Fig 9) show similar shapes to those of many other
organisms characterized by growth rates that are initially high and later low (tridacnids [32, 33,
74], bivalves [75], brachiopods [72]).

Clear growth banding, composed of alternating wide light-grey bands and narrow white
bands, is discernible on cross-sections of the inner shell layer (Figs 3–5). Different terms have
been used to describe the growth bands, depending partly on differences in the instruments

Fig 9. Annual rate of shell thickening of Tridacna derasa estimated from seasonal variations in δ18Oshell values. Each annual
increment represents a distance between annual δ18Oshell maxima, which was measured perpendicular to growth lines/bands.

doi:10.1371/journal.pone.0157659.g009
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used to observe them, such as transmitted [32, 36, 74] or reflected illumination [2, 55], which
has led to confusion. In this study, we describe the growth bands based on observations made
under reflected light. The annual δ18Oshell maxima (= seawater temperature minima) correlated
with the white growth bands. This indicates that the white bands were predominantly formed
during winter, which is consistent with previous findings [2, 34, 36, 74].

Conclusions
We investigated the intraspecific variations in the δ13Cshell and δ

18Oshell values of samples from
the inner shell layers, taken from cross-sections, of three modern T. derasa shells from Ishi-
gaki-jima, Ryukyu Islands, southwestern Japan. The results can be summarized as follows.

The δ13Cshell profiles of the samples fall into a relatively narrow range and show no seasonal
cycles, ontogenetic decreases, or abrupt short-term drops that might be related to reproductive
activity. These observations suggest that the calcification site of T. derasa is unlikely to be
affected by CO2 uptake or influx caused by photosynthesis or respiration, respectively. The
δ13Cshell values and the δ

18Oshell values show no or very weak positive correlations, indicating
no or little kinetic isotope fractionation during the carbonate precipitation of the T. derasa
shells.

The δ18Oshell profiles are characterized by distinct cycles corresponding to seasonal changes
in seawater temperature. The δ18Oshell values are usually greater than the δ18OEA values by up
to 0.38‰ and 0.52‰ when calculated from monthly and seasonally resolved data, respectively.
These differences lead to seawater temperature to be overestimated by 1.7°C and 2.3°C, respec-
tively. However, these differences are small (<0.25‰) in the parts of the shell that formed in
the adult stage, which allows the reconstruction of accurate seawater temperatures with an
error of<1.1°C. Therefore, the high-temporal-resolution δ18Oshell data from the adult stage are
most suitable for paleoenvironmental reconstructions using T. derasa. However, the maximum
intraspecific differences in the monthly and seasonally resolved δ18Oshell values are as large as
0.51‰ and 0.76‰, corresponding to differences in water temperature of 2.2°C and 3.3°C,
respectively. This result suggests that multiple δ18Oshell records should be used to reconstruct
seawater temperatures, because although the intraspecific variations in the δ18O values are not
negligible, especially during the juvenile and senescent stages. If multiple data are collected, the
reconstructed seawater temperatures are expected to be very close to the actual temperatures.

Cross-sections of the inner shell layer are characterized by growth banding, composed of
alternating wide light-grey bands and narrow white bands. The δ18Oshell data indicate that the
narrow white bands and the wide light-grey bands were formed in winter and the other sea-
sons, respectively (Figs 3–5).

Supporting Information
S1 Table. Stable carbon and oxygen isotope ratios of the KTd-1, KTd-4, and KTd-5 shells.
(XLSX)
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