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Inflammatory breast cancer (IBC) is a highly metastatic and fatal form of breast cancer. In fact,

IBC is characterized by specific morphological, phenotypic, and biological properties that distin-

guish it from non-IBC. The aggressive behavior of IBC being more common among young

women and the low survival rate alarmed researchers to explore the disease biology. Despite

the basic and translational studies needed to understand IBC disease biology and identify specific

biomarkers, studies are limited by few available IBC cell lines, experimental models, and paucity

of patient samples. Above all, in the last decade, researchers were able to identify new factors that

may play a crucial role in IBC progression. Among identified factors are cytokines, chemokines,

growth factors, and proteases. In addition, viral infection was also suggested to participate in the

etiology of IBC disease. In this review, we present novel factors suggested by different studies to

contribute to the etiology of IBC and the proposed new therapeutic insights.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
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Introduction

Inflammatory breast cancer (IBC) is the most lethal form of pri-

mary breast cancer (TNM classification T4) targeting young
women. The term ‘‘inflammatory breast cancer’’ was first sug-
gested in 1924 by Lee and Tannebanm as a type of cancer asso-

ciated with inflammation of the breast [1]. In 1938, Taylor and
Meltzer introduced two clinical varieties of IBC, namely pri-
mary IBC and secondary IBC [2], to differentiate between
IBC and locally advanced breast cancer. The term ‘‘primary

IBC’’ or ‘‘de novo IBC’’ is defined as the new development of
IBC in a previously normal breast, whereas the term ‘‘second-
ary IBC’’ describes the inflammatory recurrence of non-IBC

breast cancer [3]. IBC represents about 2.5% of newly diag-
nosed breast cancers in the United States [4], where incidence
of IBC is higher among African–American compared to white

women [5]. The frequency of IBC in North African countries
such as Tunisia, Morocco, and Egypt represents about 10%
to 15% of breast cancer [6,7]. Recent studies conducted by
Schairer and colleagues compared percentage diagnosis of

IBC at the National Cancer Institute, Egypt, and Institute
Salah Azaiz (ISA), Tunisia, and they suggested that the increase
in IBC cases in North Africa may be due to misdiagnosis of IBC

with other types of locally advanced breast cancer [8]. In addi-
tion, the lack of breast cancer national registry programs in
developing countries should also be taken into consideration.

There are two well recognized systems for case definition of
IBC. The first is the French Poussée Évolutive (PEV) system
devised in 1959 which defined IBC as a rapidly growing breast

malignancy with PEV2 and PEV3 [9,10]. The second is the
American Joint Committee on Cancer (AJCC) staging system
that classifies IBC as T4d [11].
IBC diagnosis was shown to be associated with a worse sur-
vival rate than other types of breast cancer, which remains a
therapeutic challenge despite the advances in treatment. The

National Cancer Institute’s Surveillance, Epidemiology, and
End Results (SEER) program found that the 3-year disease
survival rate increased for IBC patients compared to non-

IBC patients between 1975–1979 and 1988–1992. For IBC, sur-
vival rate increased from 32% to 42% for IBC patients and
from 80% to 85% for non-IBC patients [12]. Improved sur-

vival rate of IBC patients may be due to the use of neoadjuvant
chemotherapy and combination regimens in the treatment of
IBC [13,14]. Clinically, IBC is defined by distinct features,
including rapid onset within 6 months, erythema, edema of

the breast, and a ‘‘peau d’orange’’ appearance to most areas
of breast skin. Moreover, patients presented with positive met-
astatic lymph node involvement and up to one third of patients

have distant metastasis at diagnosis [15]. Pathologically, the
presence of dermal and stromal tumor emboli is considered a
hallmark of IBC. The subsequent lymphatic obstruction by

tumor emboli prevents proper drainage of the lymph fluid
causing swelling of the breast tissue and produces the inflam-
matory nature of the disease [3,16].

Biological markers associated with IBC

Molecular profiling studies suggested that the molecular sub-

types of IBC are similar to those described in non-IBC. How-
ever, low frequency of luminal A and high expression of HER-
2 are enriched among IBC patients as compared with non-IBC
[17]. Other studies identified specific biological markers that

may be associated with IBC poor prognosis, and disease
aggressiveness. For instance, IBC is characterized by amplifi-
cation/over-expression of growth factor receptor HER2 [17]

and down regulation of hormone receptors ER/PR [18–20].
The absence of hormonal receptors expression was shown to
be correlated with a high degree of malignancy and breast can-

cer shorter disease-free survival [21]. IBC patients with ER
positive receptors have a better prognosis with a median sur-
vival of 4 years compared to 2 years median survival for

patients with ER-negative IBC [4]. About 80% of IBC carci-
noma tissue samples are characterized by loss of WNT1-induc-
ible-signaling pathway protein 3 (WISP3) and also recognized
as loss of inflammatory breast cancer gene [22]. WISP3, also

known as CCN6, is a cysteine-rich protein found to inhibit
invasive and angiogenic potential of IBC cells in tissue cultures
and animal models [23]. In addition, IBC embolus is character-

ized by over-expression of a number of genes such as ras
homolog family member C-guanosine triphosphatase (RhoC-
GTPase) and E-cadherin [24]. The epithelial marker E-cad-

herin is a calcium dependent transmembrane glycoprotein that
mediates epithelial cell–cell adhesion [25]. IBC cells are charac-
terized by over-expression of E-cadherin, which is essential for
adherence of cells together and formation of tumor emboli.

Studies suggested that E-cadherin facilitates the dissemination
of IBC within the lymphatic vessels by promoting cell–cell con-
tact and maintaining the integrity of IBC tumor emboli within

dermal lymphatics [24,26]. The role of E-cadherin in IBC is
opposite to non-IBC. In non-IBC, loss of E-cadherin expres-
sion contributes to increased tumor proliferation and to the

progression of metastasis and is associated with poor progno-
sis [27], while increased E-cadherin in IBC contributes to dis-
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ease aggressiveness and decreased survival rate [25]. Moreover,
RhoC-GTPase is over-expressed in 90% of IBC tumors com-
pared with 38% of the stage-matched non-IBC tumors. In

IBC cell line SUM149, over-expression of RhoC-GTPaseis
associated with loss of WISP3 and restoration of WISP3 in
SUM149 cells down-regulates the production of RhoC-

GTPase and inhibits invasive potential of SUM140 cells [28].
Indeed, RhoC-GTPase is found to play an essential role in
the metastatic behavior of IBC by increasing all aspects of met-

astatic process such as cellular motility and invasion, cytoskel-
etal assembly, and cell adhesion. RhoC-GTPase controls the
cytoskeletal reorganization by inducing actin stress fiber and
focal adhesion contacts formation [29–33]. Studies suggested

that RhoC-GTPase is a transforming oncogene for human
mammary epithelial (HME) cells leading to increase in motility
and invasion [32,34]. Therefore, over-expression of RhoC-

GTPase leads to transformation of immortalized HME cells
with an invasive phenotype such as IBC [31]. In addition to
that, several studies characterized that elevated expression of

RhoC-GTPase is linked to high histologic grade, positive
lymph node status, negative hormonal receptor status, and
over-expression of HER-2 [34,35]. Moreover, RhoC-GTPase

is associated with up-regulation of vascular endothelial growth
factor (VEGF), basic fibroblast growth factor (bFGF), inter-
leukin-6 (IL-6), and interleukin-8 (IL-8), contributing to a dis-
tinct type of angiogenic stroma formation in IBC carcinoma

[31,36].
However, all discussed previous markers do not distinguish

IBC from non-IBC and fail to explain the specific pathobiol-

ogy of IBC. This was confirmed by studies showing similar
expression levels of LIBC/WISP3, RhoC, and E-cadherin in
IBC and non-IBC [15]. DNA microarrays studies showed gene

expression differences between IBC and non-IBC, and results
detected over-expression of Toll-like receptors (TLR) in IBC
tissues versus non-IBC tissues [16]. TLR are highly expressed

by myelomonocytic cells, including dendritic cells in response
to microbial or viral infections [17]. Over-expression of TLR
suggests infiltration of IBC by immune cells and possibility
of viral etiology in IBC progression.

Recent studied comparing MicroRNAs (miRNAs) expres-
sion profiles in non-IBC, IBC carcinoma tissues, and normal
breast tissues found that IBC patients are characterized by five

over-expressed miRNAs comprising miR-421, miR-486, miR-
503, miR-720, and miR-1303 [37].

Tumor emboli as hallmark of IBC

Within lymphatic and blood vessels, IBC carcinoma cells are
characterized by specific phenotype ‘‘tumor embolus’’ where

carcinoma cells clump together and retract away from the sur-
rounding endothelial lining of blood and lymphatic vessels
[24,26]. Tumor embolism is considered as the main route for
dissemination of IBC carcinoma cells in vivo, where IBC

spread in the form of clumps of cells within lymphatic and
blood vessels leading to distant metastasis and multiorgan fail-
ure in IBC patients [38]. The well organized architecture of

IBC emboli might be due to over-expression of membranous
E-cadherin bounded with a or b-catenin, formation of apical
surface microvilli and canalis structures [39].

Although the molecular and cellular structure of IBC
tumor emboli was described by different studies, there is an
argument about the origin of IBC tumor emboli. Traditionally,
tumor emboli were thought to have originated from lympho-
vascular invasion of carcinoma cells as an action proceeding

metastasis [24,26]. Barsky and colleagues studied the forma-
tion and the properties of IBC emboli in mice model
(MARY-X). Their studies suggested that tumor emboli may

be formed due to encircling of endothelial cells to clumps of
IBC cells ‘‘lymphovasculogenesis’’ rather than traditional lym-
phovascular invasion [40]. They added that since IBC tumor

emboli morphology resembles ‘‘embryonic blastocyst,’’ they
may possess the properties of embryonic stem cells. Their stud-
ies showed that IBC emboli express stem cell markers such as
Notch 3 and aldehyde dehydrogenase (ALDH) enzyme [41]. In

fact, the biology of IBC tumor emboli formation is not well
understood. This may be due to the lack of in vitro model that
recapitulates the biophysical properties of the lymphatic sys-

tem. Our studies showed that seeding IBC cell line SUM149
in 3D model, it forms spheroid like structures that resemble
patients’ in vivo tumor emboli [42].

Interestingly, a recent study created IBC tumor emboli by
seeding IBC cell lines in viscous suspension that resemble phys-
ical and biological properties of lymphatic fluid [43], they

found that IBC cells form tumor emboli when they were
seeded in properties that resemble lymphatic fluid, this was
not shown by non-IBC cells. Moreover, the study compared
between biological markers of the established in vitro emboli

and patient emboli. Results showed that in vitro emboli express
epithelial marker E-cadherin and RhoC-GTPase similar to
patient emboli [13]. Authors concluded that the newly estab-

lished model might provide an ideal model ‘‘to accurately grow
and study inflammatory breast cancer biology’’ [43]. However,
more investigations are warranted to validate the use of the

previous model in studying interaction between IBC cells
and stromal cells, such as immune cells and fibroblasts, har-
boring the tumor microenvironment.

IBC and tumor associated macrophages

It is clear that dissemination of carcinoma cells is affected by

different factors including cues from the inflammatory cells
within the tumor microenvironment. Indeed, macrophages
are known to be the major inflammatory cells that infiltrate
various types of tumors including breast [44,45], contributing

to high levels of growth factors, hormones, and cytokines in
the tumor microenvironment [46,47]. Macrophages are phag-
ocytic immune cells, whose main function is to eliminate and

kill infected cells and pathogens [48]. Within the tumor
microenvironment, tumor associated macrophages (TAM)
are differentiated into heterogeneous subpopulations, such

as (a) ‘‘classically activated macrophages’’ that secrete pro-
inflammatory and inflammatory mediators and recruit
T-cells as in an early inflammatory response [49] and (b)
‘‘regulatory macrophages’’ that express anti-inflammatory

cytokines and increase tumor growth, invasion, and metasta-
sis [50].

A strong association was found between breast TAM and

poor prognosis [51,52]. Macrophages secrete soluble mediators
that induce migration, invasion, and metastasis of carcinoma
cells [53,54]. For instance, TAM secretes matrix metallopro-

teinases-2 and 9 (MMP-2 and MMP-9) enzymes that can
degrade components of the basement membrane, thereby facil-
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itating tumor cell motility, intravasation, and dissemination
[54,55]. Increases in expression of MMPs and their inhibitors
in TAM were found to correlate with distant metastasis of

invasive ductal carcinomas [56]. Moreover, within tumor
microenvironment, TAM stimulate carcinoma cells growth
and proliferation by releasing growth factors (e.g., epidermal

growth factor (EGF) [57]. Interestingly, analyses by cDNA
microarrays showed over-expression of Toll-like receptors
(TLR) in IBC tissues [58]. TLR are highly expressed by macro-

phages in response to microbial or viral infections, such as
human cytomegalovirus (HCMV) [59].

Although the role of TAM in breast cancer progression is
well established by several studies [44,60], their role in IBC

has not yet been investigated. We are interested in studying
the interaction between human monocytes/macrophages and
IBC cells. Using in vitro 3D models, we co-cultured IBC cell

line SUM149 with human monocytes U937 or in media condi-
tioned by human monocytes. We found that human mono-
cytes U937 or media conditioned by human monocytes

increase expression and activity of Cathepsin B (CTSB) and
also stimulate invasiveness and motility by breast carcinoma
cells [61]. Since paracrine interaction between monocytes/mac-

rophages and breast carcinoma cells is modulated by cytokines
and chemokines, we profiled secretions of human monocytes
to identify key cytokines/chemokines secreted by human
monocytes that may induce motility and invasion of IBC cells.

Our results showed that human monocytes secrete IL-8 that
promotes invasiveness of IBC carcinoma cells via stimulation
of PI3K/Akt signaling pathway and increasing the expression

of the mesenchymal marker fibronectin [42].
We were interested in studying whether monocytes/macro-

phages contribute to IBC cancer progression. Using immuno-

histochemical techniques, we found that monocytes/
macrophages highly infiltrate IBC carcinoma tissues and local-
ized around tumor emboli. Moreover, we recorded a cross talk

between IBC tumor emboli and surrounding monocytes/mac-
rophages. Within patients, carcinoma tissues tumor emboli
are oriented toward monocytes/macrophages (Mohamed
et al., unpublished data). We found that influx of macrophages

within the IBC tumor microenvironment correlated with
increase in the number of positive lymph node metastasis
(unpublished data), expression, and activity of proteases such

as CTSB [62] and MMP-2 and -9 [63]. Thus, in IBC carcinoma
tissues, TAM may secrete cytokines/chemokines that induce
invasiveness and expression of proteases by IBC cells. Depend-

ing on our results and previously published studies, we sug-
gested that cytokines and proteases may have a role in IBC
progression.
Role of proteases in the dissemination of IBC cells

Cancer cells secrete proteases, such as cysteine cathepsins,
which enable them to invade and metastasize via degrading

extracellular matrix proteins and basement membranes [64].
Protease can act directly or indirectly by activating other pro-
teases through a cascade reaction [65]. Proteases also modulate

secretion and activity of cytokines that influence invasive and
metastatic behavior of cancer cells [66]. Within breast tumor
microenvironment, the cross talk between cell–cell and cell-

matrix is modulated by a network of proteases, growth factors,
and cytokines [67]. Sloane and colleagues established a 3D co-
culture model known as MAME (mammary architecture and
microenvironment engineering) to study proteolysis resulting
from interaction between breast cancer cells and stromal cells

[68]. Using the MAME model, proteolytic pathways that con-
tribute to the transition of breast cancer from pre-invasive duc-
tal carcinoma in situ (DCIS) to invasive ductal carcinomas

(IDCs) were identified [69].
Although the role of proteases in non-IBC is well investi-

gated, their role in IBC is poorly studied. The specific invasive-

ness properties migration to axillary lymph nodes and distant
organs of IBC carcinoma cells postulate an important role for
the contribution of proteins associated with degradation of
extracellular matrix, cell motility, and metastasis [70]. Indeed,

cell surface proteins caveolin-1 and -2 the structural proteins of
cell surface lipid raft caveolae are linked to IBC disease [70]. In
cancer cells, caveolae serve as a home for the inactive proteases

[64]. For example, pro-CTSB binds to p11 a light chain of the
annexin II heterotetramer. Such binding seems to facilitate
conversion of procathepsin B to its active forms. Active CTSB

imitates a cascade pericellular proteolytic activity at cancer cell
surface [71–73]. CTSB is a member of the cysteine proteases
family involved in various steps of cancer invasion, motility

and dissemination by digestion of adhesion molecules, degra-
dation of extracellular matrix and regulation of angiogenesis
[64,74]. Furthermore, membrane associated CTSB activates
receptor-bound single-chain urokinase-type plasminogen acti-

vator (pro-uPA). The active receptor-bound urokinase plas-
minogen activator (uPA) converts plasminogen, a serine
protease, to plasmin which is involved in the degradation of

ECM and basement membrane invasion [75]. Plasmin initiates
a cascade reaction to activate MMPs such as MMP-1, -3, -12,
and -13 which are known to be involved in cancer invasion and

metastasis [65].
Using life cell imaging proteolysis assay, we showed that

IBC cells SUM149 exhibit pericellular proteolytic activity

due to the co localization of active CTSB, uPA, and uPAR
in the SUM149 cell surface caveolae. The role of CTSB in
IBC carcinoma cells motility and invasion was confirmed by
the ability of CTSB inhibitor CA074 to significantly inhibit

pericellular proteolysis and invasion by SUM149 cells [76].
Besides, we translated our in vitro studies at clinical level by
studying the role of CTSB in IBC cancer disease progression.

We detected co-expression of caveolin-1 and CTSB in IBC
patients’ carcinoma tissues. In addition, there was a significant
correlation between the expression of CTSB and positive met-

astatic lymph nodes in IBC, a correlation that was not
observed in non-IBC patients [62]. Thus, our studies were
the first to demonstrate CTSB role in IBC carcinoma cells
motility, invasion and lymph node metastasis. Furthermore,

we introduced CTSB as a potential prognostic marker for
lymph node invasion and metastasis in IBC.

Extensive studies linked MMPs to the invasive and meta-

static behavior of a wide variety of malignancies. Levels of dis-
tinct MMPs in the tumor tissues or serum of patients with
advanced cancer and their role as prognostic indicators in can-

cer were widely examined [77–80]. Certain MMPs such as gel-
atinases (MMP-2, MMP-9) have special mechanisms
associated with poor prognosis of cancer. For instance,

MMP-2 and MMP-9 facilitate invasion and metastasis because
they degrade type IV, V, VII, and X collagens as well as fibro-
nectin, which are important constituents of ECM [81–83]. In
human solid tumors, including colon, breast, and lung carci-
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noma and melanoma, MMP-2 and MMP-9 are markedly over-
expressed during the invasive and metastatic phases, while they
are scarcely present or even absent in hyperplastic or normal

tissue and in situ tumors [80,83–86]. Moreover, membrane-
type MMPs (MT-MMPs) such as MT1-MMP were found to
be strongly implicated in oncogenesis [87]. MT1-MMP is local-

ized at invasive edges of the tumors and specialized membrane
extensions known as invadopodia, where ECM degradation
and cellular invasion can occur [88]. Stages of breast cancer

progression are accompanied by an increase in the expression
of MT1-MMP, MMP-2, and MMP-9 and suggested to be a
predictive biomarker for disease aggressiveness, invasiveness,
and poor prognosis [56,79,89,90]. Although MMPs are proba-

bly important mediators for the invasiveness, motility, and
metastatic potential of non-IBC [82,91], their role in IBC is
not well identified.

We compared the expression of MMPs (MT1-MMP,
MMP2, and MMP-9) in IBC versus non-IBC patients in an
attempt to provide a more validated data on the biological

behavior of IBC phenotype. We detected increased expression
of MT1-MMP, MMP-2, and MMP-9 in aggressive phenotype
IBC compared to non-IBC. Furthermore, MT1-MMP in IBC

carcinoma tissues correlates with pro-MMP-2 and pro-MMP-
9 expression and the activity of MMP-2, while in non-IBC,
expression of MT1-MMP correlates with expression of pro-
MMP-9. Our study suggested for the first time that MT1-

MMP may play an essential role in IBC progression either
directly through promoting cell motility or indirectly by induc-
ing the expression of pro-MMP-2 and pro-MMP-9 and activa-

tion of MMP-2 [63].

Cytokines/chemokines regulate IBC disease progression

Although cross talks between cells within the tumor microenvi-
ronment are modulated by soluble mediators such as cytokines/
chemokines, the role of cytokines/chemokines in IBC is not well

investigated and more studies are warranted. Using different
experimental models, few studies cited the role of cytokines in
IBC progression. For instance, the canine inflammatory mam-

mary cancer model, which is a typical form of IBC, character-
ized by high serum levels of IL-6, IL-8, and IL-10 compared to
canine non-inflammatory malignant mammary cancer [92].
Similarly, IBC cell line SUM149 and SUM190 secrete IL-6

and IL-8 cytokines that augment self-renewal of stem cells via
Notch signaling pathway [93]. A nearly study which measured
the level of cytokines in IBC patients found that IBC carcinoma

tissues are characterized by over-expression of IL-6 [94]. In
addition, serum IL-6 in IBC patients was significantly high
compared to non-IBC patients [95].

IL-6 is a pleiotropic cytokine with multiple biological func-
tions in breast tumor microenvironment. IL-6 promotes tumor
growth by stimulating tumor cell proliferation via antiapopto-
tic response (for review see [96,97]). Furthermore, IL-6 aug-

ments breast carcinoma cell invasion and motility [98] and
thus may induce dissemination of IBC carcinoma cells. Molec-
ular studies using cDNA microarray identified up-regulation

of NF-jB signaling pathways related cytokines, such as IL-8
and its receptors CXCR1/2 in IBC carcinoma tissues [99].
Using in vitro 3D models, we found that human monocytes

secrete IL-8 that promotes invasion and motility of IBC carci-
noma cells via stimulation of PI3 K/Akt signaling pathway
and thus increase the expression of the mesenchymal marker
fibronectin [42]. In addition, IL-8 modulates survival of breast
cancer stem cells, and IL8/CXCR1 axis is involved in their

invasiveness [100]. Recent studies using an in vitro model
showed that bone marrow mesenchymal cells secrete inflam-
matory mediators such as IL-6 and IL-8 that interact with spe-

cific receptors stimulating cancer stem cells (CSC) self-renewal
of IBC cells SUM149 [101]. Taking in consideration, high met-
astatic behavior and aggressiveness of IBC disease assumed to

be due to stem cell phenotype within tumor emboli [41], cyto-
kines may play a prominent role in inducing stemness of IBC.
In summary, only few studies discussed the role of cytokines/
chemokines in IBC (Table 1) and more studies are essential

to define their role.
A recent study which integrated the results of 3 Affymetrix

expression arrays found that TGF-b signaling pathway is sup-

pressed in IBC carcinoma tissues compared to non-IBC [17]. In
breast cancer, TGF-b signaling switches breast cancer cells
from adhered to single cell motility [102]. Interestingly, adhered

carcinoma cells were found to metastasize through lymphatic
vessels rather than blood vessels [102,103]. Thus, attenuation
of TGF-b signaling pathway may contribute to tumor emboli

formation and lymphatic invasion of IBC carcinoma cells [17].

HCMV infection as a factor contribute to IBC disease etiology

The involvement of viruses such as human papillomavirus
(HPV) [104], mouse mammary tumor-like viruses (MMTV)
[105], a provirus structure with 96% homology with MMTV
known as human mammary tumor virus (HMTV) [106],

epstein-Barr virus (EBV) [107], and HCMV [108] in breast car-
cinogenesis was suggested before by different investigations.
The involvement of viral infection in IBC was suggested by

Pogo and colleagues when they detected HMTV (MMTV-
related virus) in 71% of IBC cases compared to 40% of non-
IBC cases in American patients [109].

Although studies suggested that pollution, environmental
factors, viral infection, and modern lifestyle may have a great
impact on the manifestation of different forms of cancer in the

Egyptian population including breast cancer [107,110–113] lit-
tle is known about the underlying cause of IBC, particularly its
rapid and wild presentation. The unique phenotype of IBC
exhibits properties associated with HCMV infection including

secretions of cytokines and proteases that induce cellular
migration, angiogenesis [114] and activation of NF-jB signal-
ing pathway, a specific pathway found to be induced by

HCMV infection [115].
Investigating the role of HCMV in cancer etiology is

recently recommended by different studies after the develop-

ment of advanced and sensitive laboratory techniques which
can detect virus genome, protein, and secretome in cancer tis-
sues [116]. High levels of human cytomegalovirus were
detected in newly diagnosed [117] and metastatic breast cancer

patients [118]. Furthermore, HCMV proteins and DNA were
detected in breast ductal carcinoma in situ and infiltrating duc-
tal carcinoma, suggesting a role of HCMV in breast carcino-

genesis [108]. HCMV infection induces production of several
cytokines and chemokines such as IL-1, IL-6, IL-8, IL-10,
interferon beta (IFN-b), transforming growth factor (TGF)-

b, monocyte chemotactic protein (MCP)-1, macrophage
inflammatory protein (MIP)-1a, MIP-1b, and RANTES (regu-



Table 1 The major cytokines and chemokines and their roles in non-IBC and IBC.

Cytokines Role References

Interleukins (IL)

IL-1 IL-1 b involved in breast cancer progression and relapse [129,130]

IL-1 is a potential inducer of IL-8 production by breast cancer cells in vitro [130]

IL-6 Contributes to the tumor proliferation via up-regulating antiapoptotic and angiogenic

response

[31,94,131]

Produced by IBC cell lines (SUM149 and SUM190) stimulate Notch signaling that

induces self-renewal pathways of cancer stem cell

[93]

IL-8 Has been identified as an angiogenic stimulator [132]

Promotes invasion and motility of IBC carcinoma cells by inducing of PI3 k/Akt

signaling pathway and increasing the expression of the mesenchymal marker fibronectin

[42]

IBC cell lines (SUM149 and SUM190) secrets IL-8 that promotes cancer stem cell self-

renewal pathways through Notch signaling

[93]

IL-10 Production of IL-10 has been linked to chronicinfection with Mouse Mammary Tumor

Virus (MMTV), which related to IBC aggressiveness and etiopathogenesis

[92,109,133]

TNF-a Contributes to epithelial mesenchymal transition (EMT) in breast tumor cells [134,135]

Act as a mediator for IL-6 and IL-8 production [93]

Induce NF-B signaling pathway activation in stem-like phenotype [136]

MCP-1 or CCL2 Promotes breast tumor growth and metastasis [137]

CCL2 and CCL5 are up-regulated by TNF-a and IL-1bin breast cancer cells [138]
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lated on activation, normal, T-cell expressed, and secreted)
[119]. Furthermore, elevated HCMV IgG levels are linked with

mortality, and this association is largely explained by elevated
IL-6 and TNF-a [120].

We screened for HCMV infection in non-IBC versus IBC

patients [121]. Serological diagnosis indicates that HCMV high
antibody titer is higher in IBC versus non-IBC, which agrees
with other studies that detected high antibody titer of HCMV

in patients newly diagnosed with breast cancer [117]. Further-
more, using nested PCR, we screened for HCMV-DNA in
postsurgical cancer and non-cancer breast tissue of non-IBC
and IBC patients and healthy volunteers’ tissues obtained from

mammoplasty. Our results revealed that HCMV-DNA was
detected in cancer tissues of IBC and not in adjacent non-can-
cer tissues, the results were statistically significant compared to

non-IBC patients group. Interestingly, sequence analysis of the
detected HCMV-DNA fragment revealed that HCMV infected
IBC tissues possess different HCMV strains when compared to

infected non-IBC tissues. Polymorphism among HCMV
strains may provide important clinical information on the
involvement of HCMV in IBC disease etiology [121].

Moreover, we tested whether HCMV infection may modu-

late the expression and activation of transcriptional factor NF-
B/p65 (which controls secretion of different cytokines) in non-
IBC versus IBC carcinoma tissues. We found that HCMV

infected IBC cancer tissues enhance the expression and activa-
tion (phosphorylation) of NF-jB/p65 signaling molecules in
IBC patients versus non-IBC patients, this suggests oncomod-

ulatory role for HCMV in IBC and not in non-IBC carcinoma
tissues. Thus we demonstrated for the first time that HCMV
infection may be associated with the etiology and the progres-

sion of IBC versus non-IBC.

Treatment of IBC

Although IBC is the most lethal form of breast cancer affecting
young women, there is insufficient evidence from prospective
randomized clinical trials for an optimal management for
those patients. However, over the past 2 decades, different

studies led to the accord that all those patients with primary
IBC should receive systemic chemotherapy followed by breast
cancer surgery and radiation therapy.

IBC treatment strategies showed that a combination of a
taxane and anthracycline increase the response rate to primary
systemic chemotherapy, and improves prognosis and efficacy

in the neoadjuvant treatment of IBC [122]. As regard targeted
therapy, trastuzumab was investigated in 5 prospective clinical
trials with systemic chemotherapy for locally advanced breast
cancer, including IBC [123].

In these studies of the combination of neo- adjuvant
chemotherapies and trastuzumab, they validated the success
of trastuzumab in combined systemic chemotherapy regimens

for HER2-positive breast cancer, proposing that trastuzumab
may be an essential drug in such regimens for patients with
HER2-positive IBC. Moreover, in the Neoadjuvant Herceptin

(NOAH) trial, patients with high-risk, human epidermal
growth factor receptor-2 (HER2+) positive locally advanced
or inflammatory breast cancer were randomly allocated to
receive preoperative chemotherapy plus trastuzumab followed

by completion of a total of 1 year of adjuvant trastuzumab ver-
sus the same regimen of preoperative chemotherapy alone. The
rate of pCR was doubled in the trastuzumab arm compared

with the chemotherapy alone arm [123]. Following the neoad-
juvant therapy and for those patients whose disease responded
to the systemic treatment, mastectomy with axillary lymph

node dissection is shown to be the standard of care and
improves the local control rate and survival duration [124].

Negative surgical margins should be the target during sur-

gery as those with negative margins showed better prognosis
rather than those with positive margins [125,126]. Although
sentinel lymph node biopsy (SLNB) is the standard of care
for evaluating axillary lymph node status in patients with early

breast cancer, it is not recommended for patients with IBC due
to the lymphatic blockage by tumor emboli which is a feature
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Fig. 1 Tumor emboli of IBC, showing carcinoma cells (green arrow) secrete proteases and cytokines that facilitate extracellular matrix

degradation, invasion and motility. TAM (gray arrow) secrete cytokines, chemokines, growth factors induce immunosuppression and

dissemination of carcinoma cells. HCMV infected cells (blue arrow) secrete cytokines and proteases associated with angiogenesis,

immunosuppression, invasion and motility of IBC carcinoma cells.
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of IBC, and such blockage could prevent the dye or radioactive
isotope used from being carried to sentinel lymph nodes. Due
to the high rate of dermal lymphatic invasion and the need for

post mastectomy radiation therapy, skin-sparing mastectomy
or immediate reconstruction is not recommended.

For patients who do not respond to induction chemother-

apy, radiation therapy should be considered and patients should
be re-evaluated for operability. All women with IBC who
undergo a modified radical mastectomy are recommended to
receive postmastectomy radiation therapy. Accelerated Hyper

fractionated Radiation Therapy achieves better local control
than standard radiation therapy for this aggressive disease.
One reason that tumors develop resistance to standard radia-

tion therapy is the rapid repopulation of IBC tumor cells
between radiation doses. Since there is a high probability for
the involvement of locoregional lymph nodes, which would

envisage a high likelihood of locoregional recurrence, it is rec-
ommended that radiation therapy also involve these regions
including the supraclavicular regions and internal mammary

lymph nodes [126]. It is also recommended that the cumulative
radiation dose be escalated to 66 Gy in the subset of womenwho
are under age of 45 years, have close or positive surgical margins
and have four or more positive lymph nodes following preoper-
ative systemic treatment, or who demonstrated a poor response
preoperative systemic treatment [126]. Five years of hormonal
treatment with either tamoxifen or an aromatase inhibitor

depending on their menopausal status is recommended for all
patients showing positive hormone receptors [123].

Targeting inflammatory mediators and associated signaling

pathways in IBC is currently being used in pre-clinical phases.
For example targeting inflammatory cytokines secreted by IBC
carcinoma cells and tumor microenvironment showed that
using Notch inhibitor RO4929097 down-regulates expression

of the inflammatory cytokines IL-6 and IL-8 and reduces
self-renewal properties of IBC stem cells [93]. Drygin and col-
leagues showed that targeting protein kinase CK2 using the

CK2 inhibitor CX-4945 down regulate the expression of IL-6
in tissue culture models and inflammatory breast cancer
SUM-149PT xenografts mice models. Translating their find-

ings as clinical trial, their results showed that in phase I clinical
trial with CX-4945 delivered as oral tablets to IBC patients
reduced IL-6 plasma level of IBC patients [95]. On the other

hand, treatment of IBC cell line SUM149 with anti-inflamma-
tory vitamin D calcitriol reduces motility, invasion and tumor
spheroid formation of IBC cells [127]. Vitamin D is known to
inhibit cytokine secretions in adipocytes [127] ovarian and
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endometrial cancer cells [128] via inactivating NF-B signaling
pathway. Indeed, previous studies suggested the importance
of targeting inflammatory cytokines and new treatment strate-

gies for IBC patients.

Conclusions

IBC disease biology is complex; recent investigations intro-
duced new cellular and molecular factors that may contribute
to IBC progression. Investigations showed that cytokines, pro-

teases, and viral infection were found to play a crucial role in
IBC disease progression (Fig. 1). In fact, preclinical studies tar-
geting new molecules associated with IBC progression are

essential for the management of this aggressive type of disease.
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